Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Σχετικά έγγραφα
Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

Κρυπτογραφία. Εργαστηριακό μάθημα 1

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πρόβληµα 2 (12 µονάδες)

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

Εφαρμοσμένη Κρυπτογραφία Ι

Πρόβληµα 2 (15 µονάδες)

Ασφάλεια Πληροφοριακών Συστημάτων

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

1 Ορίζουσες. Άσκηση 1.1 Θεωρούμε τον πίνακα. 1 x x x x 1 x x x x 1 x x x x 1 A =

Στοιχεία Θεωρίας Αριθμών

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Κρυπτογραφία Δημοσίου Κλειδιού

7. O κβαντικός αλγόριθμος του Shor

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

Αριθμοθεωρητικοί Αλγόριθμοι

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

project RSA και Rabin-Williams

Εισαγωγή στην Κρυπτολογία 3. Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ

Κεφάλαιο 2.4 Matrix Algorithms

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Πρώτοι αριθμοί και κρυπτογραφικός αλγόριθμος RSA. Άριστος Χαραλάμπους, Δημήτρης Χαραλάμπους, Νικόλας Παρασκευάς

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Εφαρμοσμένη Κρυπτογραφία Ι

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Ασφάλεια Υπολογιστικών Συστηµάτων

Λειτουργικά Συστήματα (ΗΥ321)

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

A = c d. [a b] = [a 0] + [0 b].

Copyright Κωνσταντίνος Γ. Χαλκιάς, Αύγουστος 2006

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος

ΚΡΥΠΤΟΓΡΑΦΙΑ. Σκοπός: η δημιουργία ασφαλούς επικοινωνίας. «κρυπτός» + «γράφω» τρόπος απόκρυψης περιεχομένου των μηνυμάτων

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΠΡΟΜΗΘΕΙΑ ΔΗΜΟ ΛΕΒΑΔΕΩΝ

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΚΡΥΠΤΟΓΡΑΦΙΑ Α. ΑΠΟ ΤΟ ΒΙΒΛΙΟ «Η ΦΥΣΗ ΚΑΙ Η ΔΥΝΑΜΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Σύγχρονη Κρυπτογραφία

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

ΚΩΔΙΚΟΠΟΙΗΣΗ - ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗ ΑΠΟ Β ΠΑΓΚΟΣΜΙΟ ΠΟΛΕΜΟ ΜΕΧΡΙ ΣΗΜΕΡΑ

{3k + a : k N a = 1,2}.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων

Ασφάλεια Πληροφοριακών Συστηµάτων

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

Transcript:

Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό (π.χ. το Α αντιστοιχεί στον αριθμό 0, το B στον αριθμό 1 κ.ο.κ.) Κάνουμε τους αντίστοιχους πολλαπλασιασμούς. (βλέπε συνέχεια) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 2

Έστω ότι θέλουμε να κρυπτογραφήσουμε τη λέξη ΓΕΙΑ. Σαν κλειδί έχουμε τον πίνακα 1 K = 2 3 13 Σπάμε το μήνυμα σε ζευγάρια. Το πρώτο ζευγάρι είναι το ΓΕ και το δεύτερο το ΙΑ. Το Γ είναι το 3 ο γράμμα της αλφαβήτου, άρα αντιστοιχεί στον αριθμό 2. Το Ε είναι το 5 γράμμα, άρα αντιστοιχεί στον αριθμό 4. Συνεπώς, για την κρυπτογράφηση του ΓΕ θα έχουμε τον πολλαπλασιασμό: Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 3

1 2 3 2 mod 24 = 13 4 14 = mod 24 = 56 1 2 + 3 4 mod 24 2 2 + 13 4 14 8 = O I 2 + 12 mod 24 4 + 52 = Η τελευταία ανάθεση γίνεται γιατί το O είναι το 15 ο γράμμα της αλφαβήτου και το I το 9 ο. ΠΡΟΣΟΧΗ! Αν το κείμενο που θέλαμε να κρυπτογραφήσουμε ήταν αγγλικό, στις πράξεις που προηγήθηκαν δεν θα είχαμε mod 24 αλλά mod 26 (επειδή τα γράμματα του αγγλικού αλφάβητου είναι 26) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 4

Άρα το ζευγάρι ΓΕ κρυπτογραφείται σε OI. Άσκηση: κρυπτογραφείστε το ζευγάρι ΙΑ Πώς θα γίνει η αποκρυπτογράφηση?? Ας υποθέσουμε ότι ο παραλήπτης λαμβάνει το OI και ξέρει και τον πίνακα-κλειδί K. Πώς θα αποκρυπτογραφήσει?? Πρέπει πρώτα να υπολογίσει τον αντίστροφο πίνακα του K και μετά να τον πολλαπλασιάσει με το κρυπτόγραμμα που αντιστοιχεί στο OI. Για τον αντίστροφο πίνακα του Κ εργαζόμαστε ως εξής: Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 5

Βρίσκουμε πρώτα την ορίζουσα του K, ηοποία συμβολίζεται με det(k). Γενικά, για έναν πίνακα a c b d ηορίζουσάτουdet(k) ισούται με ad-bc. Άρα, για τον πίνακά μας, έχουμε det(k)=1 13-3 2 = 7 Στη συνέχεια, πρέπει να βρούμε τον αντίστροφο της ορίζουσας, άρα τον αντίστροφο του 7 mod 24. Θα εφαρμόσουμε τον αλγόριθμο του Ευκλείδη. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 6

