Συστήματα Πολυμέσων. Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Σχετικά έγγραφα
Συστήματα Πολυμέσων. Ενότητα 7: Συμπίεση Εικόνας κατά JPEG. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 3: Εισαγωγικά θέματα Συμπίεσης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 8: Συμπίεση Εικόνας κατά JPEG Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 11: Χαρακτηριστικά Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 1: Εισαγωγικά Θέματα Πολυμέσων. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Θέματα Συστημάτων Πολυμέσων. Ενότητα # 7: JPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών

Συστήματα Πολυμέσων. Ενότητα 12: Συμπίεση Ψηφιακού Ήχου. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων Ενότητα 4: Συμπίεση. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Συστήματα Πολυμέσων. Ενότητα 5: Χαρακτηριστικά Ψηφιακής Εικόνας. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 15: Συμπίεση Ψηφιακού Βίντεο. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ψηφιακή Επεξεργασία Εικόνας

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ψηφιακή Επεξεργασία Εικόνας

3. ΤΕΧΝΙΚΕΣ ΣΥΜΠΙΕΣΗΣ ΠΟΛΥΜΕΣΩΝ

Ψηφιακή Επεξεργασία Εικόνας

Θέματα Συστημάτων Πολυμέσων. Ενότητα #3: Ιδιότητες μέσων Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών

Συστήματα Πολυμέσων Ενότητα 1: Εικόνες - Γραφικά. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Θέματα Συστημάτων Πολυμέσων. Ενότητα # 8: MPEG Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 9 : Συμπίεση δεδομένων. Δρ. Γκόγκος Χρήστος

Συστήματα Πολυμέσων. Ενότητα 4: Θεωρία Χρώματος. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ψηφιακή Επεξεργασία Εικόνας

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Τεχνολογία Πολυμέσων. Ενότητα # 11: Κωδικοποίηση εικόνων: JPEG Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Θέμα: «ΣΥΜΠΙΕΣΗ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΟΛΥΜΕΣΑ» Εισηγητής: Παναγιώτης Γιώτης 20 Μαϊου 2007 Αθήνα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

DIP_06 Συμπίεση εικόνας - JPEG. ΤΕΙ Κρήτης

Τεχνολογία Πολυμέσων. Ενότητα # 12: Κωδικοποίηση βίντεο: H.26x Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τηλεπισκόπηση - Φωτοερμηνεία

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Συμπίεση Πολυμεσικών Δεδομένων

Πληροφορική Ι. Μάθημα 9 ο Συμπίεση δεδομένων. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ.

Θέματα Συστημάτων Πολυμέσων

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Τμήμα Επιστήμης Υπολογιστών ΗΥ-474. Ψηφιακή Εικόνα. Χωρική ανάλυση Αρχεία εικόνων

Συστήματα Πολυμέσων. Ενότητα 16: Διαμορφώσεις και Πρότυπα Ψηφιακού Βίντεο. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής

ΒΕΣ 04: Συµπίεση και Μετάδοση Πολυµέσων. Περιεχόµενα. Βιβλιογραφία. Εικόνες και Πολυµεσικές Εφαρµογές. Ψηφιακή Επεξεργασία Εικόνας.

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Θεωρία Πιθανοτήτων & Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 6: Κωδικοποίηση & Συμπίεση Εικόνας

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Ψηφιακή Επεξεργασία Εικόνων

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Ιστορία της μετάφρασης

Αυτοματοποιημένη χαρτογραφία

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Αυτοματοποιημένη χαρτογραφία

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Group (JPEG) το 1992.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Σχεδίαση με Ηλεκτρονικούς Υπόλογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας

Αυτοματοποιημένη χαρτογραφία

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Θεωρία τησ Πληροφορίασ (Θ) ΔΙΔΑΚΩΝ: Δρ. Αναςτάςιοσ Πολίτησ

Εισαγωγή στις Τηλεπικοινωνίες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 2: Ψηφιοποίηση, Αναπαράσταση και αποθήκευση δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών Σπουδών

Αυτοματοποιημένη χαρτογραφία

Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Επεξεργασία Χαρτογραφικής Εικόνας

Τεχνολογία Πολυμέσων. Ενότητα 8: Pool Table. Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Μοντελοποίηση Λογικών Κυκλωμάτων

19/3/2007 Πολυµέσα και Συµπίεση εδοµένων

Υπολογιστικά & Διακριτά Μαθηματικά

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογιστικές Εφαρμογές Εργαστήριο

Τεχνολογία Πολυμέσων. Ενότητα 6: Keyframes και Transitions. Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

Συµπίεση Εικόνας: Το πρότυπο JPEG

Διαχείριση Χρόνου & Δίκτυα στη Διοίκηση Έργων. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Συστήματα Επικοινωνιών

Ανάλυση βάδισης. Ενότητα 2: Χωροχρονικές παράμετροι

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ,

Υπολογιστικά & Διακριτά Μαθηματικά

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Μικροβιολογία & Υγιεινή Τροφίμων

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Συμπίεση Ψηφιακής Εικόνας Θρασύβουλος Γ. Τσιάτσος

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Κωδικοποίηση εικόνας χωρίς απώλειες 4

Σκοποί ενότητας Εισαγωγή στις βασικές αρχές της μη απωλεστικής συμπίεσης 5

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Κωδικοποίηση εικόνας χωρίς απώλειες

Τεχνικές συμπίεσης εικόνας (1/2) Τεχνικές συμπίεσης εικόνας χωρίς απώλειες (lossless compression schemes): εν µεταβάλλουν τα χαρακτηριστικά της εικόνας κατά τη συµπίεση. Άρα η εικόνα που προκύπτει κατά την αποσυµπίεση είναι πανομοιότυπη με την αρχική. Χρήση: Συµπίεση εικόνων που δε θα πρέπει να αλλοιωθούν κατά τη διαδικασία της συµπίεσης / αποσυµπίεσης (π.χ. αρχειοθέτηση εικόνων, ιατρικές εικόνες). Τεχνικές συμπίεσης εικόνας µε απώλειες (lossy compression schemes): Αλλοιώνουν τα χαρακτηριστικά της εικόνας κατά τη συµπίεση. Χρήση: Τεχνικές αυτής της µορφής χρησιµοποιούνται για τη συµπίεση εικόνων στις περισσότερες εφαρµογές που χριεάζεται εξοικονόμηση αποθηκευτικού χώρου ή εύρους ζώνης (π.χ. μεταφορά µέσω του ιαδικτύου). 7

Τεχνικές συμπίεσης εικόνας (2/2) Χωρίς απώλειες Με απώλειες Κωδικοποίηση μήκους διαδρομής (RLE) TIFF, BMP Κωδικοποίηση αντικατάστασης προτύπων (LZW) GIF, PNG Χωρική κβάντιση Βαθμωτή κβάντιση Διανυσματική κβάντιση Κβάντιση πλέγματος Με βάση σχήμα πρόβλεψης (π.χ. DPCM) JPEG LS Με βάση τη στατιστική Κωδικοποίηση μετασχηματισμού Κωδικοποίηση υποζώνης Διακριτοί μετασχηματισμοί Fourier Διακριτός μετασχηματισμός συνημιτόνου JPEG Μετασχηματισμοί κυματιδίων JPEG 2000, MPEG-4-VTC Μορφοκλασματική κωδικοποίηση 8

Κωδικοποίηση μήκους διαδρομής (Run Length Encoding - RLE) Βασική ιδέα: Σπάνια η τιµή ενός pixel είναι ανεξάρτητη από τις προηγούµενες της (πλεονασµός pixel) Άρα: Αντί να κωδικοποιούµε τις ίδιες τις τιµές των pixels µπορούµε να κωδικοποιήσουµε το µήκος των ακολουθιών ίδιων τιμών Χρήση: σε BMP, TIFF, RLA, PICT 9

Κωδικοποίηση μήκους διαδρομής: Παράδειγμα (1/3) Παράδειγμα: Κείμενο μαύρου χρώματος σε άσπρο φόντο Σε ασπρόμαυρες εικόνες η εξάρτηση της τιµής ενός pixel από προηγούµενες τιµές σηµαίνει πρακτικά ότι έχουµε µεγάλες ακολουθίες από διαδοχικά 0 (έστω τα pixels που απεικονίζουν το μαύρο χρώμα) ή διαδοχικά 1 (έστω τα pixels που απεικονίζουν το λευκό χρώμα) 10

