ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι

Σχετικά έγγραφα
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Από την αρχική σχέση έχουµε: ΑΒ + ΑΓ = ή ΑΓ = ΑΒ Άρα ΑΓ = ΑΓ = 2

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **

ΔΙΑΝΥΣΜΑΤΑ Ερωτήσεις πολλαπλής επιλογής - Σ Λ - αντιστοίχησης

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

1=45. β) Να υπολογίσετε τη γωνία φ.

ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012

1 ο Αχαρνών 197 Αγ. Νικόλαος ο Αγγ. Σικελιανού 43 Περισσός

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

Ερωτήσεις ανάπτυξης. 1. ** Έστω τρίγωνο ΑΒΓ και έστω, Ε, Ζ τα µέσα των πλευρών ΑΒ, ΒΓ και ΓΑ αντίστοιχα. Να δείξετε ότι: α) ( ΕΖ) = (ΖΓΕ)

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

α) Να υπολογίσετε τις γωνίες των τριγώνων Β Ε γ) Να υπολογίσετε τη γωνία ΕΖ.

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Τάξη A Μάθημα: Γεωμετρία

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Επαναληπτικά συνδυαστικα θέµατα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

2 η δεκάδα θεµάτων επανάληψης

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ

Επαναληπτικά συνδυαστικα θέµατα

ÊåöÜëáéï 7 ï. âéâëéïììüèçìá 22: -ºóá ó Þìáôá -ºóá ôñßãùíá -ÊáôáóêåõÝò ìå êáíüíá êáé äéáâþôç -Åßäç ôåôñáðëåýñùí -Éäéüôçôåò ôïõ ðáñáëëçëïãñüììïõ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

µ =. µονάδες 12+13=25

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

1.3 Εσωτερικό Γινόμενο

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Ερωτήσεις αντιστοίχισης

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = Να κατασκευάσετε ένα τρίγωνο ΑΒΓ µε ύψος ΑΗ έτσι ώστε: 1 και εφγ = 3

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

Transcript:

ΓΕΩΜΕΤΡΙΑ

90

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ.. Στο τρίγωνο ΑΒΓ είναι Α = 90, α = 4 cm και β + γ = 18 cm. Το γινόµενο β.γ ισούται µε: Α. 1 Β. Γ. 4. 8 Ε. 16 3. Η περίµετρος του διπλανού σχήµατος είναι: Α. 34 Β. 36 Γ. 38. 45 Ε. 46 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι ισόπλευρο µε πλευρά 1 cm. Αν Α είναι ύψος του και το Ε είναι µέσον του ύψους του, τότε το µήκος του ΒΕ σε cm είναι: Α. 9 Β. 48 Γ. 8. 63 Ε. 98 ( ιαγωνισµός ΕΜΕ - Θαλής 1993) 91

5. Στο διπλανό ορθογώνιο τρίγωνο από τις παρακάτω σχέσεις, σωστή είναι η σχέση: Α. ΑΓ = ΓΒ + ΒΑ Β. ΑΓ = ΒΑ - ΓΒ Γ. ΓΒ = ΓΑ - ΑΒ. ΑΒ = ΑΓ - ΓΒ Ε. ΒΑ = ΒΓ - ΑΓ 6. Στο διπλανό ορθογώνιο τρίγωνο από τις παρακάτω σχέσεις, σωστή είναι η σχέση: Α. ΑΓ = ΒΓ.Β Β. ΑΓ = ΒΓ.Α Γ. ΑΒ = ΑΓ.Α. ΑΒ = ΒΓ.Β Ε. ΒΓ = Β.ΑΓ 7. Στο διπλανό ορθογώνιο τρίγωνο από τις παρακάτω σχέσεις, λάθος είναι η σχέση: Α. β = α - γ Β. β = α.x Γ. β γ = y x. x y = α β Ε. γ = α.y 8. Στο τετράπλευρο ΑΒΓ έχουµε ΑΒ = Β = ΒΓ = 1 και Α = Γ = 6. Το µήκος της ΑΓ είναι: Α. 3 15 Β. 4 7 Γ. 5 5. 6 3 Ε. 8 ( ιαγωνισµός ΕΜΕ - Θαλής 1991) 9. Στο διπλανό σχήµα το τετράπλευρο ΑΒΓ έχει Α = Γ = 90. Αν ΒΖ, Ε ΑΓ και ΑΕ = 3, Ε = 5, ΓΕ = 7, τότε η ΒΖ ισούται µε: Α. 3.6 Β. 4 Γ. 4.. 4.5 Ε. 5 ( ιαγωνισµός ΕΜΕ - Θαλής 199) 9

Ερωτήσεις διάταξης 1. Στο διπλανό σχήµα στο ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) το Α είναι ύψος του, ΑΒ = 10 cm και Β = 5 cm. Να διατάξετε από το µικρότερο προς το µεγαλύτερο τα ευθύγραµµα τµήµατα: ΑΒ, ΒΓ, ΑΓ, Α.. Το τρίγωνο ΑΒΓ είναι ισόπλευρο µε πλευρά α. Αν Α ύψος και Ε µέσον του Α, να διατάξετε από το µικρότερο προς το µεγαλύτερο τα τµήµατα: ΑΒ, Α, Β, ΒΕ. 3. Το τρίγωνο ΑΒΓ είναι ισόπλευρο µε πλευρά α. Αν Α ύψος του τριγώνου, Ε, Ζ µέσα των πλευρών του ΑΒ, ΑΓ και ΕΗ κάθετη στη ΒΓ, να διατάξετε από το µικρότερο προς το µεγαλύτερο τα τµήµατα: ΕΗ, ΑΒ, Α, Ζ. 93

Ερωτήσεις αντιστοίχησης 1. Χρησιµοποιώντας τα στοιχεία των τριγώνων της στήλης (Α), να αντιστοιχήσετε κάθε τρίγωνο µε µια σχέση της στήλης (Β). στήλη (Α) στήλη (Β) γ = α + β β = α.y α γ = y x γ = α.y α = β.y 94

. Το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α, Α ΒΓ, Ε ΑΓ, ΕΖ Γ. Να αντιστοιχήσετε κάθε σχέση της στήλης (Α) µε το τρίγωνο στο οποίο ισχύει, της στήλης (Β). στήλη (Α) Σχέσεις στήλη (Β) Τρίγωνα Ε = ΕΑ.ΕΓ ΑΕ Ε = Γ. Ζ Α Γ ΖΕ Ε = Α - ΑΕ ΕΖΓ Ε = ΕΖ + Ζ ΑΒΓ ΕΓ Ερωτήσεις συνδυασµού διαφόρων τύπων 1. Στο σχήµα είναι το ΑΒΓ ορθογώνιο και τα Κ, Λ µέσα. α) Να συµπληρωθούν οι ισότητες: i) ΒΚ = ΑΒ +... ii) ΒΛ = ΒΓ +... β) Αποδείξτε ότι: ΒΚ + ΒΛ = 4 5 Β 95

. Το τρίγωνο ΑΒΓ είναι ισοςκελές µε κορυφή το Α και Β ύψος. α) Να συµπληρωθούν οι ισότητες: i) Β = ΒΓ -... ii) Β = ΑΒ -... β) Αποδείξτε ότι: ΒΓ = ΑΓ. Γ 3. Το τρίγωνο ΑΒΓ είναι αµβλυγώνιο µε Α = 10 και Γ ύψος του τριγώνου. α) Η γωνία x ισούται µε: i) 0 ii) 30 iii) 40 iv) 50 v) 60 β) Από τις παρακάτω ισότητες, η σωστή είναι: i) Α = Γ ii) Α = Γ AΓ iv) Γ = v) ΑΓ = Α. Γ γ) Αποδείξτε ότι: α = β + γ + βγ. iii) Α = AΓ 4. Στο σχήµα τα ορθογώνια τρίγωνα ΑΒΓ, ΒΓ έχουν κοινή υποτείνουσα και Ε, Ζ είναι οι προβολές των Β, Γ αντιστοίχως στην Α. α) Τα ορθογώνια τρίγωνα που σχηµατίζονται στο σχήµα είναι: i) 4 ii) 5 iii) 6 iv) 7 v) 8 β) Από τις παρακάτω ισότητες σωστή είναι: i) ΑΕ = ΑΒ + ΒΕ ii) ΑΓ = Α + Γ iii) Γ = ΓΖ - Ζ iv) ΑΓ = ΒΓ - ΑΒ v) Β = Α - ΑΒ 96

γ) Να συµπληρωθούν οι ισότητες: i) ΑΕ = ΑΒ -... ii) ΑΖ = ΑΓ -... iii) Β = ΒΕ +... iv) Γ = Ζ +... δ) Αποδείξτε ότι: ΑΕ + ΑΖ = Ε + Ζ 5. ίνεται τρίγωνο ΑΒΓ ορθογώνιο στο Α και ΑΒ = ΑΓ. Από το µέσο της ΒΓ φέρνουµε Ε ΑΒ και Ζ ΑΓ. Γράφουµε και την Α. α) Τα ορθογώνια τρίγωνα που σχηµατίζονται στο σχήµα είναι: i) 3 ii) 4 iii) 5 iv) 6 v) 7 β) Από τις παρακάτω ισότητες, είναι λάθος η ισότητα: i) Α = Β. Γ ii) Α = Ε + ΑΕ iii) Α = Ζ + Ε iv) Α = Β.ΒΓ v) Α = Ζ + ΑΖ γ) Αποδείξτε ότι: Β. Γ = ΑΕ.ΕΒ + ΑΖ.ΖΓ Ερωτήσεις ανάπτυξης 1. Πυθαγόρειες Τριάδες α) Αν οι φυσικοί αριθµοί α, β, γ είναι µήκη πλευρών ορθογωνίου τριγώνου, να αποδείξετε ότι το ίδιο ισχύει και για τους λα, λβ, λγ, όπου λ θετικός φυσικός αριθµός. β) i) Αν ο αριθµός α είναι φυσικός περιττός και α 3, να αποδείξετε ότι οι φυσικοί αριθµοί α, α -1, α +1 είναι µήκη πλευρών ορθογωνίου τριγώνου. ii) Αν ο αριθµός α είναι φυσικός άρτιος και α 4, να αποδείξετε ότι οι α α φυσικοί αριθµοί α, - 1, + 1 είναι µήκη πλευρών ορθογωνίου 4 4 τριγώνου (οι αριθµοί αυτοί αποδίδονται στους Πλατωνικούς). 97

γ) Να αποδείξετε ότι οι φυσικοί αριθµοί α - β, αβ, α + β είναι µήκη πλευρών ορθογωνίου τριγώνου. (Θεωρείστε δεδοµένο ότι αν οι α, β είναι φυσικοί αριθµοί, έχουν µέγιστο κοινό διαιρέτη τη µονάδα και ότι ο α είναι άρτιος αριθµός, οι τριάδες που παίρνουµε είναι διάφορες µεταξύ τους). Παρατήρηση: Στις παραπάνω περιπτώσεις (α), (β) και (γ) παίρνουµε ορθογώνια τρίγωνα µε µήκη πλευρών φυσικούς αριθµούς. Εξετάστε, αν οι περιπτώσεις αυτές µπορούν να γενικευθούν για πραγµατικούς αριθµούς.. Στο τρίγωνο ΑΒΓ είναι Α = 90, ΑΒ = 60 m και Α = 15 m, όπου σηµείο της ΑΓ. Να βρεθεί το µήκος του Γ αν είναι ΑΒ + Α = Γ + ΒΓ. 3. Οι προβολές των καθέτων πλευρών ενός ορθογωνίου τριγώνου πάνω στην υποτείνουσα είναι 3 cm και 1 cm. Να βρεθούν το ύψος από την ορθή γωνία και οι κάθετες πλευρές του τριγώνου. 4. Να βρεθούν οι κάθετες πλευρές ενός ορθογωνίου τριγώνου που έχει υποτείνουσα 10 cm και περίµετρο 4 cm. 5. Έστω ΑΒΓ (ΑΒ > ΑΓ) τυχαίο οξυγώνιο τρίγωνο. Φέρνουµε το ύψος του Α. Αποδείξτε ότι ισχύει: ΑΒ - ΑΓ = Β - Γ. 6. Έστω γωνία xoy = 45 και Μ τυχαίο σηµείο στο εσωτερικό της. Από το Μ φέρνουµε κάθετη στην Οx που την τέµνει στο Α. Αν την Οy την τέµνει στο Β, αποδείξτε ότι: ΑΒ + ΑΜ = ΟΜ. 7. Σε ορθογώνιο τρίγωνο ΑΒΓ η µία κάθετη πλευρά είναι µεγαλύτερη από την άλλη κατά 6 cm. Αν το άθροισµα των καθέτων πλευρών είναι 4 cm, να υπολογιστεί η υποτείνουσα του τριγώνου. 8. Σε ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) είναι ΑΒ = ΑΓ. Αν Α ύψος του ορθογωνίου, αποδείξτε ότι: Β = 4Γ. 98

9. ίνεται ορθογώνιο τρίγωνο ΑΒΓ (Α = 90 ) και έστω Α ύψος του τριγώνου. Αποδείξτε ότι: α) ΑΒ + Α = Β ( Γ + ΒΓ) β) ΑΓ + Α = Γ (Β + ΒΓ) 10. ίνεται τετράπλευρο ΑΒΓ µε ΑΒ = Β = ΒΓ = 14 cm και Α = Γ = 8 cm. α) Να αποδείξετε ότι η Β είναι µεσοκάθετος της ΑΓ. β) Να υπολογίσετε το µήκος του ΑΓ. 11. Αν Μ είναι εσωτερικό σηµείο του ορθογωνίου ΑΒΓ, να αποδείξετε ότι: ΜΑ + ΜΓ = ΜΒ + Μ. 1. Ενός τετραπλεύρου ΑΒΓ οι διαγώνιοι τέµνονται καθέτως. Να αποδειχθεί ότι: ΑΒ + Γ = ΒΓ + Α. 13. Στη διαγώνιο Β τετραγώνου ΑΒΓ παίρνουµε τυχαίο σηµείο Ο. Να αποδειχθεί ότι: Γ - ΓΟ = ΒΟ. Ο. 14. Ενός ορθογωνίου τριγώνου ΑΒΓ είναι γωνία Β = 60 και ΑΒ = λ. Να υπολογισθεί το ύψος Α του τριγώνου ΑΒΓ συναρτήσει του λ. 15. ίνεται ισοσκελές τραπέζιο ΑΒΓ µε βάσεις ΑΒ = 5 cm και Γ = 1,4 cm. Αν Α = 3 cm, να υπολογίσετε το ύψος και τις διαγώνιές του. 16. Από την κορυφή Α τετραγώνου ΑΒΓ γράφουµε τυχαία ευθεία, που κόβει τις ΒΓ, Γ στα Ε και Ζ αντίστοιχα. Αν α είναι το µήκος της πλευράς του τετραγώνου, να αποδείξετε ότι: 1 AE + 1 AZ = 1. α 17. Ενός ισοσκελούς τραπεζίου ΑΒΓ η µεγάλη βάση του ΑΒ είναι διπλάσια της πλευράς Α και η γωνία Α = 60. Αν είναι γνωστό ότι το µήκος της πλευράς Α είναι λ, να υπολογιστούν: α) το ύψος του τραπεζίου και β) η άλλη βάση Γ. 99