24 = 3 7 + 3 7 = 2 3 + 1 Σταματάμε. Άρα, η τελευταία σχέση δίνει 1= 7-2 3 και επειδή η πρώτη σχέση δίνει 3 = 24-3 7, καταλήγουμε: 1=7 2 (24-3 7) = 7 2 24 + 6 7 = 7 7-2 24. Άρα, ο αντίστροφος του 7 mod 24 είναι ο 7. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 7

O αντίστροφος ενός πίνακα Είναι ο πίνακας Άρα, για μας: K K 1 = 13 2 det( K ) K 1 3 mod 1 1 = 7 1 a = c Είδαμε ήδη όμως παραπάνω ότι 7-1 mod 24 = 7 και, επίσης, ισχύει, -3 mod 24 = (-3+24) mod 24 = 21 και -2 mod 24 = (-2+24) mod 24 = 22. Άρα, έχουμε: d 24 c b d a b Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 8

K 1 = 7 13 22 21 mod 24 1 = 91 154 147 mod 24 7 = 19 10 3 7 Τώρα πια είμαστε έτοιμοι να κάνουμε αποκρυπτογράφηση. Για την αποκρυπτογράφηση του OI, κάνουμε τον πολλαπλασιασμό 19 10 290 196 3 14 mod 24 7 8 mod 19 14 + 3 8 = mod 24 10 14 + 7 8 24 = 2 4 266 + 24 = mod 24 140 + 56 Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 9 Γ Ε =

Προσοχή! Δεν έχουν όλοι οι πίνακες αντίστροφο, οπότε ο πίνακας κλειδί δεν μπορεί να είναι ο οποιοσδήποτε πρέπει να είναι τέτοιος ώστε να έχει αντίστροφο. Πότε ο Κ είναι αντιστρέψιμος?? Πρέπει gcd(det(k),n)=1 Ποιοι λοιπόν από τους παρακάτω πίνακες μπορούν να είναι κλειδιά σε κρυπτογράφηση Hill ελληνικού κειμένου??? 3 1 8 6, 1 4 2 9, 5 10 2 4 Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 10

αλγορίθμων -RSA Δημιουργία δημόσιου-ιδιωτικού κλειδιού από έναν χρήστη: Επιλογή δύο πρώτων αριθμών p,q. Έστω p=11, q=19. Υπολογισμός N=pq=209 Υπολογισμός φ(ν)=(p-1)(q-1)=180 Επιλογή e τέτοιυ ώστε gcd(e,φ(ν))=1. π.χ. μεταξύ των 39,56,29, μόνο το 29 μπορεί να επιλεγεί ως e. Εύρεση του αντίστροφου του e mod φ(ν). Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 11

αλγορίθμων -RSA Αλγόριθμος του Ευκλείδη: 180 = 6 29 + 6 29 = 4 6 + 5 6 = 1 5 +1 Άρα, θα έχουμε 1= 6-1 5 = = 6 1 (29-4 6) = 6-1 29 + 4 6 = = 5 6-1 29 = 5 (180-6 29 )- 1 29 = =5 180-31 29 Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 12

αλγορίθμων -RSA Άρα ο αντίστροφος του 29 είναι ο -31 mod 180 = (-31+180) mod 180 = 149. Άρα d=149 Δημόσιο κλειδί: e,n Ιδιωτικό κλειδί: d Για την κρυπτογράφηση λοιπόν του αριθμού m έχουμε c=m e mod N Και την αποκρυπτογράφηση: m=c d mod N Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 13

αλγορίθμων El Gamal Παραγωγή Δημόσιου-Ιδιωτικού κλειδιού Ο χρήστης επιλέγει πρώτο αριθμό p. Έστω p=7. Επιλέγει γεννήτορα g mod 7. Προσέξτε: οι αριθμοί g=2,4,6 δεν είναι γεννήτορας mod 7, αλλά οι g=3,5, είναι. Έστω λοιπόν g=3 Επιλογή a τυχαίου. Έστω a=4 Υπολογισμός y = g a mod p = 81 mod 7 = 4 Δημόσιο Κλειδί: (p, g, y). Ιδιωτικό κλειδί: a. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 14

αλγορίθμων El Gamal Κρυπτογράφηση του αριθμού m=2 Επιλογή τυχαίου k. Έστω k=5. (προσοχή! Ανάλογα με την επιλογή του k, θα προκύψει και άλλο κρυπτόγραμμα!! Πάντα όμως η αποκρυπτογράφηση εν τέλει θα είναι σωστή!!) Υπολογισμός του γ=g k mod p =5 και του δ=my k mod p = 2 4 5 mod 7 = 4 Άρα, το κρυπτόγραμμα είναι: (γ,δ)=(5,4) Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 15

αλγορίθμων El Gamal Αποκρυπτογράφηση του (γ,δ)=(5,4) Υπολογισμός του δ/γ α mod p. γ α =5 4 mod 7 = 625 mod 7 =2 Θέλουμε λοιπόν τον αντίστροφο του 2 mod 7. Προφανώς είναι 4. Άρα, η αποκρυπτογράφηση δίνει 4 4 mod 7 = 16 mod 7 = 2 Πράγματι λοιπόν αποκρυπτογραφήσαμε το m=2 Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 10 16