Formulas in Project Risk

Σχετικά έγγραφα
FORMULAS FOR STATISTICS 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Other Test Constructions: Likelihood Ratio & Bayes Tests

Solution Series 9. i=1 x i and i=1 x i.

An Inventory of Continuous Distributions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

5.4 The Poisson Distribution.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Biostatistics for Health Sciences Review Sheet

Statistical Inference I Locally most powerful tests

Probability and Random Processes (Part II)

ST5224: Advanced Statistical Theory II

Homework 8 Model Solution Section

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homework for 1/27 Due 2/5

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

C.S. 430 Assignment 6, Sample Solutions


Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Math221: HW# 1 solutions

Assalamu `alaikum wr. wb.

Section 8.3 Trigonometric Equations

Supplementary Appendix

Fractional Colorings and Zykov Products of graphs

Fundamentals of Probability: A First Course. Anirban DasGupta

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Μηχανική Μάθηση Hypothesis Testing

Approximation of distance between locations on earth given by latitude and longitude

Example Sheet 3 Solutions

Exercises to Statistics of Material Fatigue No. 5

Areas and Lengths in Polar Coordinates

Lecture 34 Bootstrap confidence intervals

Introduction to the ML Estimation of ARMA processes

Numerical Analysis FMN011

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Matrices and Determinants

6. MAXIMUM LIKELIHOOD ESTIMATION

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Additional Results for the Pareto/NBD Model

Differential equations

Lecture 2. Soundness and completeness of propositional logic

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CRASH COURSE IN PRECALCULUS

PARTIAL NOTES for 6.1 Trigonometric Identities

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Second Order Partial Differential Equations

w o = R 1 p. (1) R = p =. = 1

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Srednicki Chapter 55

The ε-pseudospectrum of a Matrix

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Durbin-Levinson recursive method

Lecture 7: Overdispersion in Poisson regression

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Module 5. February 14, h 0min

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Anti-Final CS/SE 3341 SOLUTIONS

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

SECTION II: PROBABILITY MODELS

Mean-Variance Analysis

EE512: Error Control Coding

2 Composition. Invertible Mappings


Inverse trigonometric functions & General Solution of Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Simply Typed Lambda Calculus

Every set of first-order formulas is equivalent to an independent set

5. Choice under Uncertainty

Trigonometric Formula Sheet

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?


ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Transcript:

Formulas in Project Risk Jørn Vatn Email: jorn.vatn@ntnu.no 2014-07-04 - Rev2 Some important formulas from the course compendium Project Risk Analysis are listed in this memo. For assumptions and limitations, please consult the compendium. Denne formelsamlingen er tillatt hjelpemiddel under eksamen i TPK 5115 Risikostyring i prosjekter, 6. desember 2014. Studentene kan skrive notater i formelsamlingen og på omslaget. Formelsamlingen inneholder 16 sider og skal skrives ut med skrift på begge sider. The table of formulas can be used during the exam in TPK 5115 Risk Management in Projects, December 6th, 2014. The students are allowed to make notes in the memo and on its cover. The table of formula contains 16 pages and shall be printed with double sided print. 1

Chapter 3 Basic Probability Rules Pr(A B) = Pr(A) + Pr(B) Pr(A B) Pr(A B) = Pr(A) Pr(B) if A and B are independent Pr(A C ) = Pr(A does not occur) = 1 Pr(A) Pr(A B) Pr(A B) = Pr(B) The Law of Total Probability Bayes Theorem r Pr(B) = Pr(A i ) Pr(B A i ) i=1 Pr(A j B) = Pr(B A j) Pr(A j ) r Pr(A i ) Pr(B A i ) i=1 Cumulative Distribution Function - CDF F X (x) = Pr(X x) Pr(a < X b) = F X (b) F X (a) Probability Density Function - PDF f X (x) = d dx F X (x) F X (x) = x f X (u)du b Pr(a < X b) = f X (x)dx a 2

