STRENGTH AND STABILITY OF HIGH-STRENGTH STEEL TUBULAR BEAM-COLUMNS

Σχετικά έγγραφα
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ


ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΛΥΓΙΣΜΟΣ ΠΛΑΚΩΝ ΚΑΙ Η ΕΦΑΡΜΟΓΗ ΤΟΥ ΣΤΗΝ ΚΑΤΑΤΑΞΗ ΤΩΝ ΙΑΤΟΜΩΝ

DETERMINATION OF THE ROTATIONAL CAPACITY OF COMPACT STEEL BEAMS AT ELEVATED TEMPERATURES CONSIDERING LOCAL AND GLOBAL GEOMETRIC IMPERFECTIONS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

MECHANICAL PROPERTIES OF MATERIALS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

DETERMINATION OF THE ROTATIONAL CAPACITY OF COMPACT STEEL BEAMS AT ELEVATED TEMPERATURES CONSIDERING LOCAL AND GLOBAL GEOMETRIC IMPERFECTIONS

Assalamu `alaikum wr. wb.

Strain gauge and rosettes

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Αλληλεπίδραση Ανωδοµής-Βάθρων-Θεµελίωσης-Εδάφους σε Τοξωτή Οδική Μεταλλική Γέφυρα µε Σύµµικτο Κατάστρωµα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΞΩΝ ΑΠΟ ΧΑΛΥΒΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

«Διερεύνηση μη γραμμικής συμπεριφοράς μεταλλικών διατμητικών τοιχωμάτων»

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

[1] P Q. Fig. 3.1

Aluminum Electrolytic Capacitors (Large Can Type)

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

8.5 Structural Optimization

Διονύσιος Α. ΜΠΟΥΡΝΑΣ 1, Αθανάσιος Χ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ 2, Κωνσταντίνος ΖΥΓΟΥΡΗΣ 3, Φώτιος ΣΤΑΥΡΟΠΟΥΛΟΣ 3

Chapter 7 Transformations of Stress and Strain

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Σχολή Διοίκησης και Οικονομίας. Μεταπτυχιακή διατριβή

Το σχέδιο της μέσης τομής πλοίου

Aluminum Electrolytic Capacitors

MasterSeries MasterPort Lite Sample Output

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εθνικό Μετσόβιο Πολυτεχνείο. Τµήµα Πολιτικών Μηχανικών. Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

2 Composition. Invertible Mappings

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΝΑΛΥΣΗ ΤΗΣ ΔΟΜΙΚΗΣ ΕΥΣΤΑΘΕΙΑΣ ΣΩΛΗΝΩΝ ΜΕ ΚΑΙ ΧΩΡΙΣ ΝΕΥΡΩΣΕΙΣ ΥΠΟ ΕΞΩΤΕΡΙΚΗ ΠΙΕΣΗ

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

ADVANCED STRUCTURAL MECHANICS

Homework 3 Solutions

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

EE512: Error Control Coding

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΒΑΣΕΙ ΤΟΥ EC4 KAI ΣΥΓΚΡΙΣΗ ΜΕ ΤΟΝ LRFD

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

NONLINEAR MODEL FOR CIRCULAR CONCRETE-FILLED STEEL TUBES UNDER MONOTONIC LOADING

ΜΕΛΕΤΗ ΜΗΧΑΝΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΑΝΑΛΥΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΙΕΡΕΥΝΗΣΗ ΕΙ ΙΚΩΝ ΘΕΜΑΤΩΝ ΑΝΗΡΤΗΜΕΝΟΥ ΣΤΕΓΑΣΤΡΟΥ ΜΕΣΩ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΝΑΛΥΣΕΩΝ ΜΕ ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Areas and Lengths in Polar Coordinates

High order interpolation function for surface contact problem

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

The Simply Typed Lambda Calculus

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

Τμήμα Πολιτικών και Δομικών Έργων

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

C.S. 430 Assignment 6, Sample Solutions

Figure 1 - Plan of the Location of the Piles and in Situ Tests

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

Second Order Partial Differential Equations

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΚΛΙΜΑΤΟΣ ΑΣΦΑΛΕΙΑΣ ΤΩΝ ΑΣΘΕΝΩΝ ΣΤΟ ΝΟΣΟΚΟΜΕΙΟ

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Precision Metal Film Fixed Resistor Axial Leaded

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Transcript:

STRENGTH AND STABILITY OF HIGH-STRENGTH STEEL TUBULAR BEAM-COLUMNS Aglaia Eugenia Pournara Ph.D. Candidate, Department of Mechanical Engineering University of Thessaly,Volos, GR-38334, Greece E-mail:agpourna@uth.gr Spyros A. Karamanos Associate Professor,, Department of Mechanical Engineering University of Thessaly, Volos, GR-38334, Greece E-mail:skara@uth.gr web page: http://www.mie.uth.gr/karamanos.html 1. ABSTRACT The present work examines structural strength and stability issues for steel tubular beamcolumns made of high-strength steel. The tubular beam-column elements are widely used in a variety of structures such as buildings, off-shore templates, masts, towers and cranes. The research focuses on the analysis of such members for better understanding the benefits of using high strength steel in tubular structures. Extensive numerical work has been conducted on CHS high strength steel beam-columns of two cross sections and various values of member length. First, considering initial out-ofstraightness imperfection, structural member stability curves are calculated. Subsequently, an extensive beam-column analysis takes place and interaction diagrams are provided as a result. The numerical results are compared with the predictions of the current Eurocode 3 provisions. 2. INTRODUCTION The structural behavior of tubular beam-column members under combined loading conditions has been extensively investigated through the past. The present extensive numerical parametric study is a part of a large research effort with the scope of revising the current slenderness limits for CHS member classification and examining the buckling behavior of high strength steel tubular elements under axial compression and combined loading conditions. More specifically, the structural response of high strength steel (σ y =590MPa) imperfect tubular beam columns of various lengths and cross sections is investigated under axial compression and combined loading. Extensive finite element analysis has been conducted in order to develop buckling curves and interaction diagrams of compression and bending which are compared with the current design provisions of EN- 1993. For the comparison between FEA results and European provisions, the safety factors included in the EN 1993 equations are not considered. 1

There exist limited information for cross sections of strength steel over 460 MPa and the current work will contribute at the enhancement of the current guidelines for stability curves, interaction diagrams and classification limits for high strength steel CHS members. 3. NUMERICAL SIMULATIONS OF BEAM-COLUMNS General-purpose finite element program ABAQUS is employed to simulate the performance of high-strength steel tubular beam-columns of various lengths and diameterto-thickness ratios (D/t) under combined loading conditions. The geometrical characteristics of the tubes reported in the present paper are shown in Table 1. The monotonic analysis considers nonlinear geometry and a J 2 - flow (von-mises) large strain plasticity model, with isotropic hardening. The tubular column is modeled with four-node reduced-integration shell elements (S4R) available in ABAQUS. The finite element mesh used has been optimized, so that the numerical model is accurate and time-effective. Tube Outer diameter D o (mm) Thickness t (mm) Do / t Yield stress σ y (MPa) Class (EN-1993-1-1) A 355 12 29.58 590 Class 3 B 193.7 10 19.37 590 Class 1 Table 1. Geometric-mechanical properties of the tube models The numerical models consist of simply-supported tube elements. A stress-free initial crookedness on the longitudinal axis with amplitude equal to w 0 =L/300 at the mid span of the element, is implemented in the models geometry. In the case of axial loading, axial compressive load is applied at the element s ends and it is gradually increased so that the non linear equilibrium path of load vs. displacement is traced and the maximum buckling load is identified. In the case of monotonic bending, bending moments are applied at both ends of the members until a maximum moment is reached. For the application of either compression or bending, Riks algorithm was used through force and moment control. In the case of combined loading conditions, each tube is initially subjected to axial compression up to 0.25, 0.5, 0.75 of the maximum load derived from the analysis under pure axial compression for the specific model described above. Subsequently, keeping the axial load constant, bending loading is gradually applied at the end sections until the maximum bending capacity is reached, using Riks algorithm. 4. NUMERICAL RESULTS 4.1. Stability curves Previous numerical and experimental research [2-9] has been conducted to investigate the stability and buckling strength of beam-columns in terms of their slenderness, which is a function of the length and the material yield stress, described in eq. (1). KL λ = πr F y E 0.5 (1) 2

where K is the effective length factor, affected by the boundary conditions applied on the model, r is the radius of gyration of the tubular cross section, E is the Young s Modulus and F y is the yield stress. For simply supported members, K=1. The present parametric numerical analysis aims at developing stability curves, i.e. buckling strength vs member slenderness. The geometric characteristics of the tubular cross sections under consideration are presented in Table 1 and the member length L ranges from 0.5 to 10m. The material uniaxial stress-strain curves used in the present analysis are depicted in Fig. 1, representing a theoretical bilinear elastic-plastic curve of a high-strength steel grade T590 with yield stress equal to σ y =590 MPa and hardening modulus equal to E/500. Fig. 1 Plasticity model prediction for the uniaxial material stress-strain curve Each model is subjected to axial compression until failure, in terms of ultimate axial strength, due to local or global buckling. The deformed geometry and the buckle development of the models with cross section A are shown in Fig. 2, for a relatively short (2m long) and a 5m-long beam-column, corresponding to a member slenderness (λ) of 0.275 and 0.688, respectively. (a) (b) Fig. 2 Failure mode of the A type numerical model (a) 2m and (b) 5m long under axial compression Τhe corresponding non-linear load-displacement paths are shown in Fig. 3. It is observed that, in short members (λ=0.07-0.3), local buckling occurs progressively while plastic deformation is accumulated at the most critical region of the tube wall. The post buckling branch appears to be rather smooth, while the member does not deviate from the longitudinal axis until the tube wall has been excessively deformed. For intermediate and large values of member slenderness, global (Euler type) buckling occurs, and the member is suddenly deflected laterally from the initial straight position. As a result, an abrupt 3

transition from the pre-buckling to the post-buckling region is observed on the loaddisplacement curve and the post-buckling part becomes unstable. (a) (b) Fig. 3 Load vs Displacement curves for cross sections (a) A and (b) B. Comparison for various member slenderness values The maximum buckling load for each finite element tubular model is identified and the predicted buckling strength for various values of member slenderness is depicted in Fig. 4. The stability curves obtained numerically are compared with the provisions of EN-1993 [1]. It should be noted that the cross sections under consideration, are classified as class 3 and class 1 referring to A and B, respectively, according to EN-1993-1-1[1] using a stress value σ y =590 MPa. (a) (b) Fig. 4 Stability curves for cross sections (a) A and (b) B Despite the fact that EN 1993-1-1[1] indicates that curve a 0 is the most suitable for highstrength steel tubes, from Fig. 4, it can be observed that this overestimates the strength of the beam-columns. This indicates that a revision of buckling provisions in EN 1993-1-1 for the case of high-strength steel CHS members is necessary. It should be kept in mind that the imperfection L/300 suggested by the European provisions for the application of a 0 curve, and imposed in the finite element model s geometry, actually represents an equivalent imperfection value so that the effect of residual stresses on the tube wall are taken into account indirectly. 4

4.2. Interaction diagrams Interaction diagrams are developed for 3m, 5m and 8m-long beam-columns under combined loading conditions. The initial out-of- straightness imperfection (w 0 ) adopted for this analysis is equal to L/300. The geometrical and material properties are similar to the ones described previously. The interaction diagrams, of axial compression and bending, for 3 and 8m of member length for the A cross section, (corresponding to member slenderness equal to 0.417 and 1.11) are shown in Fig. 5. The axial and bending values are normalized with the values N = πd tσ and M = D tσ, representing the fully-plastic compressive and bending 0 m y 2 0 m y strength of the cross section respectively. The results show that the bending capacity is not affected by the value of member slenderness but it depends strongly on the material yield stress and cross sectional geometry. On the other hand, buckling strength is significantly reduced by the increase of member length while global (Euler-type) buckling governs the overall member behavior. Fig. 5 Interaction Diagrams for Α cross section of L=3m, (λ=0.417) and L=8m, (λ=1.11) in comparison The interaction diagrams shown in Fig 5 are compared with the curves proposed by EN- 1993-1-1 using a nominal yield stress σ y =590 MPa as shown in Fig.6. Two main observations can be noted from this comparison. First, EN-1993-1-1 provisions significantly penalize the bending capacity of the tubular member so that the bending strength is underestimated by approximately 20%. The reason behind this difference is that the CHS member is classified as class 3 but the finite element results indicate that it is capable of undergoing significant inelastic deformation in terms of rotational capacity without lost of strength. Therefore the EN-1993-1-1 predictions appear to be rather conservative. The second observation is that the EN-1993-1-1 applied limit for buckling strength is by 15% higher than the corresponding FE predictions especially for the 8m long tubular member, also indicated by the stability curves illustrated previously in Fig. 4 for member slenderness equal to 1.11. 5

(a) (b) Fig. 6 Interaction Diagrams for Α cross section with (a) L=3m, (λ=0.417) and (b) L=8m, (λ=1.11) Comparison with EN-1993 The interaction diagram of a 5m-long tubular finite element model of cross section B, (corresponding to member slenderness equal to 1.3) is compared with EN-1993-1-1 provisions as shown in Fig. 7. The comparison shows that the Eurocode 3 predictions for the ultimate bending moment correlate well with the finite element results. On the other hand, the buckling strength is overestimated by approximately 10%, also noted in the development of stability curves. 5. CONCLUSIONS Fig. 7 Interaction Diagrams for Β cross section with L=5m, (λ=1.3) The above observations indicate that new provisions for high-strength steel CHS members are necessary. In particular, the use of a 0 curve appears to be questionable; therefore, it may be necessary to introduce an enhanced stability design curve for high strength steel members. Moreover, the conservativeness of the code provisions with respect to the FEA results for the bending capacity, raises a significant concern on the accuracy of the current classification limits adopted by the EN-1993-1-1[1] for high-strength steel CHS members. 6. ACKNOWLEDGEMENT This work was carried out with financial support from the Research Fund for Coal and Steel of the European Community, within ATTEL project: Performance-Based Approaches for High Strength Steel Tubular Columns and Connections under Earthquake 6

and Fire Loadings, Grant No RFSR-CT-2008-00037 and within HITUBES project: Design and Integrity Assessment of High Strength Tubular Structures for Extreme Loading Conditions, Grant No RFSR-CT-2008-00035. 7. REFERENCES [1] CEN EN 1993-1-1, Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings, European Committee for Standardization, May 1, 2005. [2] BOUWKAMP, J. G., Buckling and post-buckling strength of circular tubular crosssections, OTC 2204, Offshore Technology Conference, Houston 1975. [3] SHERMAN DONALD R., ASCE M., Tests of Circular Steel Tubes in Bending, Journal of the Structural Division, November 1976. [4] CHEN WAI F., ASCE M., ROSS DAVID A., Tests on Fabricated Tubular Columns, Journal of the Structural Division, March 1977. [5] REDDY, B. D., An experimental study of the plastic buckling of Circular Cylinders in Pure Bending, International Journal of Solids Structures, August 1978. [6] RASMUSSEN, K. J. R. and HANCOCK, G. J, Test of High Strength Steel Columns, J. Construct Steel Research 34, 1995. [7] KARAMANOS, S. A. and TASSOULAS, J. L., "Effects of External Pressure on the Capacity of Tubular Beam-Columns.", Journal of Structural Engineering, ASCE, Vol. 121, No. 11, pp.1620-1628, November 1995 [8] ELCHALAKANI M., ZHAO X.L., GRZEBIETA R., Bending tests to determine slenderness limits for cold-formed circular hollow sections, Journal of Constructional Steel Research, December 2001. [9] MASSONNET, Ch. and JANSS, J., Buckling tests on round and square tubes in high yield strength steel, carried out for C.R.I.F. in the laboratories of the University of Liège, C.R.I.F. Internal report (undated, Liège). 7

ΑΝΤΟΧΗ ΚΑΙ ΕΥΣΤΑΘΕΙΑ ΣΩΛΗΝΩΤΏΝ ΟΜΙΚΩΝ ΜΕΛΩΝ ΑΠΟ ΧΑΛΥΒΑ ΥΨΗΛΗΣ ΑΝΤΟΧΗΣ Αγλαϊα-Ευγενία Πουρνάρα Υποψήφια ιδάκτωρ, Τµήµα Μηχανολόγων Μηχανικών Πανεστήµιο Θεσσαλίας, Βόλος 38334 E-mail:agpourna@uth.gr Spyros A. Karamanos Αναπληρωτής Καθηγητής, Τµήµα Μηχανολόγων Μηχανικών Πανεστήµιο Θεσσαλίας, Βόλος 38334 E-mail:skara@uth.gr web page: http://www.mie.uth.gr/karamanos.html ΠΕΡΙΛΗΨΗ Η παρούσα εργασία εξετάζει την δοµική αντοχή και την ευστάθεια σωληνωτών µελών από χάλυβα υψηλής αντοχής που υπόκεινται σε συνδυασµένω καταπόνηση από κάµψη και αξονική δύναµη. Τα εν λόγω µέλη έχουν σηµαντικές εφαρµογές σε κτηριακά έργα, θαλάσσιες πλατφόρµες πετρελαίου, πύργους και γερανούς. Η παρούσα έρευνα εστιάζει στην αντοχή τους µε στόχο την καλύτερη κατανόηση της συµπεριφοράς τους και την επισήµανση πιθανών πλεονεκτηµάτων ή µειονεκτηµάτων στην χρήση χάλυβα υψηλής αντοχής. Η έρευνα είναι αναλυτική/αριθµητική µε την ανάπτυξη προσοµοιωµάτων πεπερασµένων στοιχείων για τα σωληνωτά µέλη στο πρόγραµµα ABAQUS. Χρησιµοποιήθηκαν δύο βασικές διατοµές και διάφορες τιµές του µήκους για το σωληνωτό µέλος. Αρχικώς, χρησιµοποιώντας ατέλεια της µορφής απόκλισης από την ευθυγραµµία, υπολογίστηκαν οι καµπύλες λυγισµού των δύο διατοµών. Στην συνέχεια, χρησιµοποιώντας τα ίδια προσοµοιώµατα, υπολογίστηκε η αλληλεπίδραση µεταξύ της αξονικής θλιπτικής δύναµης και της ροπής κάµψης και τα αποτελέσµατα παρουσιάστηκαν σε κατάλληλα διαγράµµατα αλληλεπίδρασης. Τέλος τα αριθµητικά αποτελέσµατα συγκρίθηκαν µε τις αντίστοιχες διατάξεις του Ευρωκώδικα 3 (ΕΝ 1993-1-1). 8