Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20



Σχετικά έγγραφα
Μια παρουσίαση από το Φυσικό Τμήμα του Παν.Αθήνας (Kαθ. Χ. Τρικαλινός)

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

Περί σφαλμάτων και γραφικών παραστάσεων

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.


ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός

Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ

Εισόδημα Κατανάλωση

Ονοματεπώνυμο Φοιτητή. Εργαστηριακό Τμήμα Π.χ. Δευτέρα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)

Σφάλματα Είδη σφαλμάτων

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Θέματα Παγκύπριων Εξετάσεων

x 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

Υπολογισμός της σταθεράς του ελατηρίου

Δημιουργούμε τις συνθήκες που μας επιτρέπουν να μελετήσουμε τα συγκεκριμένα φαινόμενα, απομονώνοντάς τα από διάφορα «εμπόδια» (ΠΕΙΡΑΜΑ).

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής. Φυσική

ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής

m (gr) l (cm)

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

A2. Θεωρήστε ότι d << r. Να δώσετε μια προσεγγιστική έκφραση για τη δυναμική ενέργεια συναρτήσει του q,d, r και των θεμελιωδών σταθερών.

ΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

Υπολογισμός της σταθεράς ελατηρίου

Η αβεβαιότητα στη μέτρηση.

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

!n k. Ιστογράμματα. n k. x = N = x k

Α Λυκείου Σελ. 1 από 13

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

Τοπικός Μαθητικός Διαγωνισμός EUSO

Υπολογισμός της σταθεράς του ελατηρίου

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

Τοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΝΙΚΑΙΑΣ ΠΕΙΡΑΙΑ. Φύλλο εργασίας

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

Γενικό Εργαστήριο Φυσικής

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO 2017

Β Γυμνασίου Σελ. 1 από 10

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Μετρήσεις και Σφάλματα/Measurements and Uncertainties

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

i. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Αγωγιμότητα στα μέταλλα

Κεφάλαιο 8: Ελεύθερη πτώση

Ένωση Ελλήνων Φυσικών Πανελλήνιος Διαγωνισμός Φυσικής Λυκείου 2019

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Α u. u cm. = ω 1 + α cm. cm cm

ΜΕΤΡΗΣΕΙΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Μαθηματική Εισαγωγή Συναρτήσεις

Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων

ΦΥΣ Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20

Μαθηματική Εισαγωγή Συναρτήσεις

Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Οδηγός Διόρθωσης εξεταστικού δοκιμίου Φυσικής 4ώρου Τ.Σ Παγκυπρίων εξετάσεων 2013

Transcript:

Εισαγωγικές ιαλέξεις Εργαστηρίου Φυσικής 014-0 015 αν.καθηγητής Ανδρέας Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1 ιαλέξεις: Κ.Ν. Παπανικόλας, Α. Καραμπαρμπούνης Ε. Στυλιάρης & Ν. Μαμαλούγκος

Ιστοτόπος: http://physlab.phys.uoa.gr & eclass: http://eclass.uoa.gr μαθήματα ιευθυντής Εργαστηρίου Φυσικής και Συντονιστής Εργαστηρίου Φυσικής Ι αν. Καθηγητής Α. Καραμπαρμπούνης e-mail: akarabar@phys.uoa.gr αρ. τηλ. γραφείου: 10 77 688, 10 77 6781

Α αμαξίδ ιο φ αισθητήρας κίνησης-θέσης d Motion Detector h Γ Β 3

4

Εισαγωγή στην Πειραματική Μεθοδολογία ΘΕΜΑΤΑ ΙΑΛΕΞΕΩΝ 1. Πειραματική Μέθοδος. Μέτρηση και πειραματική αβεβαιότητα (Σφάλμα) Τύποι Σφαλμάτων (Συστηματικά και Στατιστικά) 3. Σύγκριση θεωρίας και πειράματος 4. Προετοιμασία και σχεδιασμός ενός πειράματος 5. ιεξαγωγή Μετρήσεων 6. Παρουσίαση Αποτελεσμάτων 7. Το Εργαστήριο Φυσικής: ιαδικασίες και κανονισμοί

Περί Μετρήσεων Η φυσική είναι πειραματική επιστήμη. Η γνώση μας για τον φυσικό κόσμο προέρχεται (όπως και για κάθε επιστήμη) απó παρατήρηση ήαπόπείραμα. Απορρίπτουμε ή διευρύνουμε το ερμηνευτικό μας πλαίσιο (θεωρία ή πρότυπο/μοντέλο ώστε να συνάδει με τα πειραματικά δεδομένα) Παρατήρηση: Η καταγραφή μεγεθών που αφορούν φαινόμενα μη ελεγχόμενα και συνήθως μη επαναλήψιμα (λ.χ. μια έκρηξη Supernova, κάποιος σεισμός). Πείραμα: Η καταγραφή μεγεθών που αφορούν φαινόμενα ελεγχόμενα και επαναλήψιμα (λ.χ. τη μέτρηση της θερμικής αγωγιμότητας κάποιου υλικού, τη σκέδαση σωματίων από κάποιο πυρήνα κλπ.)

Θεωρία και Πείραμα Αρχή πάντα έχουμε κάποιο ερμηνευτικό πλαίσιο Κάποια Θεωρία ήκάποιο Πρότυπο ή μοντέλο ή Νόμο. Με παρατηρήσεις ή πειράματα προσπαθούμε να επιβεβαιώσουμε ή να απορρίψουμε τις προβλέψεις τους. Τα νέα πειραματικά δεδομένα οδηγούν (ενδεχόμενα) σε ανατροπή του θεωρητικού πλαισίου ή την διεύρυνσήτουήτηνεπιλογήκάποιουαπόανταγωνιστικές θεωρίες. Πώς και με ποια βεβαιότητα μπορούμε από τα πειραμα- τικά δεδομένα να επιβεβαιώσουμε ή να απορρίψουμε μια θεωρητική πρόβλεψη; (ΜΜ-αιθέρας)

Θεωρία και Πείραμα Παραδείγματα διαλεκτικής σχέσης Πειράματος Θεωρίας Ι. Μηχανική Αριστοτέλεια Μηχανική Πειράματα Γαλιλαίου και Νεύτωνα Θεωρία της Σχετικότητας Michelson-Morley Νευτώνεια Μηχανική

Θεωρία και Πείραμα Παραδείγματα διαλεκτικής σχέσης Πειράματος Θεωρίας ΙΙ. Η ατομική Θεωρία Ατομική Υφή Πειράματα σκέδασης Rutherford - Geiger Κβαντομηχανικό Πρότυπο ιακριτά Φάσματα Πλανητικό Πρότυπο

Σύγκριση Θεωρίας και Πειράματος Πότε και με ποια βεβαιότητα μπορούμε να ισχυριστούμε ότι κάποιο πειραματικό αποτέλεσμα απορρίπτει η επιβεβαιώνει κάποια θεωρητική πρόβλεψη; Θεωρητική Πρόβλεψη: Ισοδύναμο με συγκεκριμένη πρόταση ή αριθμητικό αποτέλεσμα που μπορεί να απορριφθεί πειραματικά. Πειραματικό αποτέλεσμα: Ισοδύναμο με αποτέλεσμα μέτρησης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα (σφάλμα).

Θεωρητικές Προβλέψεις Θεωρητική Πρόβλεψη: Ισοδύναμο με συγκεκριμένη πρόταση ή αριθμητικό αποτέλεσμα που μπορεί να απορριφθεί η να επιβεβαιωθεί πειραματικά. ΠΑΡΑ ΕΙΓΜΑΤΑ: Το ηλεκτρόνιο είναι σταθερό (στο χρόνο) σωμάτιο Το πρωτόνιο έχει ημιζωή ίση με 4x 10 34 έτη Σώματα μαζών M και m έλκονται με δύναμη: F G Mm R Η περίοδος(t) συστήματος ελατηρίου (Κ) και μάζας m είναι: T m H ακτίνα του πυρήνα του μολύβδου είναι: K R 5.810 15 11 m

Πειραματικά Αποτελέσματα Πειραματικό αποτέλεσμα: Ισοδύναμο με αποτέλεσμα μέτρησης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα (ήσφάλμα). ΠΑΡΑ ΕΙΓΜΑΤΑ: Το πρωτόνιο έχει ημιζωή μεγαλύτερη από: 4.6 x 10 33 έτη (90% cf*) H ακτίνα του πυρήνα του μολύβδου είναι: R (5.4989 0.0007) 10 15 m Θεωρητική Πρόβλεψη R18.5 R=5.8 10-15 m * confidence level επίπεδο εμπιστοσύνης

Μετρήσεις ΑΠΑΙΤΗΣΕΙΣ (κλασική φυσική): Αποτέλεσμα ανεξάρτητο των οργάνων μέτρησης Αποτέλεσμα ανεξάρτητο του παρατηρητή Να υπάρχει επαναληψημότητα Περιβάλλον και συνθήκες μέτρησης Όργανα Μέτρησης: ακρίβεια και βαθμονόμηση Επανερχόμενοι στο προηγούμενο ερώτημα: Πώς και με ποια βεβαιότητα μπορούμε από τα πειραματικά δεδο- μένα να επιβεβαιώσουμε ή να απορρίψουμε μια θεωρητική πρόβλεψη; (αρνητικού αποτελέσματος πείραμα : Προσοχή!!!!)

Συμβολόμετρο πολλαπλές ανακλάσεις για να μεγαλώσει το L Πείραμα των Michelson-Morley (1887) 14

t 1 c L u c L u c Lc u ( L / 1 ( u c) c ) Γη: 30km/s=108000km/h t u (c -u ) 1/ L t 1 c+u c-u t c L u ( L 1 u / c) c L ό u Δt 1 t L 1 c L L L εξήγηση με τη συστολή από 15 Lorentz

χρόνος (t) Μέλλον (t) x=+ct Παρόν κινούμενη πηγή (χρόνος) διάστημα photonlike διάστημα like φωτοειδές φωτοειδές s =0 =0 c t -x =s Κώνος φωτός x=-ct Παρελθόν Timelike χρονοειδές s >0 x +y +z -c t =s s Spacelike χωροειδές,, s <0 x + y + z -c t = s = s Αλλαχού (else ware) 0 0 0 timelike photonlike spacelike 16

( 0. 51099906 0. 00000015 ) MeV Μετρήσεις Πειραματικό αποτέλεσμα: Ισοδύναμο με αποτέλεσμα μέτρησης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα ή σφάλμα. (Τιμή ) ± ( σφάλμα / αβεβαιότητα) Ή ακόμη καλύτερα (Τιμή ) ± ( Στατιστικό Σφάλμα) ± (Συστηματικό Σφάλμα) ΠΑΡΑ ΕΙΓΜΑΤΑ: Η μάζα του ηλεκτρόνιου είναι: Η παγκόσμια σταθερά βαρύτητας είναι: ( 0.51099906 0.00000015) MeV G (6.673 0.011) 10 11 3 m kg s 1 17

Μετρήσεις Όργανα Μέτρησης και Αισθητήρες Ακρίβεια: Χαρακτηριστικό του οργάνου και της τεχνολογίας στην οποία βασίζεται. Βαθμονόμηση: Μας οδηγεί στην ανάγκη αναγωγής των μετρήσεων μας σε σύγκριση με κάποια γνωστά (πρότυπα) μεγέθη. Καταγραφή: Παραδοσιακά (ο άνθρωπος σαν όργανο καταγραφής) Απευθείας σε ηλεκτρονικό υπολογιστή. Τότε τα όργανα μέτρησης αποκαλούνται αισθητήρες

Βαθμονόμηση: Μέτρα & Σταθμά Ηδιαδικασίατης μέτρησης αναγκαστικά οδηγεί σε σύγκριση με πρότυπα μεγέθη (μέτρα και σταθμά) http://physics.nist.gov/cuu/constants/index.html

Βαθμονόμηση: Μέτρα & Σταθμά http://physics.nist.gov/cuu/constants CODATA: Committee on Data for Science and Technology

Τρόπος Γραφής Σφαλμάτων Τιμή αβεβαιότητα G G (6.673 0.011) 10 11 3 m kg 1 s Τιμή ( αβεβαιότητα) G 6.673(11) 10 11 3 m kg 1 s x x G 0.00165 G ή 0.165% Απόλυτος αριθμός ήεκφράζεται σε ποσοστά

Πειραματική Αβεβαιότητα «Αβεβαιότητα» πιο σωστός όρος από τον όρο «Σφάλμα» Η «αβεβαιότητα» χαρακτηρίζει την εμπιστοσύνη με την οποία περιβάλλουμε κάποιο αποτέλεσμα. Παράδειγμα: Οι δημοσκοπήσεις! π.χ. το τάδε κόμμα προτιμάται από το 35% των ψηφοφόρων με σφάλμα 3 ποσοστιαίων μονάδων. (35 ± 3)% Tι σημαίνειαυτό; Από πού προκύπτει το 3% ; (Τιμή ) ± ( αβεβαιότητα) Αποκλείεται η εκλογή αποδώσει 9% ; (από το μέγεθος του δείγματος) Αβεβαιότητα του τύπου αυτού,«στατιστική», βελτιώνεται με μεγαλύτερο αριθμό δειγμάτων (μετρήσεων)

Στατιστική Αβεβαιότητα «Στατιστική Αβεβαιότητα» πιο σωστός όρος από «Τυχαίο Σφάλμα» Πότε υπεισέρχεται στατιστική αβεβαιότητα σε μία μέτρηση φυσικού μεγέθους ; 1. Σε φαινόμενα όπου το ίδιο το σύστημα χαρακτηρίζεται από διακυμάνσεις: Η ημιζωή ραδιενεργού πυρήνα Η διακύμανση της μέσης θερμοκρασίας κάποια συγκεκριμένη μέρα του χρόνου. Όπου η «ανάγνωση» του οργάνου εισάγει πολυπλοκότητα και αστάθμητους (χαοτικής συμπεριφοράς) παράγοντες: Η παρουσία θορύβου στο σήμα (λ.χ. σε ηλεκτρονικά όργανα) Η διακύμανση στον χρόνο της αντίδρασης του παρατηρητή

Πειραματική Αβεβαιότητα (Τιμή ) ± ( αβεβαιότητα) Τι καθορίζει την αβεβαιότητα σε μία μέτρηση φυσικού μεγέθους ; Η ακρίβεια του οργάνου μέτρησης Η βαθμονόμηση του οργάνου μέτρησης Ο μη απόλυτος έλεγχος (ή γνώση) των πειραματικών συνθηκών Η αβεβαιότητα λέγεται «συστηματική» : Όσες φορές και να επαναλάβουμε μια τέτοια μέτρηση δεν είναι δυνατό να ξεπεράσουμε τους περιορισμούς αυτούς. Απλά επαναλαμβάνουμε το ίδιο σφάλμα

Πειραματική Αβεβαιότητα ΣΦΑΛΜΑ ΑΝΑΓΝΩΣΗΣ α) Για τα αναλογικά όργανα εξαρτάται από την απόσταση ανάμεσα στις υποδιαιρέσεις του οργάνου β) Για τα ψηφιακά όργανα συνήθως είναιτομισότου τελευταίου ψηφίου. ΑΚΡΙΒΕΙΑ ΟΡΓΑΝΟΥ είναι η αβεβαιότητα που προκύπτει λόγω της κατασκευής του οργάνου και συνήθως δίδεται από τον κατασκευαστή. ΚΑΤΑ ΚΑΝΟΝΑ ΤΟ ΣΦΑΛΜΑ ΟΡΓΑΝΟΥ ΕΙΝΑΙ ΜΙΚΡΟΤΕΡΟ ΑΠΟ ΤΟ ΣΦΑΛΜΑ ΑΝΑΓΝΩΣΗΣ

Γενικά απαιτείται εμπειρία. Οι «συνταγές» δεν είναι πάντα εφαρμόσιμες. Όταν μετράμε το μήκος ενός αντικειμένου με μέτρο φροντίζουμε το ένα άκρο του να πέφτει «ακριβώς» σε μια ευκρινή υποδιαίρεση Όταν μετράμε π.χ. ένταση και τάση ρεύματος φροντίζουμε π.χ. η ένταση να παίρνει ακέραιες τιμές Όταν μετράμε την περίοδο εκκρεμούς αρχίζουμε και τελειώνουμε τις μετρήσεις μας όταν το εκκρεμές βρίσκεται στο άκρο, διότιεκείη ταχύτητά του μηδενίζεται. Χάρακες - παχύμετρο μικρόμετρο & βερνιέρος Άσκηση Α

ιάφοροι χάρακες με μήκος 30 cm (κοινή αρχή στο 0)

1 3 4 5 5: Χάρακας αναφοράς 6

Μετρήσεις με τη χρήση Βερνιέρου Βερνιέρος: Pierre Vernier (1631) Χρησιμοποιήθηκε αρχικά για τη μέτρηση μηκών με μεγαλύτερη ακρίβεια Έχει δύο κλίμακες (σταθερή και κινητή/βερνιέρου βερνιέρου) Γινότανε αρχικά υποδιαίρεση της κλίμακας του βερνιέρου ώστε να αντιστοιχούν 10 υποδιαιρέσεις του σε 9 της κυρίας κλίμακας. Αυτό έδινε τη δυνατό- τητα να εκτιμηθεί με άνεση κλάσμα της κυρίας κλίμακας με ακρίβεια 1/10 σήμερα οι υποδιαιρέσεις γίνονται στο 1/0 (0.05 ακρί βεια) και υπάρχουν και σε άλλες μετρήσεις π.χ. γω- 9 νιών. Ρολόϊ - Ψηφιακά

Άσκηση Α6 Παχύμετρο (διαστημόμετρο) (0,05mm)

Ρολόϊ Ψηφιακής απεικόνισης 31

7, 35 mm κλίμακα βερνιέρος

9 10 ύο ερωτήματα: (α) πως μετράμε? (β) γιατί μετράμε έτσι? 33

(α) Η μέτρηση γίνεται κινώντας τον βερνιέρο μέχρι να φτάσει το άλλο άκρο του αντικειμένου, βλέπουμε σε ποια υποδιαίρεση της κυρίας κλίμακας αντιστοι- χεί το μηδέν του βερνιέρου και έτσι προσδιορίζουμε ότι το αντικείμενο έχει μήκος >11mm και < του 1mm Μετά βλέπουμε ποια υποδιαίρεση του βερνιέρου Αντιστοιχεί με κάποια της κλίμακας ακριβώς, εδώ είναι η η. Άρα το μήκος είναι 11mm+0,mm=11,mm 34

(β) γιατί μετράμε έτσι? Οι 10 υποδιαιρέσεις του βερνιέρου σε 9 της κλίμα- κας μια υποδιαίρεση βερνιέρου αντιστοιχεί στα 9/10 αυτής της κλίμακας. Επομένως υπολείπεται κατά το 1/10 από αυτή. Εδώ βλέπουμε ότι το αντικείμενο είναι μεταξύ 11 και 1 mm και ότι η η ένδειξη συμπί- πτει με τη κύρια κλίμακα, δηλ.. Χ(1/10)=/10=0. mm τελικό μήκος 11+0.=11. mm στο παράδειγμά μας 35

μικρόμετρο (0,01mm) Άσκηση Α6

(6, 6,50+ 0,15)=6,65 =6,65mm 6,00 mm 6,50 mm

Άσκηση Α5 : εξοικείωση με βασικούς νόμους, οργανολογίες και κυκλώματα ηλεκτρισμού ~0V + _ A V R Νόμος του Ohm Τροφοδ. Σχήμα 1 Νόμος Kirchoof ~0V Τροφοδ. + _ V Vο ~0V Σχήμα 4(α) (β) V V1 R 1 R Τροφοδ. V Vο V V R 1 R R 1 X Εκφόρτιση πυκνωτή ~0V Σχήμα 5 Τροφοδ. + _ C 1 r 1 V 38

Στατιστική Αβεβαιότητα (άσκηση Α1) ΠΑΡΑ ΕΙΓΜΑ: Καταγράφουμε την μέση θερμοκρασία σε χωριό της ορεινής Αρκαδίας στις 0 Ιανουαρίου κάθε χρόνο Αυτό το αποτέλεσμα έχουμε μετά από μερικά χρόνια π.χ. 70 Αυτό το αποτέλεσμα έχουμε για πρακτικά άπειρες καταγραφές. -10-5 0 5 10 ο C -10-5 0 5 10 Σύμφωνα με την στατιστική θεωρία, αν το φαινόμενο είναι πραγματικά τυχαίο, η οριακή κατανομή (μετά από άπειρες προσπάθειες) πουθαπροκύψειθαείναιηκατανομή Gauss ο C

Στατιστική Αβεβαιότητα P x e x 1 Κατανομή Gauss P xdx 1 μ: μέση τιμή σ: τυπική ή μέση τετραγωνική απόκλιση σ : διασπορά δx : σφάλμα μέσης τιμής x x N x N i1 x N x 1 i

Στατιστική Αβεβαιότητα Η απάντηση ( μ) ± ( σ) μας δίνει ότι πιθανότητα μια μέτρηση να μην αποκλίνει από την πραγματική τιμή είναι 68,3% Η απάντηση ( μ) ± ( σ) μας δίνει ότι πιθανότητα μια μέτρηση να μην αποκλίνει από την πραγματική τιμή είναι 95,4% ( μ) ± ( 3σ) 1,1675 Το πλάτος της καμπύλης Gauss στομισότουμέγιστου ύψους (FWHM) είναι: 99,7% ( μ) ± ( 4σ) 99,99%

Χρόνος «ζωής» λαμπτήρων πυρακτώσεως

μεγάλη διασπορά μικρή ακρίβεια Άγνωστη Πραγματική τιμή μεγάλη διασπορά μεγάλη ακρίβεια μικρή διασπορά μικρή ακρίβεια μικρή διασπορά μεγάλη ακρίβεια (το επιθυμητό) διασπορά και ακρίβεια η «άγνωστη» πραγματική τιμή

μη ακριβής με μικρή διασπορά ακριβής με μεγάλη διασπορά

46

δx= 0.1 m 1 m 10 m 50 m 47

Στατιστική Αβεβαιότητα από αριθμό μετρήσεων Έστω ότι μετρούμε Ν φορές την ίδια ποσότητα x και βρίσκουμε τις τιμές x i, όπου i=1,,, N. ίνουμε σαν απάντηση: ( τιμή) ± ( αβεβαιότητα): ( x) ( x) x 1 N i x x x N N i1 N x x i i 1 N 1 N Παράδειγμα

ΣΥΝΟΛΑ x N i1 N T(s) 1.14 1. 1.8 1.34 1.45 1.38 1.30 1.38 1.30 11.79 x x i N 1 T T i 0.17 0.09 0.03-0.03-0.14-0.07 0.01-0.07 0.01 0.00 Μετρούμε 9 φορές την περίοδο ενός εκκρεμούς και βρίσκουμε τα αποτελέσματα του Πίνακα (s) Τελικό T T i 0.089 0.0081 0.0009 0.0009 0.0196 0.0049 0.0001 0.0049 0.0001 0.0684 Αποτέλεσμα (s ) T T 1 N 11,79 9 i i max min s 9 i1 T 1,31s ( T T) 98 0.0684 0.0309s 0.03s 7 i 1 9 i T Τ±δΤ=(1.310.03) s i i max min 9 1 i

Κάποιος μετράει 6 φορές το μήκος αντικειμένου και βρίσκει (σε cm): 3.6 3.6 3.6 3.5 3.6 3.6 Αμέσως κάνει ότι μάθαμε παραπάνω, υπολογίζει μέση τιμή και σφάλμα μέσης τιμής: L 3.5833...cm L 0.017...cm Και δίνει σαν αποτέλεσμα: L 3.583 0.017 cm Αν όλες οι μετρήσεις έδιναν 3.6 cm ΛΑΘΟΣ! (πιθανό!) θα βρίσκαμε σφάλμα 0!!! Το μέτρο έχει αβεβαιότητα ανάγνωσης 0.1 cm. Δεν μπορούμε να αποφύγουμε την αβεβαιότητα αυτή. Πρέπει να δώσουμε αμέσως σαν αποτέλεσμα L=3.60.1 cm. Αν σε κάποια μέτρηση υπάρχουν περισσότερα από ένα, κρατάμε το μεγαλύτερο

Ελαχιστοποίηση Αβεβαιότητας (ή καλή πρακτική μετρήσεων) Πριν την εκτέλεση του πειράματος, σε κάθε βήμα, σκεφθείτε, εντοπίσετε και ιεραρχήσετε τα συστηματικά σφάλματα. Σκεφθείτε τρόπους ελαχιστοποίησης τους (πειραματικά ή θεωρητικά # ). Στο τέλος φροντίστε να δώσετε μια αντικειμενική εκτίμηση για τα πιο σημαντικά. Σε κάθε βήμα βρείτε ποια τυχαία σφάλματα υπεισέρχονται στις μετρήσεις. Για το σκοπό αυτό ελέγξτε: α) Ακρίβεια του οργάνου β) Το σφάλμα ανάγνωσης γ) Το σφάλμα μέσης τιμής (αν υπάρχει) (Τιμή ) ± ( Στατιστικό Σφάλμα) ± (Συστηματικό Σφάλμα)

Καλά Αποτελέσματα Η ορθή μέτρηση είναι αυτή που, δεδομένου κάποιου εξοπλισμού, δίνει αποτέλεσμα που συνοδεύεται από ρεαλιστική εκτίμηση των σφαλμάτων (αβεβαιότητας). Ο καλός επιστήμονας δίνει αποτελέσματα και τιμές αβεβαιότητας που μπορούν να επιβεβαιωθούν από άλλες παρόμοιες μετρήσεις. Ο άριστος επιστήμονας πετυχαίνει την ελαχιστοποίηση της αβεβαιότητας που χαρακτηρίζει τις μετρήσεις του. Ο κακός επιστήμονας δίνει εξωπραγματικά αποτελέσματα ή εξωπραγματικές τιμές αβεβαιότητας που χαρακτηρίζει τις μετρήσεις (Τιμή ) ± ( Στατιστικό Σφάλμα)

Εισαγωγή στην Πειραματική Μεθοδολογία ΘΕΜΑΤΑ ΙΑΛΕΞΕΩΝ Πειραματική Μέθοδος Μέτρηση και πειραματική αβεβαιότητα (Σφάλματα) Τύποι Σφαλμάτων (Συστηματικά και Στατιστικά) Σύγκριση θεωρίας και πειράματος Προετοιμασία και σχεδιασμός ενός πειράματος ιεξαγωγή Μετρήσεων Παρουσίαση Αποτελεσμάτων Το Εργαστήριο Φυσικής ιαδικασίες και κανονισμοί

Πειραματικό αποτέλεσμα: Μετρήσεις Ισοδύναμο με αποτέλεσμα μέτρησης. Πάντα χαρακτηρίζεται από κάποια αβεβαιότητα ή σφάλμα. Και πάντα από τις μονάδες μέτρησης! (Τιμή ) ± ( αβεβαιότητα) Ή ακόμη καλύτερα (Τιμή ) ± ( Στατιστικό Σφάλμα) ± (Συστηματικό Σφάλμα)

Παρουσίαση Αποτελεσμάτων Ποιος ο τρόπος γραφής των αποτελεσμάτων; Πόσα δεκαδικά ψηφία αποτυπώνουμε και με ποιους κανόνες (Στρογγυλοποίηση); Γραφικές Παραστάσεις

Τρόπος Γραφής Πειραματικού Αποτελέσματος [ Τιμή ± αβεβαιότητα ]x μονάδες G (6.673 0.011) 10 11 3 m kg 1 s [Τιμή ( αβεβαιότητα)]x μονάδες G 6.673 (11) 10 11 3 m kg 1 s x x G G 1.510 3 Απόλυτος αριθμός ή εκφράζεται σε ποσοστά

Ακρίβεια και οικονομία γραφής Ο τρόπος γραφής του αποτελέσματος διέπεται από αυστηρούς και ιδιαίτερα οικονομικούς κανόνες. Οι κανόνες αυτοί αποκαλούνται κανόνες στρογγυλοποίησης. ΠΑΡΑ ΕΙΓΜΑ: Ηπαγκόσμια σταθερά του Νεύτωνα. G G (6.673 0.011) 10 11 3 m kg 1 s Το πόσα ψηφία γράφονται είναι αποκαλυπτικό για την ακρίβεια της μέτρησης.

ΚΑΝΟΝΕΣ ΓΙΑ ΤΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ (SOS!) άσκηση Α1 Η ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΕΙΝΑΙ ΑΠΑΡΑΙΤΗΤΗ! ΑΡΧΙΖΟΥΜΕ ΣΤΡΟΓΓΥΛΟΠΟΙΩΝΤΑΣ ΤΟ ΣΦΑΛΜΑ ΚΑΤΑ ΤΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΤΟΥ ΣΦΑΛΜΑΤΟΣ ΚΡΑΤΑΜΕ 1 ΣΗΜΑΝΤΙΚΟ ΨΗΦΙΟ ΕΚΤΟΣ ΑΝ ΑΥΤΟ ΕΙΝΑΙ ΤΟ ΨΗΦΙΟ 1 ή. ΤΟΤΕ ΚΡΑΤΑΜΕ ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΣΤΡΟΓΓΥΛΟΠΟΙΟΥΜΕ ΤΗ ΜΕΣΗ ΤΙΜΗ, ΚΡΑΤΩΝΤΑΣ ΤΟΣΑ ΨΗΦΙΑ, ΟΣΑ ΕΙΝΑΙ ΤΑ ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ ΣΤΟ ΤΕΛΙΚΟ ΑΠΟΤΕΛΕΣΜΑ ΧΡΗΣΙΜΟΠΟΙΟΥΜΕ ΤΙΣ ΣΤΡΟΓΓΥΛΟΠΟΙΗΜΕΝΕΣ ΤΙΜΕΣ

Στρογγυλοποίηση Βρίσκουμε το σημαντικό ψηφίο που μας ενδιαφέρει Εξετάζουμε το αμέσως επόμενο Αν αυτό είναι >5 (ή ίσο με 5) αυξάνουμε το σημαντικό κατά μία μονάδα και παραλείπουμε τα υπόλοιπα Αν αυτό είναι < 5 αφήνουμε το σημαντικό όπως είναι και παραλείπουμε τα υπόλοιπα Χρησιμοποίηση των κανόνων στο παράδειγμα x 0.046333333... 0.05 x 7.68666666... 7.7 x 7.7 0.05

Άλλα παραδείγματα στρογγυλοποιήσεων x x 3.0319 0.048 0.017365 0.000387 13.8476 0.13856 156.45 47.33 3017563. 667.178 6.300 0.00715 x 0.04 0.0004 0.14 50 700 0.007 x 3.03 0.0174 13.85 160 3017600 6.300 x x 3.030.04 0.01740.0004 13.850.14 16050 3017600700 6.3000.007 Όσα αναφέραμε εδώ για τις στρογγυλοποιήσεις ισχύουν για όλα τα πειραματικά απο- τελέσματα και τα σφάλματα

ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ Ε ΟΜΕΝΩΝ Άσκηση Α Η γραφική παράσταση δεδομένων αποτελεί συνήθως τον πιο αποτελεσματικό τρόπο παρουσίασης των αποτελεσμάτων ενός πειράματος και της σύγκρισής του με θεωρητικές προβλέψεις. ΔΕΔΟΜΕΝΑ x Y δx δy 40 3.5 0.07 50 4.30 0.11 60 4.70 0.13 70 4.0 0.10 80 4.00 0.09

ΣΥΝΗΘΙΣΜΕΝΗ ΚΑΙ ΛΑΘΟΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ Κάθε σημείο σχεδιάζεται με μετην αβεβαιότητα που το τοσυνοδεύει Σχεδιάζουμε ομαλή καμπύλη, που να συνάδει με την θεωρία. εν αναμένουμε να περνά από τα πειραματικά σημεία

Γραφικές Παραστάσεις Επιπλέον σε όσα αναφέραμε ήδη για το σχεδιασμό τους ΔΕΔΟΜΕΝΑ x Y δx δy 40 3.5 0.07 50 4.30 0.11 60 4.70 0.13 70 4.0 0.10 80 4.00 0.09 Δεν γίνεται εκμετάλλευση όλου του χαρτιού

1. Οι διακεκομμένες γραμμές. Οι πειραματικές τιμές 3. Δεν γίνεται εκμετάλλευση όλου του χαρτιού Αυτή η γραφική παράσταση είναι ~ σωστή (x: από 35-85 καλύτερο) Το συνηθισμένο μέγεθος μιας γραφικής παράστασης είναι περίπου ½ σελίδα Α4

ύ ί K y x y ί K x 0.8 9.5 0.084 y=(4. y=(4.3-3.5)= 3.5)=0.8 x=(50-40.5)=9.5 κλίση στο x=45 65

Ημιλογαριθμικό χαρτί και γραφήματα Ο σωστός τρόπος παρουσίασης αποτελεσμάτων που έχουν μεγάλο δυναμικό εύρος ( ηλ. Οι τιμές που τα χαρακτηρίζει έχουν διακύμανση σε πολλές τάξεις μεγέθους)

10 +5=7

0 10 0 30 40 50 60 70 80 90 100 0.00 0.07 0. 0.09 0.08 4 100 40 860 400 6300 Σχεδιασμός καμπύλης σε απλό και ημιλογαριθμικό χαρτί. Η μικρότερη τιμή των y είναι 0.00, ενώ η μεγαλύτερη 6300. 4 3 1 0-1 - 10 3 10 4-3 68

ιάδοση Σφαλμάτων άσκηση Α1 και Α6 Σχολιάσαμε την μέτρηση ποσοτήτων και την απόδοση σε αυτές αβεβαιότητας (σφάλματος), τόσο στατιστικού όσο και συστηματικού. Λ.χ. την περίοδο κάποιου εκκρεμούς ή το μήκος κάποιου αντικειμένου. Πώς όμως προσδιορίζουμε την αβεβαιότητα σε ποσότητα που προκύπτει σαν παράγωγο μέγεθος άλλων μεγεθών; Λ.χ. Τι σφάλμα θα αποδώσουμε στην επιτάχυνση α, την οποία προσδιορίζουμε από την μέτρηση του χρόνου (t ± δt) και του μήκους (s ± δs)που υπεισέρχονται στον υπολογισμό της; a s t ΑΠΑΝΤΗΣΗ: Με τη μέθοδο ιάδοσης Σφαλμάτων

ιάδοση Σφαλμάτων (SOS) Έστω παράγωγο φυσικό μέγεθος u = f(x,y,z, ), όπου x,y,z, είναι οι άμεσα μετρούμενες ποσότητες. Έστω,,,... και x y z οι τιμές και τα σφάλματα αυτών των ποσοτήτων. Τότε θα έχουμε: x yz,,,... u f( x, y, z,...) u u x x y, z,... u y y x, z,.. u z z x, y,...... Το σύμβολο u x είναι η μερική παράγωγος y,z,.. του x, με y,z, σταθερές Στο αποτέλεσμα αυτών μπαίνουν οι μέσες τιμές

ΠΑΡΑΔΕΙΓΜΑ Α: Υπολογισμός της επιτάχυνσης σε ευθύγραμμη, ομαλά μεταβαλλόμενη κίνηση. a s t s =35.00.10 m, t =1.0 0.5 s a s t a a a s t s t t Μετά από πράξεις βρίσκουμε Τελικά (1.0) a a t a 0.488...m/s a 0.0407 m/s 0.49 0.04 m/s s 4s 4(35.) 3 3 t (1.0)

ΠΑΡΑΔΕΙΓΜΑ Β: Υπολογισμός της παραμέτρου k που δίνεται από τον τύπο: k k r k Μετρήσεις { 5 r cos 9 5 sin 9 k 0.4140766...cm r 0.0088...cm 0.800.0cm o o =3.0 1.0 k 5 k r sin 9 1rad 180 5 5 k sinr r cos 9 9 ΠΡΟΣΟΧΗ: Πάντα οι γωνίες σε ακτίνια! 0.41 0.009cm o

ιάδοση Σφαλμάτων: σχόλια Στηδιάδοσησφαλμάτωντοσφάλματηςκάθε μεταβλητής μπορεί να είναι διαφορετικό. Π.χ. Στο προηγούμενο παράδειγμα (το 1 ο ) το σφάλμα του s είναι σφάλμα ανάγνωσης, ενώ το σφάλμα του t είναι σφάλμα μέσης τιμής Ό εντοπισμός των πιο ευαίσθητων όρων, σε συνδυασμό με την αναμενόμενη πειραματική ακρίβεια στον προσδιορισμό των πρωτογενών μετρήσεων μας επιτρέπει να ελαχιστοποιήσουμε τόσο τη συστηματική όσο και την στατιστική αβεβαιότητα. Θα αξιοποιήσουμε την μέθοδο αυτή στο παράδειγμα που θα ακολουθήσει στην επιβεβαίωση του νόμου του Hooke.

ΠΕΙΡΑΜΑ: Τα 4 σημαντικά στάδια 1. Σχεδιασμός Πειράματος. Σχεδιασμός και υλοποίηση μέτρησης 3. Επεξεργασία δεδομένων 4. Παρουσίαση αποτελεσμάτων Θα τα σχολιάσουμε στην γενικότητα τους και θα τα εφαρμόσουμε στην επαλήθευση του νόμου του ΗΟΟΚΕ

1. Σχεδιασμός ΠΕΙΡΑΜΑ: Κατανόηση θεωρίας και κομβικών σημείων της, τα οποία θα επιλέξουμε για έλεγχο (επαλήθευση) Επιλογή εναλλακτικών μεθόδων προσέγγισης Επιλογή οργανολογίας (απαιτούμενη ακρίβεια, κόστος κλπ) [ Κατά κανόνα αυτό αποτελεί το πιο δύσκολο και το πιο ενδιαφέρον στάδιο. Στα διδακτικά εργαστήρια, αυτό αναγκαστικά θεωρείται δεδομένο έχει γίνει από κάποιον άλλον! ]

ΠΕΙΡΑΜΑ: 1. Σχεδιασμός Πειράματος. Σχεδιασμός και υλοποίηση μέτρησης Α. ΠΡΟΕΤΟΙΜΑΣΙΑ Κατανόηση μεθόδου Κατανόηση οργάνων Κατανόηση πηγής σφαλμάτων (και ελαχιστοποίησης τους) Προγραμματισμός μετρήσεων Αναμενόμενες τιμές Β. ΛΗΨΗ Ε ΟΜΕΝΩΝ Πρώτη επαλήθευση Επιβεβαίωση «δύσκολων» σημείων

1. Σχεδιασμός ΟΝόμοςτουHooke F kx

Φθίνουσα (με απόσβεση) ταλάντωση (μετρήσεις με αισθητήρες και Η/Υ ) Πείραμα του Cavendish (G) Y(t) Άσκηση Α4 Y=Y(V) V(t) σπειροειδής με κατάληξη το κέντρο dumped & long κέντρο dumped 78

Ο Νόμος του Hooke F kx F kx ma Νόμος προς διερεύνηση d x m dt d dt x k m x k m x( t) Acos( t )

Ο Νόμος του Hooke ) sin( ) cos( t A t dt d A dt dx ) cos( ) sin( t A t dt d A dt x d ) cos( ) ( t A t x k m T m k T f 1 1 m k

Ο Νόμος του Hooke F kx 1 T m k Οι δύο αυτές εξισώσεις (1) και () δίνουν δύο τρόπους εντελώς διαφορετικούς και ανεξάρτητους μεταξύ τους, προσδιορισμού της σταθεράς k του ελατηρίου και επιβεβαίωσης του Νόμου του Hooke.

Μέτρηση της σταθεράς k Μέθοδος Α: μετρώντας απόσταση και βάρος (mg) F kx k mg x Μέθοδος Β: μετρώντας μάζα και χρόνο T m 1 k m k T

x x k g g k m m k k ),, ( x g m f k x mg x F k kx F x mg k Αρχικά: Επεξεργασία - Α μέθοδος (ισορροπία) Υπολογισμός Υπολογισμός σφάλματος σφάλματος δk: με με τη τη «διάδοση διάδοση» σφάλματος σφάλματος

Επειδή, όλα μέσες τιμές Άρα, k g k m k mg,, m x g x x x g m mg k m g x x x x k mg x gm m g x k x m g x Σχετικό σφάλμα μέσης τιμής k k m m g g x x

1 T m k 3 f ( ) f 1 (, ) & ( ) T m k f mt m T T 4 T T m m T m k Επεξεργασία - Β μέθοδος (ταλαντώσεις) k 4 T T m m k k 1 m m k T T k k Σχετικό Σχετικό σφάλμα σφάλμα μέσης μέσης τιμής τιμής όλα όλα μέσες μέσες τιμές τιμές k

Σφάλματα στις μετρήσεις Σφάλματα ανάγνωσης και βαθμονόμησης Επίσης: g ± δg g = 9.807 ± 0.017 m/s Στατιστικά (τυχαία) Σφάλματα Συστηματικά Σφάλματα Σφάλματα ανάγνωσης και βαθμονόμησης και ακρίβειας οργάνων: Άλλα αίτια??

ΠΕΙΡΑΜΑ: Τα 4 σημαντικά στάδια 1. Σχεδιασμός Πειράματος. Σχεδιασμός και υλοποίηση μέτρησης 3. Επεξεργασία δεδομένων 4. Παρουσίαση αποτελεσμάτων Θα τα σχολιάσουμε στην γενικότητα τους και θα τα εφαρμόσουμε σε άσκηση του εργαστηρίου, την επαλήθευση του νόμου του ΗΟΟΚΕ.

ΠΕΙΡΑΜΑ: Ο ΝόμοςτουHooke Σχεδιασμός: Κατανόηση θεωρίας και κομβικών σημείων της, τα οποία θα επιλέξουμε για έλεγχο (επαλήθευση): Βρήκαμε δύο μεθόδους, τις σχέσεις στις προηγούμενες διαφάνειες. Επιλογή εναλλακτικών μεθόδων προσέγγισης Είτε την μέτρηση της επιμήκυνσης του ελατηρίου σαν συνάρτηση της εξασκούμενης δύναμης είτε με την μέτρηση της περιόδου Τ της ταλάντωσης σαν συνάρτηση της μάζας. Επιλογή οργανολογίας (απαιτούμενη ακρίβεια, κόστος κλπ) εν έχουμε απόλυτο κριτήριο ακρίβειας. Θα είχαμε αν είχαμε να διαχωρίσουμε ανάμεσα σε εναλλακτικές θεωρίες. Έχουμε κριτήριο κόστους. Η πρώτη μέθοδος απαιτεί μέτρηση δύναμης και μήκους η δε δεύτερη μάζας και χρόνου.

Κάποια Συστηματικά Σφάλματα Σφάλματα ανάγνωσης και βαθμονόμησης (σύνοψη αποτελεσμάτων της επίδειξης του προηγούμενου έτους) Το ελατήριο δεν είναι ιδανικό, έχει μάζα: m = 10.17 ± 0.0 g Επιβράδυνση της κίνησης λόγω τριβών στον αέρα Κίνηση «εκκρεμούς» πέραν της ταλάντωσης

Κάποια Στατιστικά (τυχαία) Σφάλματα Χρόνος αντίδρασης παρατηρητού στην εκκίνηση και σταμάτημα του χρονομέτρου Κρίση στην μέτρηση μήκους από μετροταινία

ΟΝόμοςτουHooke (μετρήσεις) Ακολουθεί σύνοψη και μερική επεξεργασία αποτελεσμάτων από τις μετρήσεις που έγιναν από φοιτητές σε άλλη Ακαδημαϊκή χρονιά.

x x g g m m k k 4 T T m m k k??? x g m?? T m Ισορροπία Ισορροπία Ταλάντωση Ταλάντωση Είδαμε Είδαμε:

Σφάλματα στις μετρήσεις Σφάλματα ανάγνωσης και βαθμονόμησης (Σύνοψη αποτελεσμάτων της επίδειξης του προηγούμενου έτους) m 0.810 3 g T 0.110 5 s x 0.0cm M 0 39.130.01g Επίσης: g ± δg = 9.807 ± 0.017 m/s

Πρωινό τμήμα Α μέθοδος (Ισορροπία) k mg x Μ F=m g x a x b x c x d x e <x> δ<x> (g) (N) (cm) (cm) (cm) (cm) (cm) (m) (cm) 1 39.13 0.384 4.8 4.7 4.7 4.7 4.8 0.47 0.055 59.13 0.580 49.0 49. 49.1 49.0 49.1 0.491 0.084 3 89.13 0.874 58.0 58.6 58.8 58.9 58.9 0.586 0.378 4 109.13 1.071 65.3 65.0 64.3 63.0 65.5 0.644 1.013 5 139.13 1.365 74.9 74.6 74.4 74.6 74.8 0.746 0.195

Πρωινό τμήμα Α μέθοδος (Ισορροπία) k mg x 1.4 1. 1.0 F (N) 0.8 0.6 0.4 0. 0.0 Χρειάζεται να σχεδιάσουμε την ευθεία που προσδιορίζουν τα δεδομένα μας και από την κλίση της να προσδιορίσουμε το k 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 x (m)

Επεξεργασία Μετρήσεων ΜΕΘΟ ΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Για μια πρώτη εκτίμηση, τις γραφικές παραστάσεις τις σχεδιάζουμε με το χέρι, προσπαθώντας να περάσουμε τη καμπύλη όσο καλύτερα γίνεται ανάμεσα στα σημεία. Η αντικειμενική και επιστημονική προσαρμογή, ηοποίαμας δίνει τη βέλτιστη καμπύλη ονομάζεται ΜΕΘΟ ΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Θα την δούμε (και θα την χρησιμοποιούμε) στην πιο απλή μορφή της, για την περίπτωση προσαρμογής ευθείας. (Στην γενική της μορφή, μπορεί να προσαρμόσει κάθε ομαλή μαθηματική συνάρτηση (παραβολή, ημιτονοειδή, εκθετική κ.τ.λ. )

ΜΕΘΟ ΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ( για προσαρμογή γραμμικής συνάρτησης) Έστω ότι έχουμε μετρήσει Ν ζεύγη τιμών x και y και βρήκαμε τις τιμές x i και y i, όπου i=1,,3, N. και ξέρουμε ότι τα x και y y A Bx συνδέονται με τη σχέση: Τότε μπορούμε να υπολογίσουμε τα Α και Β όπως και την αβεβαιότητα τους δα και δβ. Και να σχεδιάσουμε την ευθεία y = f(x) χρησιμοποιώντας τους τύπους:

ΜΕΘΟ ΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Μπορούμε να υπολογίσουμε τα Α και Β και να χαράξουμε την ευθεία y = f(x) χρησιμοποιώντας τους ακόλουθους τύπους. y A Bx A N N N N xi yi xi xy i i i1 i1 i1 i1 N N Nxi xi i1 i1 ( ) B N N N N ( xy) x y i i i i i1 i1 i1 N N Nxi xi i1 i1

Και Και για για τα τα σφάλματα σφάλματα των των Α και και Β (δα δα, δβ δβ) 1 1 y N N i i i i N B N x x 1 N Bx A y N i i i y 1 1 1 N i N i i N i i y x x N x A

(γραμμικός) συντελεστής συσχέτισης (linear*)) correlation factor r N N N N x y x y i i i i i1 i1 i1 N N N N xi xi yi yi i1 i1 i1 i1 (*) Pearson Corr. (Spearman s s rho, Kendall s tau_b)

κατακόρυφη απόκλιση =y i -y 3 x, y 4 κλί ση Δy Δx B 1 x 1, y 1 τεταγμένη=a y A B x

ΠΑΡΑ ΕΙΓΜΑ F a kx?a? k 0 o 6 i1 6 i1 x x i i 43 344.6 6 i1 6 i1 6 6 Nxi x i1 i1 a i y i xy i 105 i 869.5 18.6 N N N N x i yi x i xiyi i1 i1 i1 i1 0 N N Nxi xi i1 i1 ( ) N=6 5.515 N F (N) δf=1 N x (cm) δx=0.05 cm 5 3.5 10 5. 15 6.3 0 8.0 5 9.1 30 10.9

k N N N N ( x y ) x y i i i i i1 i1 i1 N N Nxi xi i1 i1 Σχεδιασμό ευθείας με τη μέθοδο ελαχίστων τετραγώνων: 1. Επιλέγουμε τους άξονες. Σχεδιάζουμε τα σημεία και τα σφάλματά τους 3. Χρησιμοποιώντας τα Α και Β που βρήκαμε δίνουμε τιμές στα x και βρίσκουμε τις αντίστοιχες τιμές του y από την εξίσωση. Με βάση τα αυτά σημεία σχεδιάζουμε την ευθεία 3.11N/cm a0 5.5 1.3 N y 1 A 1.3 N B 0.17 N/cm k 3.10.17 N/cm

Πρωινό τμήμα Α μέθοδος (Ισορροπία) k mg x 1.400 1.00 1.000 F (N) 0.800 0.600 0.400 0.00 y = 3.0951x k= - 0.9367 ( R ± =.. 0.9995 ) N/m 0.000 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 x (m)

Πρωινό τμήμα Β μέθοδος (Ταλάντωση) k m 1 T Μ 10 Ta 10 Tb 10 Tc 10 Td 10 Te <T> δ<t> (T/π) (kg) (s) (s) (s) (s) (s) (s) (s) (s ) 1 0.05913 8.05 7.98 8.83 8.1 9.14 0.8 0.1 0.07 0.08913 9.73 10.9 9.84 9.73 11.96 1.0 0.1 0.11 3 0.10913 10.83 11.96 11.57 10.83 14.14 1. 0.1 0.14 4 0.13913 1.19 13.00 1.11 1.30 17.8 1.3 0. 0.18

Πρωινό τμήμα Β μέθοδος (Ταλάντωση) k m 1 T (T/π) 0.0 0.18 0.16 0.14 0.1 0.10 0.08 0.06 0.04 0.0 0.00 y = 1.378x k= - 0.01 (.. R±.. = 0.9981 ) N/m 0.00 0.0 0.04 0.06 0.08 0.10 0.1 0.14 0.16 m (kg)

Απογευματινό τμήμα* Α μέθοδος (Ισορροπία) k mg x Μ F=m g x a x b x c x d x e <x> δ<x> (g) (N) (cm) (cm) (cm) (cm) (cm) (m) (cm) 1 39.13 0.384 43. 4.7 4.6 4.6 4.8 0.48 0.49 59.13 0.580 49. 49.1 49.1 49.1 49.3 0.49 0.17 3 89.13 0.874 59. 58.6 58.6 58.6 58.8 0.588 0.045 4 89.13 0.874 59. 58.6 58.6 58.6 58.8 0.588 0.045 5 109.13 1.071 61.8 61.7 61.7 61.8 61.9 0.618 0.084 6 139.13 1.365 74.8 74.7 74.9 74.4 74 0.746 0.415 (*) ύπνος

Απογευματινό τμήμα Α μέθοδος (Ισορροπία) k mg x 1.400 1.00 1.000 F (N) 0.800 0.600 0.400 0.00 y = 3.1563x k= - 0.961 R = 0.9863 (.. ±.. ) N/m 0.000 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 x (m)

Απογευματινό τμήμα Β μέθοδος (Ταλάντωση) k 1 m T Μ 10 Ta 10 Tb 10 Tc 10 Td 10 Te <T> δ<t> (T/π) (kg) (s) (s) (s) (s) (s) (s) (s) (s ) 1 0.03913 7.00 6.64 7.16 7.45 7.35 0.71 0.03 0.05 0.05913 7.10 8.10 8.11 8.10 8.14 0.79 0.05 0.06 3 0.08913 10.38 9.77 9.86 10.16 9.89 1.00 0.03 0.10 4 0.10913 11.3 10.38 11. 11.51 10.45 1.10 0.05 0.1 5 0.13913 1.89 1.6 1.4 1.11 1.45 1.4 0.03 0.16

Απογευματινό τμήμα Β μέθοδος (Ταλάντωση) k m 1 T (T/π) 0.0 0.18 0.16 0.14 0.1 0.10 0.08 0.06 0.04 0.0 0.00 y = 1.085x k= + 0.0047 R = 0.9937 ( ±. ) N/m 0.00 0.0 0.04 0.06 0.08 0.10 0.1 0.14 0.16 m (kg)

Παρουσίαση αποτελεσμάτων Γράφημα 1 (Ισορροπία) Συγκριτικά Γραφήματα Γράφημα (Ταλάντωση) F Τμ.1 Τμ. Μ Τμ.1 Τμ. (N) x (m) x (m) (kg) (T/π) (T/π) 0.384 0.47 0.48 0.03913 0.05 0.05 0.580 0.491 0.49 0.05913 0.07 0.06 0.874 0.586 0.588 0.08913 0.10 0.10 1.071 0.644 0.618 0.10913 0.1 0.1 1.365 0.746 0.746 0.13913 0.18 0.16

Ισορροπία y = 0.315x 0.33x + + 0.309 0.308 R = 0.9995 0.9863 Ταλάντωση y y = = 3.109x 3.17x - - 0.03 0.0101 R = 0.9981 0.9984 0.800 0.50 0.750 0.45 0.700 0.40 0.650 x (m) 0.600 (Τ/π) 0.35 0.30 0.550 0.500 0.5 0.450 0.0 0.400 0.300 0.500 0.700 0.900 1.100 1.300 1.500 0.15 0.05 0.07 0.09 0.11 0.13 0.15 F (N) m (kg) Τμ.1 Τμ. Linear (Τμ.1) Linear (Τμ.) Τμ.1 Τμ. Linear (Τμ.1) Linear (Τμ.)

Σύνοψη Αποτελεσμάτων ισορ. ταλάντ. ισορ. ταλάντ. απογευματινή ομάδα πρωινή ομάδα

Συμψηφισμός Πολλών Μετρήσεων ΑΥΤΗ Η ΜΕΘΟ ΟΣ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΟ ΑΝ ΕΧΟΥΜΕ ΥΠΟΛΟΓΙΣΕΙ ΤΟ Ι ΙΟ ΜΕΓΕΘΟΣ ΜΕ ΙΑΦΟΡΕΤΙΚΟΥΣ ΤΡΟΠΟΥΣ, Ή ΑΝ ΕΧΟΥΝ ΒΡΕΙ ΤΟ Ι ΙΟ ΜΕΓΕΘΟΣ ΜΕ ΜΕ ΤΟΝ Ι ΙΟ ΤΡΟΠΟ, ΙΑΦΟΡΟΙ ΕΡΕΥΝΗΤΕΣ. Έστω λοιπόν ότι μέτρησαν το ίδιο μέγεθος x, με Ν τρόπους (ή N ερευνητές) και βρήκαν τα αποτελέσματα: x x, i 1,,... N i i

Συμψηφισμός Πολλών Μετρήσεων Έστω λοιπόν ότι μέτρησαν το ίδιο μέγεθος x με Ν τρόπους (N ερευνητές) και βρήκαν τα αποτελέσματα: x x, i 1,,... N i i Τότε το κοινό αποτέλεσμα δίνεται από τον τύπους x N x w i i x i1 N 1 N w w i w i ( x) i i1 i1 1 Όπου

x N Συμψηφισμός Πολλών Μετρήσεων Για τις τέσσερεις μετρήσεις που πήραμε εφαρμόζοντας τους τύπους συμψηφισμού πολλών μετρήσεων : x w x i i i1 N N wi i1 i1 1 w i w i 1 ( x) k δk 3,077 0,015,90 0,09 3,16 0,1 3,74 0,1 «με μέσους όρους» έχουμε :. ± το κοινό αποτέλεσμα είναι: k= (3.083 ± 0.015 ) N/m ΠΡΟΣΟΧΗ: Η πλήρης παρουσίαση, που περιλαμβάνει και την ανάλυση της συστηματικής αβεβαιότητας, σας έχει ήδη δοθεί στο Φυλλάδιο του Εργαστηρίου

Σύνοψη Αποτελεσμάτων ΠΡΟΣΟΧΗ: Μόνο η στατιστική (τυχαία) αβεβαιότητα έχει ληφθεί υπόψη k= (3.083 ± 0.015 ) N/m

Σύνοψη βασικών εννοιών στη διαδικασία μέτρησης 118

119