Point Probability p(x j ) = Pr(X = x j ) Expectation Variance x f X (x) dx if X is continuous E(X) = x j p(x j ) if X is discrete j [x E(X)] 2 f X (x) dx if X is continuous Var(X) = [ (x j E(X) ] 2 p(x j ) if X is discrete Standard Deviation j SD(X) = + Var(X) Double Expectation Rules E(X) = E(E(X Y )) Var(X) = E(Var(X Y )) + Var(E(X Y )) E(X) = E(X B)Pr(B) + E(X B C )Pr(B C ) Var(X) = Var(X B)Pr(B) + Var(X B C )Pr(B C ) [ 2 +[E(X B) E(X)] 2 Pr(B) + E(X B C ) E(X)] Pr(B C ) Normal Distribtuion f X (x) = 1 1 (x µ) 2 2π σ e 2σ 2 E(X) = µ Var(X) = σ 2 3

Standard Normal Distribtuion f U (u) = φ(u) = 1 e u2 2 2π F U (u) = Φ(u) = u φ(t)dt = u 1 2π e t2 2 dt Transforming to the Standard Normal Distribution Exponential Distribtuion U = X µ σ f X (x) = λe λx F X (x) = 1 e λx Weibull Distribution E(X) = 1/λ Var(X) = 1/λ 2 f X (x) = αλ(λx) α 1 e (λx)α Gamma Distribution F X (x) = 1 e (λx)α E(X) = 1 [ ) 1 λ Γ α + 1 Var(X) = 1 ( ) ( )] 2 1α (Γ λ 2 α + 1 Γ 2 + 1 f X (x) = λα Γ(α) (x)α 1 e λx 4

Erlang Distribution: α = integer F X (x) = 1 α 1 n=0 (λx) α Gamma- and Erlang Distribution - Moments: n! e (λx) E(X) = α λ Var(X) = α λ 2 Inverted Gamma Distribution Lognormal Distribution f X (x) = λα Γ(α) ( ) 1 α+1 e λ/x x E(X) = λ/(α 1) Var(X) = λ 2 (α 1) 2 (α 2) 1 f X (x) = 1 1 1 2π τ x e 1 2τ2 (log x ν)2 Binomial Distribution ( n Pr(X = x) = x E(X) = e ν+ 1 2 τ2 Var(X) = e 2ν (e 2τ2 e τ2 ) ) p x (1 p ) n x for x = 1,2,.., n Poisson Distribution E(X) = np Var(X) = np(1 p) p(x) = Pr(X = x) = λx x! e λ E(X) = λ Var(X) = λ 5

Poisson Process: Number of Events in an Interval p(x) = Pr(X = x) = Inverse-Gauss Distribution ( λ F T (t) = Φ µ Triangular Distribution f X (x) = F X (x) = PERT Distribution t λ 1 t ) + Φ { { [λ(b a)]x e λ(b a) x! E(T) = µ Var(T) = µ 3 /λ 2(x L) (M L)(H L) 2(H x) (H M)(H L) (x L) 2 (M L)(H L) 1 (H x)2 (H M)(H L) ( λ ) 1 t λ t e 2λ/µ µ if L x M if M x H if L x M if M x H E(X) = L + M + H 3 Var(X) = L2 + M 2 + H 2 LM LH MH 18 Introduce: Then 4M + H 5L α 1 = H L 5H 4M L α 2 = H L z = x L H L f X (x) = (x L)α 1 1 (H x) α 2 1 B(α 1,α 2 )(H L) α 1+α 2 1 F X (x) = B z(α 1,α 2 ) B(α 1,α 2 ) E(X) = L + 4M + H 6 (E(X) L)(H E(X)) Var(X) = 7 6

Distribution of a Sum E(X 1 + X 2 +... + X n ) = E ( n i=1 X i) = n i=1 E(X i) Variables are independent: Var(X 1 + X 2 +... + X n ) = Var ( n i=1 X i) = n i=1 Var(X i) Variables are dependent (n = 2): SD ( n i=1 X ) n i = i=1 [SD(X i)] 2 Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) Distribution of a Product Variables are independent: ( ) n n E(X 1 X 2... X n ) = E X i = E(X i ) i=1 i=1 Var(X 1 X 2 ) = Var(X 1 )Var(X 2 ) + Var(X 1 )[E(X 2 )] 2 + Var(X 2 )[E(X 1 )] 2 SD(X 1 X 2 ) = Var(X 1 )Var(X 2 ) + Var(X 1 )[E(X 2 )] 2 + Var(X 2 )[E(X 1 )] 2 Distribution of maximum values Let Y = max(x 1, X 2 ): F Y (x) = Pr(Y x) = Pr(X 1 x X 2 x) = Pr(X 1 x)pr(x 2 x) = F X1 (x)f X2 (x) E(Y ) = x f Y (x) dx = x [f X1 (x)f X2 (x) + f X2 (x)f X1 (x) ] dx Var(Y ) = [x E(Y )] 2 [f X1 (x)f X2 (x) + f X2 (x)f X1 (x) ] dx 7

Chapter 4 Total Expected Penalty for Default Chapter 5 PDTot = D (t D)PDf T (t) dt Fundamental Utility Function Requirements y 1 y 0 y 2, and Y = y 0 is the certain outcome: u(y 0 ) = αu(y 1 ) + (1 α)u(y 2 ) Typical utility function dealing with safety attributes: u(y 1, y 2, y 3, y 4 ) = 0.03y 1 0.5y 2 2.5y 3 7y 4 Typical utility function dealing with safety attributes and profit: u(y 1, y 2, y 3, y 4 ) = 0.03y 1 0.5y 2 2.5y 3 7y 4 + y 7 ae by 7 Chapter 6 NPV Formulas One amount: NPV = X t (1 + r) t Cash Flow: T NPV = X t (1 + r) t t=0 Fixed Amount: Increasing Amount: [ 1 (1 + r) T NPV = r NPV = 1 ( 1+v 1+r r v ) T ] X A X A,v 8

Periodic Amount NPV = X A (1 + r) ki X A = 1 (1 + r) k i=0 Periodic amount when the first amount occurs at the end of year l: Degradation Cost in year t in case of degradation NPV = X A(1 + r) l 1 (1 + r) k c t = c 0 (1 + d) t Degradation rate found from growth factor: d = e ln(gf)/t 1 Chapter 7 Maximum Likelihood Principle Simultaneous probability density n f (x 1 ;θ)f (x 2 ;θ)... f (x n ;θ) = f (x i ;θ) i=1 Likelihood function n L(θ; x 1, x 1... x n ) = f (x i ;θ) i=1 MLE ˆθ = ˆθ(X1, X 2,... X n ) Methods of Moments - PERT Distribution ˆM = ¼(6 x ˆL Ĥ) Ĥ = x + S 7 x Max x x x Min ˆL = x (Ĥ x)( x x Min ) x Max x 9

LS Principle Simple linear regression model: n Q(θ) = [y i φ i (θ] 2 i=1 Multiple linear model: E(Y i ) = β 0 + β 1 x i E(Y i ) = β 0 + β 1 x i,1 + β 2 x i,2 + + β r x i,r X = 1 x 11... x 1r 1 x 21 x 1r : x i j 1 x i1... x nr X T y = X T Xβ With error terms: ˆβ = (X T X) 1 X T y Predictions: Residuals: Y i = β 0 + β 1 x i,1 + β 2 x i,2 + + β r x i,r + ε i ŷ i = ˆ β 0 + ˆ β 1 x i,1 + ˆ β 2 x i,2 + + ˆ β r x i,r εˆ i = y i ŷ i Chapter 8 Calibration Let Z be the number of Y i x i that are >0 For n 5, a calibration is done when Z <n/2 - n or Z >n/2 + n For 2 n 4 calibrate if Z = 0 or Z = n, and: (i) Z = 0 and 1/n i(y i /x i ) <1/(6-n), or (ii) Z = n and 1/n i(y i /x i ) >(6-n) 10

Calibration Formulas Relation between the true values (x i s) and the estimates (Y i s): x i = β 0 + β 1 Y i + error term LS formulas: i (Y i Ȳ )x i ˆβ 1 = ( Yi Ȳ ) 2 i ˆβ 0 = x ˆβ1 Ȳ New value: Regression line through the origin: Weighting of Experts Error terms from control questions: ˆx = ˆβ0 + ˆβ1 y ( ) ˆβ 0 ˆx = + ˆβ1 x i,min Y i = α 0 + α 1 x i + error term Square sum of the residuals for expert k: Estimate for the variance: Standardised weight of expert k: SS k = i (y i αˆ 0 ˆα 1 x i ) 2 S 2 k = SS k/(n 2) w k = S 2 k j S 2 j Weight for expert k based on mutual evaluation: w k = j j p j,k y i j p j,i Standard weighting model - Experts only: ˆx = j=1:m w j ˆx j 11

Experts and data Sample variance from expert statements: S 2 V E = 1 1 m j=1 w2 j Self evaluated standard deviation : Variance of the weighted estimate: m j=1 Ŝ k = 0.37( ˆx k,h ˆx k,l ) S 2 SE = 1 j=1:m Ŝ 2 j Combined estimate - Experts and Data: Chapter 9 ˆx = S 2 E ˆx E + S 2 D ˆx D S 2 E + S 2 D ( w j xˆ j ˆx ) 2 Single Component Maintenance Models C(τ) = C PM /τ + λ E (τ)[c CM + C EP + C ES ] Effective failure rate approximation: ( ) Γ(1 + 1/α) α λ E (τ) = τ α 1 MTTF Improved approximation: ( ) Γ(1 + 1/α) α λ E (τ) = τ α 1 [ 1 0.1α(τ/MTTF) 2 + (0.09α 0.2)τ/MTTF ] MTTF Optimal interval in the simple model: τ = MTTF ( C PM Γ(1 + 1/α) C U (α 1) ) 1/α Single activity - Dynamic considerations C First TA = C TA + λ E (τ TA ) C U τ TA C Second TA = λ E (τ TA + x) C U (τ TA + x) λ E (x) C U x 12

Single activity - Artic maintenance C First TA = C TA + [1 R(τ TA )]C U + τta t=0 f T (t)(τ TA t)c W dt τta C Second TA = [1 R(τ TA + x)/r(x)]c U + f T (t + x)(τ TA t)c W dt/r(x) t=0 Random cost due to delaying the turnaround: E(C T A,R ) = C PL t=d TA [f TI (t) f TO (t)](t D TA ) dt Total cost of PM when included in the turnaround if turnaround may be dealyed: C TA = C TA,F + E(C TA,R ) Possibilities to cancel PM from turnaround: PM outside TA C 1 = C PM + C U [ λe (τ )τ λ E (τ TA )τ TA ] + C (2τ TA τ ) PM planned in TA, but cancelled C 2 = C PM + C TA,P + C U [ λe (τ )τ λ E (τ TA )τ TA ] + C (2τ TA τ ) +C PL t=d TA f TO (t)(t D TA )dt PM in TA & problems C 3 = C TA,E + C TA,P + C U λ E (τ TA )τ TA + C PL PM in TA without any problems C 4 = C TA,E + C TA,P + C U λ E (τ TA )τ TA + C PL Changing the frequency of the turnaround Assuming uppgrade of safety critical components: C(τ TA ) = C τta,b /τ TA + n i C TA,i /τ TA + i {SC} t=d TA f TI (t)(t D TA )dt t=d TA f TN (t)(t D TA )dt i {NC} n i C U,i λ E,i (τ TA ) Yearly upgrading cost: C UG = n i C UG,i /T i {SC} 13

Discounted number of failures τ TA ( Λ E,i (τ TA, r) = jλe,i ( j) ( j 1)λ E,i ( j 1) ) (1 + r) j j=1 The turnaround related cost up to time of disposal: C A (τ TA = ( n(t,τta ) j=1 (1 + r) ( j 1)τ TA C TA,B + i {SC} n ic TA,i + ) i {NC} n ic U,i Λ E,i (τ TA, r) + C FLP + i {SC} n ic UG,i Cost related to exclude production related activities from the turnaround: n(t,τ i ) (1 + r) ( j 1)τ i j=1 The Gamma Function ( ni C PM,i + n i C U,i Λ E,i ( τ i, r)) The gamma function Γ(α) is defined for all real α > 0 by the integral Γ(α) = 0 t α 1 e t dt By partial integration it is easy to show that Γ(α + 1) = αγ(α) for all α > 0 (1) In Table 2 the Gamma function Γ(α) is given for values of α between 1.00 and 2.00. Γ(α) for other positive values of α may be calculated from formula (1). 14

Table 1: The Cumulative Standard Normal Distribution Φ(z) = Pr(Z z) = z 1 2π e u2 2 du z.00.01.02.03.04.05.06.07.08.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0.500.540.579.618.655.691.726.758.788.816.841.864.885.903.919.933.945.955.964.971.977.982.986.989.992.994.995.504.544.583.622.659.695.729.761.791.819.844.867.887.905.921.934.946.956.965.972.978.983.986.990.992.994.995.508.548.587.626.663.698.732.764.794.821.846.869.889.907.922.936.947.957.966.973.978.983.987.990.992.994.996.512.552.591.629.666.702.732.767.797.824.849.871.891.908.924.937.948.958.966.973.979.983.987.990.992.994.996.516.556.595.633.670.705.739.770.800.826.851.873.893.910.925.938.949.959.967.974.979.984.987.990.993.994.996.520.560.599.637.674.709.742.773.802.829.853.875.894.911.926.939.951.960.968.974.980.984.988.991.993.995.996.524.564.603.641.677.712.745.776.805.831.855.877.896.913.928.941.952.961.969.975.980.985.988.991.993.995.996.528.567.606.644.681.716.749.779.808.834.858.879.898.915.929.942.953.962.969.976.981.985.988.991.993.995.996.532.571.610.648.684.719.752.782.811.836.860.881.900.916.931.943.954.962.970.976.981.985.989.991.993.995.996.536.575.614.652.688.722.755.785.813.839.862.883.901.918.932.944.954.963.971.977.982.986.989.992.994.995.996 Φ(-z) = 1 - Φ(z) 15

Table 2: Gamma Function Γ(α) for α between 1.00 and 2.00. α Γ(α) α Γ(α) α Γ(α) α Γ(α) 1.00 1.00000 1.25 0.90640 1.50 0.88623 1.75 0.91906 1.01 0.99433 1.26 0.90440 1.51 0.88659 1.76 0.92137 1.02 0.98884 1.27 0.90250 1.52 0.88704 1.77 0.92376 1.03 0.98355 1.28 0.90072 1.53 0.88757 1.78 0.92623 1.04 0.97844 1.29 0.89904 1.54 0.88818 1.79 0.92877 1.05 0.97350 1.30 0.89747 1.55 0.88887 1.80 0.93138 1.06 0.96874 1.31 0.89600 1.56 0.88964 1.81 0.93408 1.07 0.96415 1.32 0.89464 1.57 0.89049 1.82 0.93685 1.08 0.95973 1.33 0.89338 1.58 0.89142 1.83 0.93969 1.09 0.95546 1.34 0.89222 1.59 0.89243 1.84 0.94261 1.10 0.95135 1.35 0.89115 1.60 0.89352 1.85 0.94561 1.11 0.94740 1.36 0.89018 1.61 0.89468 1.86 0.94869 1.12 0.94359 1.37 0.88931 1.62 0.89592 1.87 0.95184 1.13 0.93993 1.38 0.88854 1.63 0.89724 1.88 0.95507 1.14 0.93642 1.39 0.88785 1.64 0.89864 1.89 0.95838 1.15 0.93304 1.40 0.88725 1.65 0.90012 1.90 0.96177 1.16 0.92980 1.41 0.88676 1.66 0.90167 1.91 0.96523 1.17 0.92670 1.42 0.88636 1.67 0.90330 1.92 0.96877 1.18 0.92373 1.43 0.88604 1.68 0.90500 1.93 0.97240 1.19 0.92089 1.44 0.88581 1.69 0.90678 1.94 0.97610 1.20 0.91817 1.45 0.88566 1.70 0.90864 1.95 0.97988 1.21 0.91558 1.46 0.88560 1.71 0.91057 1.96 0.98374 1.22 0.91311 1.47 0.88563 1.72 0.91258 1.97 0.98768 1.23 0.91075 1.48 0.88575 1.73 0.91467 1.98 0.99171 1.24 0.90852 1.49 0.88595 1.74 0.91683 1.99 0.99581 2.00 1.00000 16