Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή

Σχετικά έγγραφα
Τρία ερωτήματα μεταφοράς. Που πρέπει να γίνουν «άσκηση», και να λυθεί η άσκηση για να απαντηθεί το ερώτημα...

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

Το πρόβλημα. 15m. ταμιευτήρας. κανάλι

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Περιβαλλοντική Γεωτεχνική Άσκηση από διαγώνισμα

Moντελοποίηση Ανοιχτά Ασκήσεις ερωτήματα προς επίλυση 1

Περιβαλλοντική Γεωτεχνική. Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή

Παραδείγματα μεταφοράς για εφαρμογές αποκατάστασης & σχόλια. Άντληση και επεξεργασία, φυσική εξασθένηση, διάλυση κηλίδας NAPL, περατά διαφράγματα

Αρχές μεταφοράς ρύπων

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 8 Τεχνολογίες αποκατάστασης υπεδάφους

ΑΠΟΚΑΤΑΣΤΑΣΗ ΡΥΠΑΣΜΕΝΩΝ ΧΩΡΩΝ ΣΧΟΛΙΑ ΓΙΑ ΤΕΧΝΟΛΟΓΙΕΣ ΓΙΑ ΤΙΣ ΟΠΟΙΕΣ ΔΙΝΟΝΤΑΙ ΑΡΙΘΜΗΤΙΚΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή

ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.

Εθνικό Μετσόβιο Πολυτεχνείο - Σχολή Πολιτικών Μηχανικών Περιβαλλοντική Γεωτεχνική - 2 η σειρά ασκήσεων - 25 Οκτωβρίου, 2018

Υπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Υπόγεια ροή. Παρουσίαση 3 από 4: Ταχύτητα κίνησης υπόγειου νερού & ρύπου. (Tαχύτητα μεταγωγής)

Περιβαλλοντική Γεωτεχνική: Βασικά ερωτήματα (3/10/2016)

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή

Υπόγεια ροή. Εξισώσεις (μονοφασικής) ροής Εξισώσεις πολυφασικής ροής

Αρχές ροής υπογείων υδάτων

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Ρύπανση Υδάτων και Εδαφών

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ

Όλα τα θέματα είναι ισοδύναμα από άποψη βαθμού. Σύνολο: 10.5 (προβλήματα: 4x2.5=10, κρίση επίτευξης στόχων βλέπε πιο κάτω: 0.5)

Προστασία Υδροφόρων Οριζόντων Τρωτότητα. Άσκηση 1

Πρόβλεψη εξέλιξης ρύπανσης. Βασικά ερωτήματα: Πού θα πάει ο ρύπος; Πώς θα συμπεριφερθεί; Τι θα απογίνει;

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Υπόγεια ροή. Παρουσίαση 2 από 4: Νόμος Darcy

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

Περιστατικό ρύπανσης και αποκατάστασης υπεδάφους: Αεροδρόμιο Ναυτικής Βάσης στην Καλιφόρνια. (Moffett Field)

Παραδείγματα Λυμένες ασκήσεις Κεφαλαίου 5

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Μηχανισμοί εξάπλωσης ρύπων. Βασικό ερώτημα: Πού θα πάει ο ρύπος, πώς θα συμπεριφερθεί;

Υπόγεια Υδραυλική. 1 η Εργαστηριακή Άσκηση Εφαρμογή Νόμου Darcy

Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb

ΚΕΦΑΛΑΙΟ 4 ΜΟΝΙΜΗ Υ ΑΤΙΚΗ ΡΟΗ ΙΑΜΕΣΟΥ ΤΟΥ Ε ΑΦΟΥΣ

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 7 Μεταφορά ρύπων στο υπόγειο νερό

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Στραγγίσεις (Θεωρία) Ενότητα 9 : Η ασταθής στράγγιση των εδαφών Ι Δρ.

Μικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών

Εργαστηριακή άσκηση: Σωλήνας Venturi

Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

1.1. Διαφορική Εξίσωση και λύση αυτής

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΜΗΧΑΝΙΚΗ ΠΕΤΡΕΛΑΙΩΝ ΚΕΦΑΛΑΙΟ 6 Ασκήσεις

Υπόγεια Υδραυλική και Υδρολογία

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΕΡΙΒΑΛΛΩΝ ΧΩΡΟΣ ΤΕΧΝΙΚΟΥ ΕΡΓΟΥ. Ν. Σαμπατακάκης Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 6 Αλληλεπίδραση ρύπων με το έδαφος

Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Υπόγεια Υδραυλική και Υδρολογία

Τεχνική Υδρολογία (Ασκήσεις)

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Προβλήματα Υφαλμύρισης Καρστικών Υδροφορέων

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Περιβαλλοντική Γεωτεχνική: Πρόοδος, 29 Νοεμβρίου 2018

ΠΕΡΑΤΑ ΔΙΑΦΡΑΓΜΑΤΑ (permeable reactive barriers PRBs)

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Απόδειξη της σχέσης 3.17 που αφορά στην ακτινωτή ροή µονοφασικού ρευστού σε οµογενές πορώδες µέσο

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

ιόδευση των πληµµυρών

Υπόγεια Υδραυλική και Υδρολογία

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Αλληλεπίδραση ρύπων εδάφους

Τεχνική Υδρολογία (Ασκήσεις)

Υπόγεια Υδραυλική. 5 η Εργαστηριακή Άσκηση Υδροδυναμική Ανάλυση Πηγών

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Διάλεξη 13: Σχήματα ανώτερης τάξης Οριακές συνθήκες για προβλήματα συναγωγήςδιάχυσης

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D

ΦΡΕΑΤΑ. Α. ΝΑΝΟΥ-ΓΙΑΝΝΑΡΟΥ Οκτώβριος 2007

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Δαπάνη ενέργειας Περιορισμένο μήκος Επιδράσεις στον αγωγό από ανάντη και κατάντη Ποια εξίσωση, Ενέργειας η ορμής?

Παρουσίαση δεδομένων πεδίου: Υφαλμύρινση παράκτιων υδροφορέων

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Transcript:

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση 3 από 4 Tρία λυμένα παραδείγματα & μαθησιακοί στόχοι (έως τώρα)

Τρία ερωτήματα μεταφοράς Που πρέπει να γίνουν «άσκηση», και να λυθεί η άσκηση για να απαντηθεί το ερώτημα...

Ερώτημα Άσκηση Lundell-Sällfors and Sällfors (2000) Τι μπορώ να «πετάξω»; Πού πρέπει να εστιάσω; 3

Ερώτημα Άσκηση Έχω κάποια λίγα στοιχεία Το ερώτημα είναι διατυπωμένο με λόγια Πώς θα τα συμπληρώσω; Πώς θα το μετατρέψω σε σχήμα; 4

1. Πόσο γρήγορα θα φτάσει ο ρύπος σε σημείο ενδιαφέροντος Διερευνητική γεώτρηση Α διανοίγεται από λάθος διαμέσου της κορεσμένης ζώνης σε μια περιοχή ρυπασμένη με τριχλωροαιθένιο σε μη υδατική φάση Έτσι το τριχλωροαιθένιο βρίσκει εύκολη δίοδο μέσα από τη γεώτρηση και διηθείται έως το βραχώδες στρώμα Δώστε μια συντηρητική (σε αυτό το επίθετο, και σε αυτήν την άσκηση, επανερχόμαστε με περισσότερη γνώση) εκτίμηση του χρόνου στον οποίον αναμένεται να επηρεαστεί πηγάδι Β σε απόσταση 500 μέτρων στα κατάντη Επιπλέον στοιχεία: - ο υδροφόρος ορίζοντας βρίσκεται πολύ κοντά στην επιφάνεια του στρώμα εδάφους χονδρόκοκκης άμμου -ο υδροφορέας αποτελείται κυρίως από K=10m/day ιλύ όπου παρεμβάλλεται συνεχές στρώμα άμμου - η ροή του υπόγειου νερού είναι κυρίως οριζόντια με μέση υδραυλική πρακτικά αδιαπέρατος βράχος κλίση 0.001. 5 Α Β επιφάνεια εδάφους ιλύς K=10-4 m/day

Τι συμβαίνει εδώ; περιγράφω με σχήμα τις άμεσες συνέπειες του πρόβληματος Α αρχικώς ρυπασμένη περιοχή στρώμα χονδρόκοκκης άμμου K=10m/day Β επιφάνεια εδάφους ιλύς K=10-4 m/day πρακτικά αδιαπέρατος βράχος Ερώτημα: πότε θα επηρεαστεί το πηγάδι Β; 6

Σύγκριση διαφορετικών λύσεων Σε προηγούμενη παρουσίαση, είδαμε: τις παραδοχές στις οποίες στηρίχθηκε η επίλυση του 1D προβλήματος «με το χέρι», όπου λάβαμε υπόψη μόνο τον πρώτο όρο της λύσης της εξίσωσης μεταφοράς τη διαφορά επίλυσης θεωρώντας μεταγωγή+διασπορά μόνο μεταγωγή Στο αρχείο με τη λύση του προβλήματος επιπλέον συγκρίνονται: αποτελέσματα της λύσης με τον ένα όρο και της πλήρους λύσης: υπολογίζουμε μικρότερο χρόνο άφιξης της ίδιας συγκέντρωσης με την πλήρη λύση αποτελέσματα της 1D επίλυσης με αποτελέσματα από μια επίλυση 2D, για πηγή που εκτείνεται σε μεγάλο βάθος z, για διαρκώς μειούμενα πλάτη πηγής: όσο μικραίνει το πλάτος πηγής, τόσο μειώνεται η συγκέντρωση που φτάνει στη γεώτρηση Β 7

2. Ποιος ο πιθανός ρυπαίνων; συνηθισμένο πρόβλημα Στην προσπάθεια να αποδοθούν ευθύνες (για να μοιραστεί αντίστοιχα το κόστος αποκατάστασης) διερευνάται κατά πόσον ο «Πιθανός Ρυπαίνων Νο 1» μπορεί να ευθύνεται (αποκλειστικά) για ανίχνευση ρύπου στα κατάντη. ΠΡ Νο 2? Πιθανός Ρυπαίνων Νο 1 1935-1970 ΠΡ Νο 3? Ανίχνευση 1995 ροή 8

Άσκηση: ποια η επίπτωση στα κατάντη πιθανού ρυπαίνοντος; 9

Πιθανός ρυπαίνων - άσκηση Το 1995 ανιχνεύεται ρύπος σε δειγματοληπτικό φρέαρ σε συγκέντρωση 3500 μg/l Σε απόσταση 1830m ανάντη του φρέατος βρίσκεται εργοστάσιο μπορεί να φταίει αυτό; Στοιχεία για τη λειτουργία του εργοστασίου (χαρακτηριστικά πηγής): το εργοστάσιο λειτουργεί από το 1935 από το 1970 ελήφθησαν μέτρα ασφαλείας που καθιστούν ελάχιστα πιθανή τη διαρροή του ρύπου στο υπέδαφος το χρονικό διάστημα 1935-1970 υποθέτουμε μια σταθερή, μέση συγκέντρωση ρύπου στο υπόγειο νερό στη θέση της πηγής ίση με C 0 = 5000 μg/l Δίνονται εκτιμήσεις για τις παραμέτρους ροής μεταφοράς: * v m m v 0.21 78 R D * D R 2 m 7 2543 m 2 10

Πιθανός ρυπαίνων 1: πηγή ρύπανσης πεπερασμένης διάρκειας 11

Ε: Πώς βρίσκω αναλυτικά την επίπτωση πηγής πεπερασμένης διάρκειας; Α: Θεωρώ επαλληλία C 5000 5000 0 1935 + 35 1970 35 1970 0 60 1995 60 1995 25 έτη χρονιές Μαθηματικό κόλπο: θεωρώ την κατανομή της συγκέντρωσης στην πηγή της ρύπανσης ως αποτέλεσμα επαλληλίας δύο πηγών -5000 12

Λύση της διαφορικής εξίσωσης Επαλληλία δύο λύσεων Συγκέντρωση στην πηγή: επαλληλία δύο πηγών Συγκέντρωση στο πεδίο σε απόσταση 1830m από την πηγή: επαλληλία δύο λύσεων 13

3. Διαρροή TCE το ερώτημα Μετά από ατύχημα, ρύπος (τριχλωροαιθένιο διαλυμένο στο νερό) διαρρέει σε ταμιευτήρα. Υπάρχει ανησυχία για το πόσο γρήγορα θα επηρεαστεί κανάλι στα κατάντη αν δεν ληφθούν μέτρα. ταμιευτήρας 15m κανάλι 14

Θυμάμαι τον οδηγό επιλογής μοντέλου 9. Μήπως μπορώ να κάνω κάποιες απλοποιήσεις; Να προσεγγίσω κάτι; Να αγνοήσω κάτι; - Να απλοποιήσω ή να αγνοήσω κάποιο φαινόμενο; (2) - Να προσεγγίσω/εκτιμήσω/αγνοήσω κάποια παράμετρο; (3) - Να αγνοήσω κάποια μεταβολή μιας μεταβλητής (π.χ. ως προς το χρόνο, ως προς μία κατεύθυνση του χώρου); (4) - Να αγνοήσω κάποια περιοχή; (6) - Να απλοποιήσω τη γεωμετρία (6); (βλέπε και απλοποίηση μεταβλητής) - Να απλοποιήσω κάποια μαθηματική σχέση; (5,8) - Να απλοποιήσω τη μέθοδο επίλυσης; (8) 15

3. Διαρροή TCE το μοντέλο ροής ταμιευτήρας 25m L = 90m 15m ιλύς-άμμος Κ = 0.864 m/ημέρα κανάλι 20m Βράχος χαμηλής διαπερατότητας το πεδίο ροής που θεωρώ για την επίλυση της άσκησης 16

3. Διαρροή TCE η άσκηση Η διαρροή ενός ρύπου (τριχλωροαιθένιου διαλυμένου στο νερό) έχει μόλις αρχίσει από ταμιευτήρα. Υποθέτοντας σταθερό ρυθμό διαρροής (με σταθερή συγκέντρωση στον ταμιευτήρα ίση με C o ), πορώδες του εδαφικού στρώματος 0,3, συντελεστή διάχυσης (σε διάλυμα) 2x10-9 m 2 /s, και συντελεστή διαμήκους μηχανικής διασποράς α L = 1m, απαντήστε στα εξής: (α) Ποιoς είναι ο χρόνος άφιξης στο κανάλι συγκέντρωσης ίσης με 0,5C o ; (β) Πότε θα είναι η συγκέντρωση ίση με 0,01C o στο ίδιο σημείο που θεωρήσατε στο ερώτημα (α); (γ) Πώς αλλάζει η απάντηση στα ερωτήματα (α) και (β) αν α L = 0,1m; 17

Απλοποιήσεις ΑΠΛΟΠΟΙΗΣΗ ΜΕΤΑΒΛΗΤΗΣ (4) Υποθέτω μονοδιάστατη ροή μεταξύ ταμιευτήρα-καναλιού (ροή μόνο στον οριζόντιο, χ άξονα), αγνοώντας την κατακόρυφη συνιστώσα της ταχύτητας. ΑΠΛΟΠΟΙΗΣΗ ΓΕΩΜΕΤΡΙΑΣ ΠΕΡΙΟΧΗΣ ΠΟΥ ΜΕ ΕΝΔΙΑΦΕΡΕΙ (6) Θεωρώ ότι έχω ροή κυρίως = μόνο στο εδαφικό υλικό, δηλ. όχι στον βράχο Για να προσδιορίσω το μήκος ροής, θεωρώ τη μικρότερη απόσταση μεταξύ ταμιευτήρα-καναλιού (παραδοχή υπέρ της ασφάλειας γιατί;), L = 90m ΑΠΛΟΠΟΙΗΣΗ ΦΑΙΝΟΜΕΝΩΝ (2) Αγνοώ ρόφηση, δηλαδή K p = 0 και R = 1 (παραδοχή υπέρ της ασφάλειας γιατί;) ΑΠΛΟΠΟΙΗΣΗ ΤΗΣ ΛΥΣΗΣ ΤΗΣ ΕΞΙΣΩΣΗΣ ΜΕΤΑΓΩΓΗΣ ΥΔΡΟΔΥΝΑΜΙΚΗΣ ΔΙΑΣΠΟΡΑΣ (8) Ελέγχω vx 0,16 90 90 100 Άρα μπορώ να αγνοήσω τον δεύτερο όρο. D 0,16 18

Επίλυση άσκησης ροής Καθορίζω το πεδίο ροής (κόκκινο τραπέζιο) i = ΔH / ΔL = 25m 20m / 90m = 0,055 v = K i = 0,864 m / ημέρα x 0,055 = 0,048 m / ημέρα v = v/n = 0,048 m / ημέρα / 0,3 = 0,16 m / ημέρα 19

Η άσκηση μεταφοράς - Θα χρησιμοποιήσω τη λύση της εξίσωσης μεταγωγής-διάχυσης/διασποράς, για συνοριακές συνθήκες (1) C = Co, x = 0, t 0, (2) C = 0, t = 0, x 0, (3) C = 0, t 0, x =, όπου Co είναι η συγκέντρωση στον ταμιευτήρα: 1 vx C x vt x vt D erfc (1) 0 2 2 e erfc C 2 Dt Dt - Δύο είναι οι βασικές παράμετροι που πρέπει να υπολογίσω, η μέση γραμμική ταχύτητα κίνησης του υπόγειου νερού, ή ταχύτητα μεταγωγής v, και ο συντελεστής υδροδυναμικής διασποράς D. 20

Υπολογισμός παραμέτρων μεταφοράς Υπολογισμός συντελεστή διάχυσης/διασποράς D = αl v + De = 1m x 0,16 m / ημέρα + 1,21 x 10-4 m 2 / ημέρα = 0,16 m 2 / ημέρα De = ω Dδ = 0,7 x 2x10-9 m 2 /s = 1,21 x 10-4 m 2 / ημέρα Εκ των υστέρων (δηλ. αφού κάνω τις πράξεις), βλέπω ότι θα μπορούσα να είχα αγνοήσει τη διάχυση στο συγκεκριμένο πρόβλημα. 21

Υπολογισμός χρόνων άφιξης συγκέντρωσης 0,5Co και 0,01Co vx (α) Επειδή o όρος D είναι αρκετά μεγάλος, ο χρόνος άφιξης της C/Co = 0,5 είναι περίπου ίσος με το χρόνο άφιξης ρύπου λόγω μεταγωγής. Άρα, t = L / v = 90 m / 0,16 m / ημέρα = 563 ημέρες 1,5 χρόνια 90 0,16t (β) C/Co = 0,01 = ½ erfc 2 0,16t 90 0,16t Για erfc = 0,02 1.65 t = 398 ημέρες 1,1 χρόνια 2 0,16t ΠΡΟΣΟΧΗ! Λύνω τη δευτεροβάθμια εξίσωση για τη μεταβλητή T t Αν αγνοήσω την υδροδυναμική διασπορά δεν κάνω μια συντηρητική υπόθεση! 22

Τι γίνεται για μικρότερη διασπορά; (γ) D = αl v + De = 0,1m x 0,16 m / ημέρα + 1,21 x 10-4 m 2 / ημέρα = 0,016 m 2 / ημέρα C/Co = 0,01 = ½ erfc Για erfc = 0,02 90 0,16t 2 0,016 t 90 0,16t 1.65 t = 504 ημέρες 1,4 χρόνια 2 0,016 t Ο ρύπος καθυστερεί να φτάσει = η ίδια συγκέντρωση φτάνει στο ίδιο σημείο σε μεγαλύτερο χρόνο! 23

Επίδραση παραμέτρων Με τη βοήθεια της εκπαιδευτικής εφαρμογής, διερευνώ την επίδραση της υδροδυναμικής διασποράς D και του συντελεστή διαχωρισμού K p. Όπως φαίνεται στην επόμενη διαφάνεια: η αύξηση συντελεστή διαχωρισμού K p επιβραδύνει σημαντικά την εξάπλωση του ρύπου (γι αυτό μας φοβίζει λιγότερο διαρροή ρύπου με μικρή κινητικότητα, δηλ. μεγάλο K p ) μεγαλύτερη διασπορά σημαίνει πιο γρήγορη άφιξη μικρών συγκεντρώσεων και πιο αργή άφιξη μεγάλων συγκεντρώσεων η επίδραση της διασποράς μεγενθύνεται όσο περνάει ο χρόνος (για ίδια τιμή συντελεστή διαμήκους μηχανικής διασποράς α L, η καμπύλη της συγκέντρωσης δεν μετατοπίζεται απλώς παράλληλα, αλλά ταυτόχρονα «ανοίγει» κι όλας) 24

Επίδραση παραμέτρων (D, Κ p R) χωρίς υστέρηση: K p =0, R=1 K p =1L/Kg, R=7.2 K p =K oc f oc, f oc =0.1% K p = 0.13 L/Kg, R=1.8 25

Με όσα έμαθα, τι μπορώ να κάνω; (ποιοι οι μαθησιακοί στόχοι έως τώρα;) Έως τώρα έχω μελετήσει μόνο τη λύση της μονοδιάστατης μεταφοράς Μπορώ να εκτιμήσω τη σχετική συμβολή των φαινομένων μεταφοράς για συγκεκριμένους συνδυασμούς ρύπων, εδαφών και χαρακτηριστικών πεδίων ροής & μεταφοράς Έχω εξοικείωση με αναζητήσεις στη βιβλιογραφία για τις τιμές των παραμέτρων του προβλήματος μεταφοράς Μπορώ να προτείνω τεκμηριωμένα τις τιμές των παραμέτρων που απαιτεί η επίλυση του προβλήματος μεταφοράς... 26