Κωδικοποίηση μήκους διαδρομής: Παράδειγμα (2/3) 11

Κωδικοποίηση μήκους διαδρομής: Παράδειγμα (3/3) Αλγόριθμος για τα pixels ασπρόμαυρης εικόνας: Βήμα 1: Έστω ότι η εικόνα αρχίζει µε λευκό pixel (που αναπαρίσταται με δυαδικό «1») Βήμα 2: Καταμετρούμε το πλήθος (μήκος) των διαδοχικών λευκών pixels και δημιουργούμε το 1 ο σύμβολο Βήμα 3: Καταμετρούμε το πλήθος (μήκος) των διαδοχικών μαύρων pixels και δημιουργούμε το 2 ο σύμβολο Βήμα 4: Επαναλαμβάνουμε τα βήματα 2 & 3 έως ότου φτάσουµε στο τέλος της γραµµής. Βήμα 5: Επαναλαμβάνουμε τα βήματα 1-4 για τις επόμενες γραμμές Η γραµµή της παρακάτω εικόνας έχει τα εξής στοιχεία: Δηλαδή: [1000000000000000000000111111111000000000011111111111111110000000011] Άρα τα σύμβολα είναι 1 21 9 10 16 8 2 12

Κωδικοποίηση αντικατάστασης Βασική ιδέα: Αναζήτηση των πιο συχνά χρησιµοποιούµενων ακολουθιών (προτύπων) τιµών εικονοστοιχείων και αντικατάστασή τους από μικρές κωδικές λέξεις Πιο διαδεδομένος αλγόριθμος: Lempel, Ziv & Welch (LZW) Χρήση: σε GIF, PNG προτύπων 13

LZW Ο αλγόριθμος LZW για εικόνες δημιουργεί νέους κώδικες Οι νέοι κώδικες έχουν τιμές μεγαλύτερες από 255 για εικόνες των 8 bit (δηλ. µε τιμές pixel στο διάστημα [0 255]) Χρησιμοποιούνται για σειρές από pixel µε επαναλαμβανόμενες τιμές δεν είναι ίδιοι για όλες τις εικόνες 127 127 191 191 191 191 0 0 0 0 0 0 0 127 130 127 130 127 130 0 256 257 258 259 259 259 0 14

Κωδικοποίηση πρόβλεψης Βασική ιδέα: Αντί να κωδικοποιούµε την ίδια την πληροφορία (τιµές pixel) κωδικοποιούµε τη νέα πληροφορία Νέα πληροφορία είναι η διαφορά της πραγµατικής τιµής από μια πρόβλεψη Χρήση: JPEG 15

Κωδικοποίηση πρόβλεψης στο JPEG Επιλογή πρόβλεψης Πρόβλεψη 0 όχι 1 x = a 2 x = b 3 x = c 4 x = a + b -c 5 x = a + (b - c)/2 6 x = b + (a - c)/2 7 x = (a + b)/2 Συσχέτιση της τιμής πρόβλεψης με τα γειτονικά pixels Παράδειγμα: 1. Αρχική εικόνα c a b x 2. Πρόβλεψη βάσει της επιλογής 4 (x = a + b c) 3. Νέα πληροφορία 16

Εργαλεία μη-απωλεστικής συμπίεσης Trimage (http://trimage.org/) Kraken (http://kraken.io/) Yahoo Smushit (http://www.smushit.com/ysmush.it/) JBIG-KIT (http://www.cl.cam.ac.uk/~mgk25/jbigkit/) Jpegoptim (http://www.kokkonen.net/tjko/projects.html) OptiPNG (http://optipng.sourceforge.net/) Pngcrush (http://pmt.sourceforge.net/pngcrush/index.html) 17

Αναφορές [1] Havaldar, P., & Medioni, G. G. (2009). Multimedia Systems: Algorithms, Standards, and Industry Practices. CengageBrain. com. 18

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας