ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 1: Περιγραφική Στατιστική Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 2
Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών 3
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Περιγραφή δεδομένων με πίνακες και γραφήματα, συνοπτικά μέτρα Περιγραφική Στατιστική 4
Perieqìmena Perigrafik statistik (Shmei seic: Kef. 1) EktÐmhsh paramètrwn (Shmei seic: Kef. 2) Susqètish, Palindrìmhsh (Shmei seic: Kef. 3) IstoselÐda maj matoc: http://users.auth.gr/dkugiu/teach/electricengineer/ http://alexander.ee.auth.gr:8083/ethmmy/
Eisagwgikˆ Bebaiìthta bèbaia fainìmena qr sh kajoristik n mejìdwn / montèlwn Pìsh ra kˆnei ènac podhlˆthc apì to èna sto ˆllo ˆkro thc Nèac ParalÐac JessalonÐkhc (3km), ìtan phgaðnei me stajer taqôthta 20km/h? Poia ja eðnai h jèsh thc ghc wc proc ton lio thn prwtoqroniˆ 2015-16? Abebaiìthta / tuqaiìthta abèbaia tuqaða fainìmena qr sh statistik n mejìdwn / montèlwn Pìsh ra kˆnei kˆpoioc th diadrom spðti PoluteqneÐo me pod lato / autokðnhto / lewforeðo? EÐnai akribèc to dromolìgio tou OSE gia Aj na JessalonÐkh? (p.q. InterCity 11.40 16.43)
ParadeÐgmata Poia eðnai h tˆsh diˆspashc enìc tôpou hlektrikoô kukl matoc? Se poio ìrio kaðgontai oi asfˆleiec 40 ampèr kˆpoiac etairðac paragwg c? Katanal noun perissìtero hlektrikì reôma oi katoikðec sthn pìlh A B? MporoÔn oi uperhqhtikèc metr seic na aniqneôsoun thn anˆptuxh tou embrôou? Pwc ja apant soume? = Statistik
DiadikasÐa Statistik c 1 Δειγματοληψία (sullog dedomènwn) 2 Perigrafik Statistik (perigraf / parousðash dedomènwn kai sunoptik n mètrwn) 3 Statistik SumperasmatologÐa Statistik (anˆlush statistik n dedomènwn kai ermhneða apotelesmˆtwn) Parˆdeigma: Katanˆlwsh hlektrikoô reômatoc 1 Sullègoume dedomèna katanˆlwshc hlektrikoô reômatoc apì 20 diamerðsmata sthn pìlh A kai 25 sthn pìlh B. 2 Blèpoume tic parathr seic (pðnakec, graf mata) kai upologðzoume kˆpoia mètra (p.q. mèso ìro). 3 Efarmìzoume statistikèc mejìdouc gia na ektim soume th mèsh katanˆlwsh hlektrikoô reômatoc stic dôo pìleic kai gia na elègxoume an upˆrqei shmantik diaforˆ. V V X
Qr simoi ìroi Statistik c tuqaða metablht (t.m.): opoiod pote qarakthristikì tou opoðou h tim allˆzei sta diˆfora stoiqeða tou plhjusmoô, π.χ. όριο τάσης ηλεκτρικού ρεύματος για ασφάλεια των 40 αμπέρ. dedomèna: èna sônolo tim n miac t.m. pou èqoume sth diˆjesh mac, π.χ. μετρήσεις του ορίου τάσης σε αυτές τις ασφάλειες. plhjusmìc: mia omˆda mia kathgorða sthn opoða anafèretai h t.m., π.χ. οι ασφάλειες των 40 αμπέρ μιας εταιρίας. deðgma: èna uposônolo tou plhjusmoô pou meletˆme, π.χ. 25 ασφάλειες των 40 αμπέρ της εταιρίας. parˆmetroc: èna mègejoc pou sunoyðzei me kˆpoio trìpo tic timèc thc t.m. ston plhjusmì, π.χ. η μέση τιμή του ορίου της τάσης ηλεκτρικού ρεύματος σε ασφάλειες των 40 αμπέρ. statistikì: èna mègejoc pou sunoyðzei me kˆpoio trìpo tic timèc thc t.m. sto deðgma, π.χ. ο μέσος όρος του ορίου της τάσης σε 25 τέτοιες ασφάλειες.
Pijanìthtec PijanojewrÐa TuqaÐa metablht t.m. X Sunˆrthsh puknìthtac pijanìthtac sunˆrthsh mˆzac pijanìthtac f X (x) Ajroistik sunˆrthsh katanom c F X (x) KÔriec parˆmetroi katanom c: Mèsh (prosdok menh) tim : E(X ) = µ Diasporˆ (diakômansh): Var(X ) = σ 2 Skopìc PijanojewrÐac gnwrðzoume katanom (paramètrouc) meletˆme thn t.m. Skopìc Statistik c gnwrðzoume timèc thc t.m. sumperˆsmata gia thn t.m.
Me bˆsh ta dedomèna jèloume na bgˆloume sumperˆsmata: apì deðgma gia plhjusmì apì statistikì gia parˆmetro Parˆmetroc: stajer ki ˆgnwsth Statistikì: metablhtì kai gnwstì DeÐgma: tuqaðo kai antiproswpeutikì tou plhjusmoô
PeÐrama: tuqaðo kai antiproswpeutikì deðgma? 1 Pˆre èna qartˆki me thn eikìna sto diplanì sq ma. 2 Diˆlexe tuqaðo kai antiproswpeutikì deðgma pènte kôklwn apì touc 60 tou plhjusmoô. 3 Upolìgise to mèso ìro twn aktðnwn twn 5 kôklwn kai grˆye to sto pðsw mèroc, p.q. 1 + 0.5 + 1.5 + 1 + 2.5 5 = 1.3
PERIGRAFIKH STATISTIKH Perigraf Statistik n dedomènwn 1. Diakekrimènec timèc (k kathgorðec lðgec arijmhtikèc timèc x i, i = 1,..., k, deðgma megèjouc n) Suqnìthtec suqnìthta emfˆnishc thc tim c x i, f i sqetik suqnìthta / posostì, p i = f i n ajroistik suqnìthta F i = i j=1 f j ìpou x j x i ajroistik sqetik suqnìthta P i = i j=1 p j ìpou x j x i ParousÐash suqnot twn gia ta x i : pðnaka suqnot twn: mia gramm gia kˆje tim, kˆje st lh eðnai ènac tôpoc suqnìthtac rabdìgramma: mia rˆbdoc gia th suqnìthta kˆje tim c kuklikì diˆgramma (pðta),...
Parˆdeigma: Παρτίδες ηλεκτρολογικών προϊόντων DÐnetai o arijmìc kubwtðwn se èna deðgma 120 partðdwn hlektrologik n proðìntwn se mia apoj kh. 1 4 2 2 2 3 4 3 1 1 3 3 1 2 1 2 1 1 2 3 3 5 1 2 2 3 2 1 1 4 3 4 1 1 6 2 1 3 2 1 2 2 3 2 4 3 3 5 1 3 5 3 1 2 2 3 1 2 6 4 1 2 5 4 3 1 2 4 2 1 3 4 2 2 2 3 2 1 3 3 4 2 1 5 2 2 3 3 2 4 6 3 2 3 1 3 2 1 5 1 1 4 4 2 5 4 2 2 4 2 1 2 2 2 3 2 3 2 1 4
Parˆdeigma (sunèqeia) Πίνακας συχνοτήτων x i f i p i F i P i 1 28 0.23 28 0.23 2 39 0.33 67 0.56 3 27 0.23 94 0.78 4 16 0.13 110 0.92 5 7 0.06 117 0.97 6 3 0.03 120 1.00 'Ajroisma 120 1.00 Rabdìgramma συχνoτητα 40 35 30 25 20 15 10 5 0 ραβδoγραμμα παρτιδων 1 2 3 4 5 6 αριθμoς παρτιδων
2. Arijmhtikèc timèc (πολλές διακεκριμένες τιμές, τιμές σε διάστημα) OmadopoÐhsh QwrÐzoume ta dedomèna se k omˆdec pðnakec / graf mata ìpwc prin gia tic k timèc (omˆdec) Qwrismìc se omˆdec: (Ðdio eôroc tim n r se kˆje omˆda) EÔroc dedomènwn: R = x max x min R/k r To pr to diˆsthma prèpei na perièqei to x min To teleutaðo diˆsthma prèpei na perièqei to x max Rabdìgramma (en nontac tic pleurèc) istìgramma 'Alla graf mata: fullogrˆfhma, shmeiogrˆfhma,...
Jèma 1 Prosdiorismìc arijmoô omˆdwn eôroc diast matoc istogrˆmmatoc (number of bins or bin width): Mèjodoi kai periorismoð. Jèma 2 Fullogrˆfhma (stem and leaf plot): ParousÐash, pleonekt mata kai parˆdeigma.
Parˆdeigma: Χρόνος ζωής μπαταριών αυτοκινήτου Metr jhke o qrìnoc zw c mpatari n autokin tou se dôo deðgmata apì dôo etairðec A kai B. A/A etairða A etairða B 1 5.3 5.0 2 4.5 4.2 3 5.7 5.4 4 5.8 5.5 5 4.8 4.6 6 6.4 6.1 7 6.4 6.1 8 5.6 5.3 9 5.8 5.5 10 5.7 5.4 11 5.5 5.2 12 6.1 5.8 13 5.2 4.9 14 7.0 6.7 15 5.5 5.2 16 5.7 5.4 17 6.3 6.0 18 5.6 5.3 19 5.5 5.2 20 5.0 4.8 21 5.8 22 4.7 23 6.1 24 6.7 25 5.1 SÔnolo 141.8 107.6
Parˆdeigma (sunèqeia) X qrìnoc zw c mpatarðac autokin tou thc etairðac A Qwrismìc se omˆdec x min = 4.5 x max = 7.0 R = x max x min = 7.0 4.5 = 2.5 Dialègoume na qwrðsoume ta dedomèna se 10 omˆdec (k = 10) r = R k = 2.5 10 = 0.25 Dialègoume h pr th omˆda (diˆsthma) na arqðzei apì thn tim 4.5 ksi omˆda 1: 4.50 4.75 omˆda 2: 4.75 5.00... omˆda 10: 6.75 7.00 H teleutaða omˆda perilambˆnei to x max = 7.0
Parˆdeigma (sunèqeia) PÐnakac suqnot twn Diˆsthma tim n f i p i F i P i 4.50 4.75 2 0.08 2 0.08 4.75 5.00 2 0.08 4 0.16 5.00 5.25 2 0.08 6 0.24 5.25 5.50 4 0.16 10 0.40 5.50 5.75 5 0.20 15 0.60 5.75 6.00 3 0.12 18 0.72 6.00 6.25 2 0.08 20 0.80 6.25 6.50 3 0.12 23 0.92 6.50 6.75 1 0.04 24 0.96 6.75 7.00 1 0.04 25 1.00 'Ajroisma 25 1.00
Parˆdeigma (sunèqeia) Istìgramma 6 Iστoγραμμα ζωης μπαταριας εταιριας A 5 συχνoτητα 4 3 2 1 0 4 4.5 5 5.5 6 6.5 7 ευρoς MporoÔme na deqtoôme ìti h X akoloujeð kˆpoia gnwst katanom? EÐnai shmantikì gia thn statistik anˆlush na eðnai h katanom kanonik
Mètra jèshc Mètra metablhtìthtac mètra jèshc: prosdiorðzoun qarakthristikèc jèseic mèsa sto eôroc twn dedomènwn mètra metablhtìthtac: dðnoun perilhptikˆ th diaskìrpish kai metablhtìthta twn dedomènwn x 1, x 2,..., x n : parathr seic tou deðgmatoc
Mètra jèshc Mètra jèshc Mètra metablhtìthtac deigmatik mèsh tim arijmhtikìc mèsoc mèsoc ìroc x = x 1 + x 2 + + x n = 1 n x i n n i=1 H mèsh tim eðnai to kèntro isorropðac twn dedomènwn
Mètra jèshc Mètra jèshc Mètra metablhtìthtac deigmatik diˆmesoc EÐnai h kentrik tim ìtan diatˆxoume ta dedomèna se aôxousa seirˆ { x(n+1)/2 n = 2k + 1 x = x n/2 +x n/2+1 2 n = 2k p.q. deðgma x 1 x 2 x 3 x = x 2 p.q. deðgma x 1 x 2 x 3 x 4 x = x 2+x 3 2 deigmatik epikratoôsa tim EÐnai h tim pou emfanðzetai me th megalôterh suqnìthta
Mètra jèshc Mètra jèshc Mètra metablhtìthtac Parathr seic: x eðnai to pio shmantikì mètro kai apoteleð ektðmhsh tou µ gia ton upologismì tou x qrhsimopoioôntai ìlec oi parathr seic, gia th diˆmeso mìno h tˆxh touc to x ephreˆzetai apì makrinèc timèc, h diˆmesoc ìqi Jèma 3 To sunoptikì mètro tou perikommènou mèsou (trimmed mean): ParousÐash, idiìthtec kai parˆdeigma.
Mètra metablhtìthtac Mètra jèshc Mètra metablhtìthtac H metablhtìthta diasporˆ twn parathr sewn eðnai èna deôtero shmantikì qarakthristikì tou deðgmatoc Ta kuriìtera mètra diasporˆc eðnai: deigmatikì eôroc R Den eðnai anjektikì mètro kai upologðzetai mìno apì tic dôo akraðec timèc
Mètra metablhtìthtac Mètra jèshc Mètra metablhtìthtac deigmatik diasporˆ deigmatik diakômansh s 2 Metrˆei th metablhtìthta twn parathr sewn gôrw apì th mèsh tim. Apìklish miac x i apì th mèsh tim : x i x To ˆjroisma ìlwn twn apoklðsewn eðnai 0! n n n (x i x) = x i x = n x n x = 0 i=1 Gi autì qrhsimopoioôme ta tetrˆgwna twn apoklðsewn s 2 = 1 n (x i x) 2 X n 1 i=1 ( n ) isodônama s 2 = 1 xi 2 n x 2 V n 1 i=1 i=1 i=1
Mètra metablhtìthtac Mètra jèshc Mètra metablhtìthtac DÔskolo na ermhneôsoume th deigmatik diasporˆ s 2 deigmatik tupik apìklish s H deigmatik tupik apìklish s eðnai pio katˆllhlo mètro giatð epidèqetai fusik ermhneða Jèma 4 To sunoptikì mètro thc diˆmeshc apìluthc apìklishc (median absolute deviation, MAD): ParousÐash, idiìthtec kai parˆdeigma. p-ekatostiaða shmeða p-ekatostiaðo shmeðo: posostì parathr sewn to polô p% eðnai mikrìterec ap' aut n thn parat rhsh (0 p < 1) H diˆmesoc eðnai to 50-ekatostiaÐo shmeðo
Mètra metablhtìthtac Mètra jèshc Mètra metablhtìthtac Qarakthristikˆ ekatostiaða shmeða eðnai ta tetartomìria pr to kat tero tetartomìrio Q 1 : to 25-ekatostiaÐo shmeðo trðto an tero tetartomìrio Q 3 : to 75-ekatostiaÐo shmeðo Q 1 kai Q 3 orðzontai ìpwc h diˆmesoc allˆ periorðzontac to sônolo twn dedomènwn sta antðstoiqa uposônola (kat tero an tero misì).
Mètra metablhtìthtac Mètra jèshc Mètra metablhtìthtac endotetartomoriakì eôroc I I = Q 3 Q 1 eðnai to eôroc pou kalôptoun ta misˆ apì ta dedomèna pou eðnai pio kontˆ diˆmeso sônoyh twn 5 arijm n - jhkìgramma Sunj kec gia apodoq kanonik c katanom c apì jhkìgramma x ìqi kontˆ sto Q 1 sto Q 3 to eôroc twn tim n sta dôo akraða tetartomìria na mh diafèrei shmantikˆ na mhn upˆrqoun akraðec timèc
Mètra jèshc Mètra metablhtìthtac Parˆdeigma: περιεκτικότητα σε ραδιενέργεια του χάλυβα DÐnetai h periektikìthta se radienèrgeia tou qˆluba se 10 dokðmia apì èna ergostˆsio A A/A ergostˆsio A ergostˆsio B 1 0.40 0.11 2 0.51 0.13 3 0.51 0.26 4 0.54 0.27 5 0.55 0.33 6 0.59 0.37 7 0.63 0.52 8 0.67 0.65 9 0.75 10 2.10 SÔnolo 7.25 2.64
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac deigmatik mèsh tim : deigmatik diˆmesoc: x = 1 10 x = x n/2 + x n/2+1 2 10 i=1 x i = 7.25 10 = 0.725 = x 5 + x 6 2 = 0.55 + 0.59 2 = 0.57 eôroc tim n deðgmatoc: x min = 0.40 x max = 2.10 R = 1.70 deigmatik diasporˆ (Pr ta to ˆjroisma tetrag nwn) 10 xi 2 = 0.40 2 + 0.51 2 + + 0.75 2 + 2.10 2 = 7.44 i=1 ( 10 s 2 = 1 9 ) xi 2 10 x 2 = 1 ( 7.44 10 0.725 2 ) = 0.243 9 i=1
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac deigmatik tupik apìklish s = s 2 = 0.243 = 0.493 tetartomìria Θηκoγραμμα περιεκτικoτητας ραδιενεργειας 2 endotetartomoriakì eôroc I = Q 3 Q 1 = 0.67 0.51 = 0.16 Jhkìgramma 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 1
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac 'Estw ìti h akraða tim ofeðletai se sfˆlma mètrhshc (den eðnai pragmatik ) Apaloif akraðac tim c ( 9 parathr seic) δειγματική μέση τιμή x = 5.15 9 = 0.572 δειγματική διάμεσος x = x (n+1)/2 ( = x 5 = 0.55 Διασπορά s 2 = 1 8 5.15 9 0.572 2 = 0.010 Τυπική απόκλιση s = 0.010 = 0.10 Ελάχιστη τιμή x min = 0.40 Μέγιστη τιμή x max = 0.75 Εύρος R = 0.75 0.40 = 0.35 Πρώτο τεταρτομόριο (διάμεσος των {x 1,..., x 5 }) Q 1 = x 3 = 0.51 Τρίτο τεταρτομόριο (διάμεσος των {x 5,..., x 9 }) Q 3 = x 7 = 0.63 Ενδοτεταρτομοριακό εύρος I = 0.63 0.51 = 0.12
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac Θηκoγραμμα περιεκτικoτητας ραδιενεργειας 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 1
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac SÔgkrish periektikìthtac radienèrgeiac se qˆluba apì dôo ergostˆsia Μέτρο X 1 X 2 Μέση τιμή x 1 = 0.572 x 2 = 0.33 Διάμεσος x 1 = 0.55 x 2 = 0.30 Διασπορά s1 2 = 0.010 s2 2 = 0.034 Τυπική απόκλιση s 1 = 0.10 s 2 = 0.18 Ελάχιστη τιμή x 1,min = 0.40 x 2,min = 0.11 Μέγιστη τιμή x 1,max = 0.75 x 1,max = 0.65 Εύρος R 1 = 0.35 R 2 = 0.54 Πρώτο τεταρτομόριο Q 1,1 = 0.51 Q 2,1 = 0.195 Τρίτο τεταρτομόριο Q 1,3 = 0.63 Q 2,3 = 0.445 Ενδοτεταρ. εύρος I 1 = 0.12 I 2 = 0.250
Parˆdeigma (sunèqeia) Mètra jèshc Mètra metablhtìthtac Θηκoγραμμα περιεκτικoτητας ραδιενεργειας, A και B 0.7 0.6 0.5 0.4 0.3 0.2 0.1 X_1 X_2 EÐnai h katanom Ðdia? EÐnai h diasporˆ Ðdia? EÐnai h mèsh tim Ðdia?
Mètra jèshc Mètra metablhtìthtac 'Askhsh 'Eginan 15 metr seic thc sugkèntrwshc dialumènou oxugìnou (D.O.) se èna potˆmi (se mg/l) 1.8 2.0 2.1 1.7 1.2 2.3 2.5 2.9 1.6 2.2 2.3 1.8 2.4 1.6 1.9 1 UpologÐste ta mètra jèshc kai metablhtìthtac gia ta dedomèna tou deðgmatoc kai sqhmatðste to katˆllhlo jhkìgramma. 2 Sqoliˆste an faðnetai h sugkèntrwsh D.O. sto nerì tou potamoô na akoloujeð kanonik katanom.
Σημείωμα Αναφοράς Copyright Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Κουγιουμτζής Δημήτρης. «Θεωρία Πιθανοτήτων και Στατιστική. Περιγραφική Στατιστική». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs252/. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/ Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Καρανάσιος Αναστάσιος Θεσσαλονίκη, Μάιος 2015
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα
Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Πιθανοτήτων και Στατιστική Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών