ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ"

Transcript

1 Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ «ΛΥΣΕΙΣ ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ» ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ Α.Μ.:585

2 ΑΣΚΗΣΗ Θεωρούµε ότι στην επιφάνεια µίας θαλάσσιας περιοχής από κάποιο βιοµηχανικό ατύχηµα εναποτέθηκαν στιγµιαία στην επιφάνεια της ρύποι µε κατανοµή (+ΑΜ/) gr/cm, όπου ΑΜ ο αριθµός µητρώου σας. Οι ρύποι υποτίθεται ότι έχουν µηδενική ταχύτητα καθίζησης ή άνωσης (παθητικοί ρύποι, π.χ. µικροσκοπικά σωµατίδια). O συντελεστής διάχυσης είναι D5-6 cm /sc. Να χαραχθεί η κατανοµή της συγκέντρωσης των ρύπων σε διάφορα βάθη της θάλασσας για τις εξής τιµές του χρόνου tsc, h, µία ηµέρα, ένα µήνα, χρόνο, χρόνια. Τι συµπεράσµατα βγάζετε; Λύση Επειδή ο αριθµός ΑΜ585 έπεται ότι εναποτέθηκαν ρύποι µε κατανοµή Μ+585/.585gr/cm Η λύση της µοριακής εξίσωσης διάχυσης για στιγµιαία έκχυση ρύπων είναι η εξής: `C( y, t) y td π t D όπου y η απόσταση από την επιφάνεια έκχυσης, Μ η αρχική κατανοµή της µάζας των ρύπων( gr/cm ), D ο συντελεστής µοριακής διάχυσης και t ο χρόνος. Για διάφορες τιµές του χρόνου t παίρνουµε τους πίνακες και τα διαγράµµατα. Χρόνος t(sc) Απόσταση y (gr/cm ) T sc y t D π t D C(gr/cm 3 ),585 6,79877,56,,585 6,836888,995,56,,585 6,568359,9899,56,3,585 59,78788,955997,56,,585 57,98,936,56,5,585 5,53,8897,56,6,585 5,69,8357,56,7,585 8,36786,7875,56,8,585,87,769,56,9,585,379,666977,56,,585 37,786679,6653,56,,585 33,79638,567,56,,585 3,773355,8675,56,3,585 6,53555,9557,56 - -

3 ,,585 3,9773,3753,56,5,585,68853,365,56,6,585 7,867,7837,56,7,585,56796,3576,56,8,585,853,97899,56,9,585,6385,67,56,,585 8,366,35335,56,,585 6,85869,5,56,,585 5,96337,889,56,3,585,38755,75,56,,585 3,6867,5635,56,5,585,7956,3937,56,6,585,3856,37,56,7,585,699,6,56,8,585,685,98,56,9,585,9983,9,56,3,585,68657,9,56,3,585,55995,889,56,3,585,369697,5976,56,33,585,6687,38,56,3,585,98575,389,56 ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους, Απόσταση από επιφάνεια y(cm),35,3,5,,5,,5,,,, 3,, 5, 6, 7, Συγκέντρωση C(gr/cm3) - -

4 T h 36 sc ΑΠΟΣΤΑΣΗ t (cm) π t (sc) D (gr/cm y ) t D C 36,7579,585 3,567787,5 36,7579,585 3,557867,96587, 36,7579,585,8389,8735,5 36,7579,585, ,7366, 36,7579,585, ,573753,5 36,7579,585,367659,9767,3 36,7579,585,933659,8655,35 36,7579,585,5995,83, 36,7579,585,35978,8368,5 36,7579,585,9558,655,5 36,7579,585,,38,55 36,7579,585,876858,975 ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους,7 Απόσταση από επιφάνεια y(cm),6,5,,3,,,5,5,5 3 3,5 Συγκέντρωση C(gr/cm3) - 3 -

5 T ηµέρα ώρες *36 86 sc ΑΠΟΣΤΑΣΗ (cm) t (sc) π t D y (gr/cm ) t D 86,3936,585,667775,5 86,3936,585, , ,3936,585,37689,5665,5 86,3936,585,87956, ,3936,585,656695,9878,5 86,3936,585,785976, ,3936,585, ,57 3,5 86,3936,585,5559,83 86,3936,585 6,3337E-5 9,5E-5,5 86,3936,585 5,E-6 8,E ,3936,585 3,63E-7 5,E-7 5,5 86,3936,585,6596E-8,5E-8 C ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους 7 Απόσταση από επιφάνεια y(cm) ,,,,3,,5,6,7 Συγκέντρωση C(gr/cm3) - -

6 Τ µήνας 3 ηµέρες 3*86 59 sc ΑΠΟΣΤΑΣΗ (cm) t (sc) π t D y (gr/cm ) t D 59,7583,585, ,7583,585,9589, ,7583,585,35787, ,7583,585,7,86 59,7583,585,893999, ,7583,585,793358, ,7583,585,66668, ,7583,585,76, ,7583,585,35377, ,7583,585,5683,96 59,7583,585,7638,59 59,7583,585,7679, ,7583,585,7569, ,7583,585,65983, ,7583,585,76763,83 C ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους 6 Απόσταση από επιφάνεια y(cm) 8 6,,,,6,8, Συγκέντρωση C(gr/cm3),, - 5 -

7 T χρόνος 3536 sc ΑΠΟΣΤΑΣΗ (cm) t (sc) π t D (gr/cm ) y t D 3536,537,585, ,537,585,33936, ,537,585,33833, ,537,585,76936, ,537,585,3875, ,537,585,857, ,537,585,396858, ,537,585,3898, ,537,585,6867, ,537,585,58, ,537,585,75369, ,537,585,666, ,537,585,97, ,537,585,783, ,537,585,87, ,537,585,556, ,537,585,56, ,537,585,78,655 C ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους 8 Απόσταση από επιφάνεια y(cm) ,,5,,5,,5,3,35, Συγκέντρωση C(gr/cm3) - 6 -

8 T χρόνια 3536 sc ΑΠΟΣΤΑ ΣΗ (cm) t (sc) y π t D (gr/cm ) t D C ,37,585, ,37,585,358, ,37,585,33366, ,37,585,3876, ,37,585,96967, ,37,585,76585, ,37,585,35566, ,37,585,86, ,37,585,857, ,37,585, , ,37,585,973, ,37,585,953, ,37,585,8358, ,37,585,659686, ,37,585,98996, ,37,585,37365, ,37,585,75369, ,37,585,98579, ,37,585,3379, ,37,585,976, ,37,585,66853,

9 ΓΡΑΦΗΜΑ Μεταβολή Συγκέντρωσης συναρτήσει του βάθους Απόσταση από επιφάνεια y(cm) 6 5 3,,5,,5, Συγκέντρωση C(gr/cm3),5,3,35, ΠΑΡΑΤΗΡΗΣΕΙΣ Από την µελέτη των γραφικών παραστάσεων προέκυψε πως για διάφορες χρονικές στιγµές όταν αποµακρυνόµαστε, δηλαδή µεγαλώνει η απόσταση, η Συγκέντρωση µειώνεται κάτι που φαίνεται λογικό. Επίσης παρατηρήθηκε πως ο ρυθµός µείωσης είναι διαφορετικός από χρονική περίοδο σε χρονική περίοδο. Παρατηρούνται δηλαδή διαφορετικές κλίσεις στις γραφικές παραστάσεις. ΑΣΚΗΣΗ Θεωρούµε το πρόβληµα εκείνο που ένα νοητό επίπεδο χωρίζει το χώρο ενός ρευστού σε δυο ηµίωρους. Στον ένα ηµίωρο η συγκέντρωση των ρύπων είναι σταθερή ως προς τον χρόνο και χώρο και ίση µε (+A/)gr/m 3.Στον άλλο η συγκέντρωση των ρύπων την χρονική στιγµή t είναι µηδενική. Την χρονική στιγµή ίση µε t θεωρούµε ότι αρχίζει το φαινόµενο της µοριακής διάχυσης. Αν D -5 cm /sc να χαραχθούν οι κατανοµές της συγκέντρωσης, για tsc,t ηµέρα,tέτος, tέτη. Να υπολογισθεί σε πόσο χρόνο η συγκέντρωση έχει γίνει,9c σε απόσταση 5m από το διαχωριστικό επίπεδο των δύο ηµίωρων. Λύση ΕΡΩΤΗΜΑ Α - 8 -

10 Πρόκειται για το πρόβληµα της διάχυσης σε άπειρο ακίνητο αποδέκτη όταν είναι γνωστή η αρχική συγκέντρωση ρύπων ως συνάρτηση του χρόνου δηλ C(,t). Η λύση του προβλήµατος δίνεται από την ακόλουθη σχέση: C C rf D t Για δεδοµένες χρονικές στιγµές η συγκέντρωση των ρύπων είναι µια συνάρτηση της απόστασης ΣΗΜΕΙΩΣΗ!!! Επειδή τα προγράµµατα Ecl και το Origin δεν µπορούν να υπολογίσουν την συνάρτηση rf,οι αποστάσεις επιλέχθηκαν κατά τέτοιο τρόπο ώστε τα αποτελέσµατα που θα προέκυπταν από το πηλίκο /σ να είναι τα γνωστά. ηλαδή αυτά που δίνονται στην σελίδα - του βιβλίου.γι αυτό, προφανώς λόγω της οµοιότητας των αποτελεσµάτων θα κάνουµε το παράδειγµα µόνο για tsc. Για t sc t ΑΠΟΣΤΑΣΗ C sc (cm) (gr/m 3 χ ) ϑ t D rfθ - rfθ C(gr/m 3 ),585,,585,,9,887,37367,,585,,7,7773,369,6,585,3,386,67,39663,8,585,,8,576,8853,,585,5,55,795,756,,585,6,639,369,5755,,585,7,6778,3,9897,6,585,8,7,579,399358,8,585,9,7969,3,35,,585,87,573,

11 Γράφηµα Συγκέντρωση (kg/m3),8,6,,,,8,6,,,,5,,5,,5 Απόσταση (m) ΕΡΩΤΗΜΑ Β Γνωρίζουµε ότι σε απόσταση 5m η συγκέντρωση έχει γίνει,9c,9c C rf 5 5 t Εποµένως rf 5 5 t. rf ( ). προκύπτει ότι το χ,88856 περίπου Συνεπώς που 5 5 t,88856 κάνοντας τις πράξεις προκύπτει ότι o χρόνος - -

12 απαιτείται προκείµενου η συγκέντρωση να ισούται µε το.9 της αρχικής είναι t sc ιαιρώντας µε το 36**365 τον παραπάνω χρόνο προκύπτει ότι χρειάζονται 556 χρόνια για να επιτευχθεί ο σκοπός µας. ΑΣΚΗΣΗ 3 Στον πυθµένα ακίνητης θάλασσας (που µπορεί να θεωρηθεί ότι προσεγγίζει ένα οριζόντιο επίπεδο) αρχίζει την χρονική στιγµή t να διαχέεται από ένα ναυάγιο µία µάζα (5 + ΑΜ/) kgr µιας επικίνδυνης µη αποδοµήσιµης ουσίας (ρύπου). Οι ρύποι υποτίθεται ότι έχουν µηδενική ταχύτητα καθίζησης ή άνωσης (παθητικοί ρύποι, π.χ. µικροσκοπικά σωµατίδια). O συντελεστής διάχυσης είναι D5m/ηµέρα. Να βρείτε σε πόση ακτίνα θα έχει εξαπλωθεί η ρύπανση σε µία η µέρα, ηµέρες, ηµέρες, µήνα. Να θεωρήσετε ότι το 95% της µάζας δίνει τα όρια της εξάπλωσης. ίνεται ότι το 95% του εµβαδού µιας κανονικής έχει πλάτος 3.9σ, ενώ το 99% έχει πλάτος 5.σ, και το % έχει πλάτος 6σ. Λύση Επειδή το 95% της µάζας της ρύπανσης δίνει τα όρια της εξάπλωσης καθώς και ότι το 95% του εµβαδού µιας κανονικής κατανοµής έχει πλάτος 3.9σ, έπεται ότι η ακτίνα εξάπλωσης θα αντιστοιχεί στο µισό του πλάτους, δηλαδή θα είναι : r3.9σ/.95σ. Οι τύποι δηλαδή που χρησιµοποιούµε είναι: σ Dt & 3.9σ R Άρα για τις διάφορες τιµές D και t, προκύπτει ο παρακάτω πίνακας για την ακτίνα εξάπλωσης : Χρόνος t (ηµέρες) Συντελεστής διάχυσης D (m /ηµέρα) Ακτίνα R (cm) - -

13 5, ,3388 5, ,77655 Επειδή το 99% της µάζας της ρύπανσης δίνει τα όρια της εξάπλωσης και το 99% του εµβαδού µιας κανονικής κατανοµής έχει πλάτος 5.σ, έπεται ότι η ακτίνα εξάπλωσης θα αντιστοιχεί στο µισό του πλάτους, δηλαδή θα είναι : R5.σ/.6σ. Άρα για τις διάφορες τιµές D και t, προκύπτει ο παρακάτω πίνακας για την ακτίνα εξάπλωσης : Χρόνος t (ηµέρες) Συντελεστής διάχυσης D (m /ηµέρα) Ακτίνα R (cm) 5,6755 5, , , Επειδή το % της µάζας της ρύπανσης δίνει τα όρια της εξάπλωσης και το % του εµβαδού µιας κανονικής κατανοµής έχει πλάτος 6σ, έπεται ότι η ακτίνα εξάπλωσης θα αντιστοιχεί στο µισό του πλάτους, δηλαδή θα είναι : R6σ/3σ. Άρα για τις διάφορες τιµές D και t, προκύπτει ο παρακάτω πίνακας για την ακτίνα εξάπλωσης : Χρόνος t (ηµέρες) Συντελεστής διάχυσης D (m /ηµέρα) Ακτίνα R (cm) 5,36 5, , ,3869 ΑΣΚΗΣΗ Από µία καµινάδα ύψους 5 µέτρων εκπέµπονται (+ΑΜ/) kgr/sc αερολύµατα. Υποτίθεται ότι φυσά άνεµος σταθερής κατεύθυνσης µε ταχύτητα ίση µε 3m/s, και ότι οι συντελεστές της τυρβώδους διασποράς είναι σταθεροί και ίση µε m /s. Ζητείται α) να βρεθεί η κατανοµή της συγκέντρωσης κατά µήκος του άξονα του κώνου ρύπανσης β) Να βρεθεί η κατανοµή της συγκέντρωσης στην - -

14 επιφάνεια του εδάφους γ) Να βρεθεί η απόσταση που εµφανίζεται η µέγιστη συγκέντρωση στο έδαφος. Λ c (, y, ) π ( ) y uy y ( h) U( + h) U + Ερώτηµα Α: Για το ερώτηµα αυτό ισχύουν οι εξής συνθήκες: y και h c (,, h) π ( ) y + ( h+ h) U π ( ) y + Uh 5,85kgr/sc y m /sc U3m/sc και h5m (kgr) Απόσταση Χ ΠΙΝΑΚΑΣ H y ΣΥΓΚΕΝΤΡΩΣΗ C(kgr/m 3 ) 5, # ΙΑΙΡ/! 5, ,368E-5 5,85 5 5,687E-5 5, ,5E-5 5, ,39E-6 5, ,737E-6 5, ,667E-6 5, ,83E-6 5,85 5 5,3E-6 5, ,7355E-6 5, ,366E-6 ΓΡΑΦΗΜΑ - 3 -

15 - - Μεταβολή συγκέντρωσης συναρτήσει της απόστασης,,5,,5,,5,3,35, Απόσταση (m) Συγκέντρωση C(kgr/m3) ΕΡΩΤΗΜΑ Β: ( ) ( ) ( ) ( ) + + y h U h U uy y y c,, π Για το ερώτηµα αυτό ισχύουν οι εξής συνθήκες: y και ( ) ( ) ( ) ( ) + Uh y h U Uh y c,, π π ΠΙΝΑΚΑΣ

16 (kgr) Απόσταση ΣΥΓΚΕΝΤΡΩΣΗ h y Χ C(kgr/m 3 ) 5,85 5 # ΙΑΙΡ/! 5, ,36E-5 5,85 5,68E-5 5,85 5 5,E-5 5,85 5 8,E-6 5, ,7E-6 5, ,6E-6 5, ,8E-6 5,85 5,E-6 5, ,73E-6 5, ,36E-6 ΓΡΑΦΗΜΑ Μεταβολή συγκέντρωσης συναρτήσει της απόστασης Συγκέντρωση C(kgr/m3),,35,3,5,,5,,5, Απόσταση (m) ΕΡΩΤΗΜΑ Γ: Η µέγιστη συγκέντρωση στο έδαφος παρουσιάζεται στην τιµή του Χ που µηδενίζεται η η παραγωγός

17 (,) dc d Κάνοντας τις αντικαταστάσεις. A π( Y Z) και Uh Z προκύπτουν τα έξης: d A d (, ) A A ( ) dc d + A 3 ( ) + Uh Εποµένως , 875m Σε αυτήν λοιπόν την απόσταση θα υπάρχει η µέγιστη συγκέντρωση στο έδαφος. ΑΣΚΗΣΗ 5 Για να εκτιµηθεί η µέση ταχύτητα και ο συντελεστής διασποράς σε ένα ευθύγραµµο ποτάµι, πλάτους 5 µέτρων, γίνηκε µια εργασία υπαίθρου κατά την οποία χύθηκαν στιγµιαίως 5 kgr λιθίου (ουσίας εύκολα ανιχνεύσιµης) στη χιλιοµετρική θέση. Στη συνέχεια µετρώνται οι συγκεντρώσεις σαν συνάρτηση του χρόνου σε δύο θέσεις, σε απόσταση και 8 km στα κατάντη του σηµείου έγχυσης. Τα αποτελέσµατα των µετρήσεων δίνονται στον - 6 -

18 παρακάτω πίνακα. Να τα χρησιµοποιήσετε και να βρείτε την µέση ταχύτητα του ποταµού και τον συντελεστή διασποράς. Απόσταση από το σηµείο έγχυσης, km T, min Συγκέντρωση Λιθίου, µg/l Απόσταση από το σηµείο έγχυσης,8 km T, min Συγκέντρωση Λιθίου,µg/L Λύση: - 7 -

19 ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΕΓΧΥΣΗΣ ΓΙΑ km ΣΥΓΚΕΝΤΡΩΣΗ ΛΙΘΙΟΥ µg/l T (min) ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΕΓΧΥΣΗΣ ΓΙΑ 8km ΣΥΓΚΕΝΤΡΩΣΗ ΛΙΘΙΟΥ µg/l T (min) Η µέση ταχύτητα δίνεται από την σχέση: όπου Uταχύτητα απόσταση tχρόνος U(- )/ t Για, θα πάρουµε τις τιµές που δίνονται. Για t θα πάρουµε τη διαφορά των t που αντιστοιχούν στις µέγιστες τιµές της συγκέντρωσης: tt -t 9-63min58sc

20 Άρα θα έχουµε : U(8-)/58,7km/s,7m/s, η οποία είναι και η µέση ταχύτητα του ποταµού. Η λύση του προβλήµατος δίνεται από την σχέση : td c(, t) πt D Για την χιλιοµετρική θέση η παραπάνω σχέση γίνεται: c (, t) D π t D c π t Για απόσταση από το σηµείο έγχυσης km βρίσκω τον συντελεστή διασποράς. ΣΥΝΤΕΛΕΣΤΗΣ ΙΑΣΠΟΡΑΣ ΓΙΑ ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΕΓΧΥΣΗΣ Xkm ΣΥΝΤΕΛΕΣΤΗΣ ΙΑΣΠΟΡΑΣ D,5,,5,,5 -,5 6 8 ΧΡΟΝΟΣ Τ (min) Για απόσταση από το σηµείο έγχυσης 8km βρίσκω τον συντελεστή διασποράς

21 ΣΥΝΤΕΛΕΣΤΗΣ ΙΑΣΠΟΡΑΣ ΓΙΑ ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΣΗΜΕΙΟ ΕΓΧΥΣΗΣ 8km,5 ΣΥΝΤΕΛΕΣΤΗΣ ΙΑΣΠΟΡΑΣ D,,5 -, ΧΡΟΝΟΣ Τ (min) ΑΣΚΗΣΗ 6 Ένας αυτοκινητόδροµος λωρίδων είναι ευθύγραµµος για αρκετά χιλιόµετρα και έχει µια κατεύθυνση κάθετη στους επικρατούντες άνεµους. Κατά την διάρκεια µιας πολυσύχναστης ηµέρας, ο ρυθµός εκποµπής του CO από τα διερχόµενα αυτοκίνητα είναι κατά µέσο όρο gr/sc-km. Υποθέστε ότι ο αυτοκινητόδροµος βρίσκεται µέτρα ψηλότερα από την επιφάνεια του εδάφους, η οποία υποτίθεται επίπεδη. Υποθέστε επίσης ότι ο άνεµος έχει ένα οµοιόµορφο πεδίο ταχυτήτων U(+A/) km/h και ότι Κ Ζ cm /sc. )Προσδιορίστε την µέση συγκέντρωση του CO στην επιφάνεια του εδάφους σαν συνάρτηση της απόστασης χ, υποθέτοντας ότι η λύση της εξίσωσης της τυρβώδους διάχυσης µε συντελεστή σταθερό περιγράφει το φαινόµενο. )Να βρεθεί η µέγιστη συγκέντρωση CO (gr/cm3) στην επιφάνεια του εδάφους και σε ποια απόσταση συµβαίνει. ΛΥΣΗ Η περίπτωση του αυτοκινητόδροµου αντιστοιχεί σε διάχυση ρύπων από συνεχή γραµµική πηγή που βρίσκεται πλησίον επιπέδου επιφάνειας, στη συγκεκριµένη περίπτωση του εδάφους και µέσα σε οµοιόµορφο πεδίο ταχυτήτων του αέρα. Η συγκέντρωση συναρτήσει των,y, δίνεται από την ακόλουθη σχέση: - -

22 C (, ) ( U ) Z U ( h) U( + h) Z + Z ΕΡΩΤΗΜΑ : Για το επίπεδο του εδάφους ισχύει.εποµένως η παραπάνω εξίσωση γίνεται ως εξής: U( h) U( h) + Z Z C( ), + ( U Z ) U(+585/)585 km/h Κ Ζ cm /sc* - m /sc -7 (km) /sc Tα γρ µετατρέπονται σε κιλά (kgr) διαιρούµενα το ( U ) Z ( h) U Z ΑΠΟΣΤΑΣΗ (km) ΣΥΓΚΕΝΤΡΩΣΗ C (kgr/km 3 ) ΠΙΝΑΚΑΣ ΑΠΟΣΤΑΣΗ (km) ΣΥΓΚΕΝΤΡΩΣΗ C (kgr/km 3 ) 3,83E-6 65,93E-6 5 5,6E-6 7 3,976E-6 5,85E ,868E-6 5 5,75E-6 8 3,768E-6 5,5E ,675E-6 5 5,8E-6 9 3,589E-6 3 5,63E ,58E-6 35,86E-6 3,3E-6,678E-6 5 3,36E-6 5,5E-6 3,95E-6 5,359E-6 5 3,3E-6 55,E-6 3,7E-6 6 3,83E-6 5 3,5E-6 - -

23 - - ΓΡΑΦΗΜΑ ιάγραµµα συγκέντρωσης συναρτήσει της απόστασης,,,3,,5,6,7 6 8 Απόσταση (m) Συγκέντρωση (kg/m3) ΕΡΩΤΗΜΑ : Η µέγιστη συγκέντρωση στο έδαφος παρουσιάζεται στην τιµή του Χ που µηδενίζεται η η παραγωγός. ( ), d dc Κάνοντας τις αντικαταστάσεις. ( ) Z U A & Z Uh ( ) ( ), 3 + A A d A d d dc Uh X A + + 3

24 Εποµένως: 3 3,, 785km 7 Σε αυτήν λοιπόν την απόσταση θα υπάρχει η µέγιστη συγκέντρωση στο έδαφος - 3 -

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ Στην αρχική περιοχή

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 2 ΙΑΧΥΣΗ Α ΡΑΝΩΝ ΡΥΠΩΝ - ΕΦΑΡΜΟΓΕΣ ΣΤΙΓΜΙΑΙΑ ΕΚΠΟΜΠΗ ΣΕ

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 ΑΛΛΑΓΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΜΕ ΤΟ ΥΨΟΣ, ΣΤΑΘΕΡΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ KAI ΡΥΠΑΝΣΗ ΤΟΥ ΑΕΡΑ Στην κατακόρυφη κίνηση του αέρα οφείλονται πολλές ατμοσφαιρικές διαδικασίες, όπως ο σχηματισμός των νεφών και

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου

Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου Επιμέλεια: Αγκανάκης Α Παναγιώτης Ευθύγραμμη Ομαλή Κίνηση 1 Ένα σώμα, το οποίο αρχικά είναι ακίνητο, εκτελεί ΕΟΚ Την χρονική στιγμή το σώμα έχει ταχύτητα Να υπολογίσετε:

Διαβάστε περισσότερα

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h.

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h. ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16- - 2011 ΘΕΜΑ 1 0 Για τις ερωτήσεις 1-5, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΡΥΠΑΝΣΗΣ

ΛΥΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΡΥΠΑΝΣΗΣ ΛΥΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΡΥΠΑΝΣΗΣ Πρόβλημα 1 Στοά ορθογωνικής διατομής ύψους H =,5 m, πλάτους W = 0,4 m και μήκους L = 50 m διαρρέεται από ρεύμα αέρα παροχής Q = 5 m /s περιέχοντος αιωρούμενη σωματιδιακή

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

Ο µαθητής που έχει µελετήσει το κεφάλαιο ευθύγραµµες κινήσεις

Ο µαθητής που έχει µελετήσει το κεφάλαιο ευθύγραµµες κινήσεις Ο µαθητής που έχει µελετήσει το κεφάλαιο ευθύγραµµες κινήσεις πρέπει: Να γνωρίζει ποια µεγέθη λέγονται µονόµετρα και ποια διανυσµατικά. Να γνωρίζει τις έννοιες χρονική στιγµή και χρονική διάρκεια. Να ξεχωρίζει

Διαβάστε περισσότερα

Βασικές ασκήσεις στην ευθύγραμμη ομαλή κίνηση. 1. Να δίνονται βασικά στοιχεία της κίνησης.

Βασικές ασκήσεις στην ευθύγραμμη ομαλή κίνηση. 1. Να δίνονται βασικά στοιχεία της κίνησης. Βασικές ασκήσεις στην ευθύγραμμη ομαλή κίνηση. 1. Να δίνονται βασικά στοιχεία της κίνησης. 1 η Άσκηση Μικρό αυτοκινητάκι κινείται σε ευθεία γραµµή, που ταυτίζεται µε τον άξονα Ο, µε σταθερή ταχύτητα µέτρου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Διασπορά και διάχυση ατμοσφαιρικών ρύπων. Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 10 βαθμούς. 2. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

9 o Ε.Λ. ΠΕΙΡΑΙΑ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ

9 o Ε.Λ. ΠΕΙΡΑΙΑ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ 9 o Ε.Λ. ΠΕΙΡΑΙΑ Τµήµα: Α 2 ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Ονοµατεπώνυµο:.. Πειραιάς 4 /12 / 2006 Οδηγίες: Στις τρεις πρώτες ερωτήσεις, να επιλέξτε την σωστή πρόταση. Προσοχή!! Υπάρχει και η πίσω σελίδα. Μην ξεχάσετε

Διαβάστε περισσότερα

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής

Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

4. ύο αυτοκίνητα Α, Β κινούνται ευθύγραµµα και οµαλά σε ένα τµήµα της Εγνατίας οδού σε παράλληλες

4. ύο αυτοκίνητα Α, Β κινούνται ευθύγραµµα και οµαλά σε ένα τµήµα της Εγνατίας οδού σε παράλληλες 1. Ένα αυτοκίνητο κινείται κατά µήκος ενός ευθύγραµµου οριζόντιου δρόµου, ο οποίος θεωρούµε ότι ταυτίζεται µε τον οριζόντιο άξονα x'x. Το αυτοκίνητο ξεκινά από τη θέση x o = +4m και κινούµενο ευθύγραµµα

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001 Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου Ζήτηµα ο A.. ίνονται οι µιγαδικοί αριθµοί z, z. Να αποδείξετε ότι: z z z z. Μονάδες 7,5 Α.. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 20 εκέµβρη 2015 Κινηµατική Υλικού Σηµείου. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 20 εκέµβρη 2015 Κινηµατική Υλικού Σηµείου. Ενδεικτικές Λύσεις. Θέµα Α Α.1. 1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 2 εκέµβρη 215 Κινηµατική Υλικού Σηµείου Ενδεικτικές Λύσεις Θέµα Α Οταν η κίνηση είναι ευθύγραµµη οµαλή, το κινητό διανύει (γ) ίσες µετατοπίσεις σε ίσους

Διαβάστε περισσότερα

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ

ΘΕΜΑ 2: Α. Ένα σωματίδιο κινείται στο επίπεδο xy έτσι ώστε υ 3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec 2. Ημερομηνία Παράδοσης: 26/2/2006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα

Διαβάστε περισσότερα

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής ΖΗΤΗΜΑ Ο Ερωτήσεις ΣΩΣΤΟΥ ΛΑΘΟΥΣ Σωστές διατυπώσεις Η ταχύτητα εκφράζει το ρυθμό μεταβολής της θέσης του κινητού Ο ρυθμός μεταβολής της θέσης ( ταχύτητα ) του κινητού στην Ε.Ο.. είναι σταθερός Η επιτάχυνση

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας

Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 5 ο Μάθηµα: Χηµική κινητική - Ταχύτητα αντίδρασης 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 95 5 o Χηµική κινητική Ταχύτητα αντίδρασης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Χηµική κινητική: Χηµική κινητική

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο m υ ο k R Α Ο οµογενής κύλινδρος του σχήµατος έχει µάζα m = 8 kg, ακτίνα R και κυλίεται χωρίς να ολισθαίνει στο οριζόντιο επίπεδο έτσι

Διαβάστε περισσότερα

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ

ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ Παράμετροι που επηρεάζουν την τυρβώδη ροή, την ταχύτητα και την διεύθυνση του ανέμου Η τριβή με το έδαφος Η κατακόρυφη κατανομή της θερμοκρασίας στην ατμόσφαιρα Η τοπογραφία και η

Διαβάστε περισσότερα

GI_V_FYSP_0_3772. ο οδηγός του φρενάρει οπότε το αυτοκίνητο διανύει διάστημα d

GI_V_FYSP_0_3772. ο οδηγός του φρενάρει οπότε το αυτοκίνητο διανύει διάστημα d GI_V_FYSP_0_377 Σε αυτοκίνητο που κινείται σε ευθύγραμμο δρόμο με ταχύτητα μέτρου, ο οδηγός του φρενάρει οπότε το αυτοκίνητο διανύει διάστημα d μέχρι να σταματήσει. Αν το αυτοκίνητο κινείται με ταχύτητα

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα)

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) Εκτός από τα εγκάρσια και τα διαμήκη κύματα υπάρχουν και τα επιφανειακά κύματα τα οποία συνδυάζουν τα χαρακτηριστικά των δυο προαναφερθέντων

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός

Διαβάστε περισσότερα

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου. Ενδεικτικές Λύσεις. Θέµα Α 1ο ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Κινηµατική Υλικού Σηµείου Α.1. Η µονάδα 1m/s 2 δηλώνει ότι : Ενδεικτικές Λύσεις Θέµα Α (γ) η ταχύτητα του κινητού µεταβάλλεται κατά 1m/s σε

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα.

1.1. Κινηµατική Η µετατόπιση είναι διάνυσµα Η µετατόπιση στην ευθύγραµµη κίνηση Μετατόπιση και διάστηµα. 1.1. 1.1.1. Η µετατόπιση είναι διάνυσµα. Ένα σώµα κινείται σε οριζόντιο επίπεδο ξεκινώντας από το σηµείο Α του σχήµατος. Μετά από λίγο φτάνει στο σηµείο Β. y 4 (m) B Γ 1 Α x 0,0 1 5 x(m) y i) Σχεδιάστε

Διαβάστε περισσότερα

Κεφάλαιο 1: Κινηματική

Κεφάλαιο 1: Κινηματική Κεφάλαιο 1: Κινηματική Θέμα Β: 3763 Β 3768 Β1 3770 Β1 377 Β 4980 Β1 498 Β1 4986 Β1 4989 Β 4995 Β1 5044 Β1 5046 Β1 5050 Β1 505 Β1 5090 Β1 515 Β1 518 Β1 513 Β 563 Β1 535 Β1 535 Β 539 Β1 5515 Β1 6154 Β1 8996

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α).

ερµηνεύσετε τα αποτελέσµατα του ερωτήµατος (α). Ερωτήσεις ανάπτυξης. ** Για να υπολογίσει κάποιος την (0 ) χρησιµοποιεί για + προσέγγιση τον αριθµό +, ενώ ένας άλλος τον αριθµό. 3 α) Να εκτιµήσετε ποια από τις δύο προσεγγίσεις δίνει το ελάχιστο (απόλυτο)

Διαβάστε περισσότερα

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών. Γ Λυκείου 26 Απριλίου 2014 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο

Διαβάστε περισσότερα

a x (t) = d dt u x(t) = d dt dt x(t) )

a x (t) = d dt u x(t) = d dt dt x(t) ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Λύσεις Φροντιστηρίων 1ο Φροντιστήριο Ασκηση 1. Γνωρίζουµε ότι a x (t) = d dt u x(t) = d dt

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. 2 cm. = Q. Q 2 = q. I 1 = ω 1 Q =

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. 2 cm. = Q. Q 2 = q. I 1 = ω 1 Q = ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΗΡΙΩΝ ΕΞΕΑΣΕΩΝ Γ ΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 6 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΙΚΗΣ - ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ ΑΠΑΝΗΣΕΙΣ ΘΕΜΑ Α Α. δ Α. γ Α3. β Α4. α Α5. α) Λ β) Λ γ)

Διαβάστε περισσότερα

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών:

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών: Α Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0

2.7. ր ց ց ր. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1. H παράγωγος µιας συνάρτησης f είναι. f (x) > 0 3(x 1 ) 3 (x 2 ) 2 (x 3) > 0 .7 Ασκήσεις σχολικού βιβλίου σελίδας 67 7 A Οµάδας. H παράγωγος µιας συνάρτησης είναι () = ( ) ( ) ( ) Για ποιες τιµές του η παρουσιάζει τοπικό µέγιστο και για ποιες τοπικό ελάχιστο; D = R, όπου και παραγωγίζεται.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ημερομηνία: Τετάρτη 11 Απριλίου 2018 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης

Διαβάστε περισσότερα

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το Η φάση του αρμονικού κύματος 1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το οποίο ταυτίζεται με τον οριζόντιο ημιάξονα O, να εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης

Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης Η χρησιμοποιούμενη διάταξη φαίνεται στο ακόλουθο σχήμα: Πάνω στο αμαξίδιο τοποθετήσαμε μικρό μεταλλικό τούβλο ώστε η συνολική

Διαβάστε περισσότερα

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο)

Κεφάλαιο 3. Κίνηση σε δύο διαστάσεις (επίπεδο) Κεφάλαιο 3 Κίνηση σε δύο διαστάσεις (επίπεδο) Κινηματική σε δύο διαστάσεις Θα περιγράψουμε τη διανυσματική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης με περισσότερες λεπτομέρειες. Σαν ειδικές περιπτώσεις,

Διαβάστε περισσότερα

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή

Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Mεταφορά διαλυμένου ρύπου σε κορεσμένο έδαφος: Μαθηματική περιγραφή Βασικό ερώτημα: Πού θα πάει ο ρύπος; Παρουσίαση 3 από 4 Tρία λυμένα παραδείγματα & μαθησιακοί στόχοι (έως τώρα) Τρία ερωτήματα μεταφοράς

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή.

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή. Ασκήσεις 3 ου Κεφαλαίου, Ηλεκτρικό Δυναμικό 23.21.Δύο σημειακά φορτία q 1 =+2,4 nc q 2 =-6,5 nc βρίσκονται σε απόσταση 0,1 m το ένα από το άλλο. Το σημείο Α βρίσκεται στο μέσον της απόστασής τους και το

Διαβάστε περισσότερα

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο

Διαβάστε περισσότερα

Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της

Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή της ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής. Συβρίδης Σύνθετες Ασκήσεις για ιάδοση, ιασπορά και Αντιστάθµισή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017

1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017 1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 017 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή

Διαβάστε περισσότερα

Φυσική Γ Λυκείου - Α Φάση

Φυσική Γ Λυκείου - Α Φάση ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Φυσική Γ Λυκείου - Α Φάση Κυριακή εκεµβρίου 5 Ωρα:.. Να απαντήσετε όλα τα θέµατα και όλα τα ερωτήµατα.

Διαβάστε περισσότερα

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ

3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ . Η ΕΝΝΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ. Εξίσωση πρώτου βαθµού µε αγνώστους και νοµάζεται κάθε εξίσωση της µορφής α + β = γ. Άγνωστοι είναι το και το. Τα α, β και γ λέγοντα συντελεστές. Ειδικότερα το γ

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το ο Γενικό Λύκειο Χανίων [00-0 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για το ήθος

Διαβάστε περισσότερα

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό (24 Μαρτίου 2019) Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό (24 Μαρτίου 2019) Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου 1ο Επαναληπτικό (24 Μαρτίου 2019) Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µία ϕθίνουσα ταλάντωση στην οποία το πλάτος µειώνεται εκθετικά µε το χρόνο (ϐ) όταν η σταθερά απόσβεσης

Διαβάστε περισσότερα

Γενικές ασκήσεις σχ. Βιβλίου σελίδας

Γενικές ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις σχ. Βιβλίου σελίδας 9 94 Γ οµάδας. Να αποδείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f() και g() +, (0, + ) έχουν κοινή εφαπτοµένη στο σηµείο Α(, ) Να βρείτε τη σχετική θέση των

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

Διατήρηση της Ύλης - Εξίσωση Συνέχειας

Διατήρηση της Ύλης - Εξίσωση Συνέχειας Διατήρηση της Ύλης - Εξίσωση Συνέχειας Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ρευστό χαρακτηρίζεται ως πραγματικό όταν α. κατά τη ροή του δεν παρουσιάζει εσωτερικές τριβές. β. κατά τη ροή του δεν παρουσιάζονται

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 6/11/004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 004-05 η ΕΡΓΑΣΙΑ ΑΣΚΗΣΕΙΣ Προθεσμία παράδοσης 0/1/004 1) Εκκρεμές μήκους L και μάζας m 1 εκτελεί μικρές ταλαντώσεις γύρω από τη θέση ισορροπίας, έχοντας συνδεθεί

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 11 1. (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος των ταλαντώσεων του σώµατος; (το πλάτος των ταλαντώσεων

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

Λύσεις Πρώτου Πακέτου Ασκήσεων

Λύσεις Πρώτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα

Διαβάστε περισσότερα

Α) ΕΝΑ ΚΙΝΗΤΟ. 1) Πληροφορίες από διάγραμμα x-t.

Α) ΕΝΑ ΚΙΝΗΤΟ. 1) Πληροφορίες από διάγραμμα x-t. Α) ΕΝΑ ΚΙΝΗΤΟ 1) Πληροφορίες από διάγραμμα x-t Ένα κινητό κινείται ευθύγραμμα και στο σχήμα φαίνεται η μετατόπισή του σε συνάρτηση με τον χρόνο Ποιες από τις ακόλουθες προτάσεις είναι σωστές και ποιες

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Θέµατα Πανελληνίων Φυσικής Κατ ο Κεφάλαιο (µέχρι και Στάσιµα)

Θέµατα Πανελληνίων Φυσικής Κατ ο Κεφάλαιο (µέχρι και Στάσιµα) Θέµατα Πανελληνίων Φυσικής Κατ. 0 00 0 Α. Η ταχύτητα διάδοσης ενός αρµονικού κύµατος εξαρτάται από α. τη συχνότητα του κύµατος β. τις ιδιότητες του µέσου διάδοσης γ. το πλάτος του κύµατος δ. την ταχύτητα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Μαθηµατικα Γενικης Παιδειας Γ Λυκειου

Μαθηµατικα Γενικης Παιδειας Γ Λυκειου Μαθηµατικα Γενικης Παιδειας Γ Λυκειου 1 ιαφορικός Λογισµός Θέµα 1. ίνεται η συνάρτηση = ln(x 1)+1. α ) Να ϐρεθεί το πεδίο ορισµού της f. ϐ ) Να ϐρεθεί η f και το πεδίο ορισµού της. γ ) Να µελετηθεί η f

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα

Ασκήσεις στη συµβολή κυµάτων

Ασκήσεις στη συµβολή κυµάτων Ασκήσεις στη συµβολή κυµάτων. Οι δύο σύγχρονες πηγές Π και Π παράγουν την ίδια στιγµή κύµατα, συχνότητας f=0 Hz, τα οποία διαδίδονται στο ελαστικό µέσο µε ταχύτητα υ=30 m/s. Σε όλα τα σηµεία της µεσοκαθέτου

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V

ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ Ροή μάζας ρύπου = Μάζα / (χρόνος επιφάνεια) = (όγκος συγκέντρωση) / (χρόνος επιφάνεια) = (παροχή συγκέντρωση) / (επιφάνεια) Για μονοδιάστατη ροή, η φαινόμενη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

Physics by Chris Simopoulos. Άρα. Άρα. sec. Άρα ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε

Physics by Chris Simopoulos. Άρα. Άρα. sec. Άρα ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε . ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ. Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε n Άρα t t, t,8,,8 n n n n n n,7 n t,8 ( n t,8 n n (,8,8,8 n,8,. Από την εξίσωση του

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα