Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Σχετικά έγγραφα
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Θέματα υπολογισμού στον πολιτισμό

Ορατότητα σε απλά πολύγωνα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων 11η Διάλεξη

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

χ(k n ) = n χ(c 5 ) = 3

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Θεωρία Γραφημάτων 10η Διάλεξη

Φροντιστήριο 11 Λύσεις

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης

Θεωρία Γραφημάτων 8η Διάλεξη

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Π(n) : 1 + a + + a n = αν+1 1

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

E(G) 2(k 1) = 2k 3.

y(p) = 0 y(p) = 0 y(p) = 0

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 9 η Διάλεξη Χρωματισμός γράφων Θεωρήματα Τεχνικές Εφαρμογές

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος ΙΙ)

Χρωματισμός γραφημάτων

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Σειρά Προβλημάτων 5 Λύσεις

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατανεμημένα Συστήματα Ι

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2012

Σειρά Προβλημάτων 1 Λύσεις

Επίπεδα Γραφήματα (planar graphs)

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος Ι)

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα

1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα;

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

... a b c d. b d a c


n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

P G = 1 2 (x x 3 2 ) 2 [(y 1 + y y n ) 6 + (y y y 2 n ) 3 ] 2 (n6 + n 3 ) = n3 (n 3 + 1)

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Το πρόβλημα του σταθερού γάμου

ΧΡΩΜΑΤΙΣΜΟΣ ΓΡΑΦΗΜΑΤΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

Διμερή γραφήματα και ταιριάσματα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

1.2 ΓΩΝΙΑ ΒΑΣΙΚΑ ΕΠΙΠΕ Α ΣΧΗΜΑΤΑ

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Εργοστάσιο Ανακύκλωσης

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Εισαγωγή στους Αλγορίθμους

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Σειρά Προβλημάτων 5 Λύσεις

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

A) στην 2 Β) στην 3 Γ) στην 4 Δ) στην 8 E) στην 16

Βασικές Έννοιες Θεωρίας Γραφημάτων

Σ 1, Σ 2... Σ N p 1, p 2,... p N k 1, k 2... k n

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΤΗ ΔΙΕΘΝΗ ΦΟΙΤΗΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑ Α

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διάλεξη #07

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Σημειωματάριο Δευτέρας 4 Δεκ. 2017

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Αλγόριθμοι και Πολυπλοκότητα

u v 4 w G 2 G 1 u v w x y z 4

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

Κατανεμημένα Συστήματα Ι

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

ΠΙΘΑΝΟΤΗΤΕΣ - ΑΣΚΗΣΕΙΣ

ΕΦΑΡΜΟΓΗ ΕΠΑΥΞΗΜΕΝΗΣ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ ΓΙΑ ΔΙΑΔΡΑΣΤΙΚΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΜΟΝΤΕΛΩΝ CAD

Θεωρία Γραφημάτων 6η Διάλεξη

Μεταπτυχιακή εργασία ειδίκευσης

Μεταβλητες: Q, NSW, V, T, SA, WA, NT. Πεδίο Ορισμού: Για κάθε μεταβλητη το ίδιο. D i ={R, G, B} όπου i= Q, NSW,., NT.

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Transcript:

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε ποια σημεία πρέπει να τοποθετηθούν οι κάμερες; Ποιος είναι ο ελάχιστος απαιτούμενος αριθμός καμερών ώστε να είναι προστατευμένες οι καλλιτεχνικές;

Ιστορικό Το 1973, ο Victor Klee ασχολήθηκε με το εξής πρόβλημα: Υποθέτουμε ότι διαθέτουμε μια πινακοθήκη της οποίας η κάτοψη μπορεί να αναπαρασταθεί από ένα πολύγωνο με n κορυφές Ποιος είναι ο ελάχιστος αριθμός στατικών φυλάκων που απαιτούνται για την προστασία της αίθουσας;

Το θεώρημα της πινακοθήκης Το 1975, ο Vasek Chvatal έλυσε το πρόβλημα του Klee χρησιμοποιώνταςτοεξήςθεώρημα: Απαιτούνται περιστασιακά [n/3] φύλακες οι οποίοι πάντα είναι αρκετοί για να καλύψουν ένα πολύγωνο με n κορυφές

Αποδείξεις Ο Chvatal έδωσε την πρώτη απόδειξη για το θεώρημά του το 1975 η οποία ήταν λεπτομερής και χρησιμοποιούσε επαγωγή Το 1978 ο Steve Fisk έδωσε μια αρκετά απλούστερη απόδειξη που θα παρουσιάσουμε στη συνέχεια η οποία βασιζόταν στη διαίρεση του πολυγώνου σε τρίγωνα με χρήση διαγωνίων

Διαγώνιος απλού πολυγώνου P Κάθε ευθύγραμμο τμήμα μεταξύ δύο μη γειτονικών κορυφών του P που βρίσκεται πλήρως εντός του P όχι ναι

Πιθανά πολύγωνα (πινακοθήκες)

Διαχωρισμός σε τρίγωνα Αρχικά, διαχωρίζουμε το πολύγωνο σε τρίγωνα και οι κορυφές του πολυγώνου γίνονται κορυφές των τριγώνων κάποιες κορυφές ανήκουν σε παραπάνω από ένα τρίγωνα Προσέχουμε οι ακμές που προσθέτουμε να μην τέμνονται ούτε να βγαίνουν έξω από το περίγραμμα του πολυγώνου επιτυγχάνεται με πολλούς τρόπους

Παράδειγμα τριγωνοποίησης πολυγώνου

3 χρωματισμός Στη συνέχεια, εφαρμόζουμε θεώρημα σύμφωνα με το οποίο οι κορυφές κάθε τριγωνοποιημένου πολυγώνου μπορούν να χρωματιστούν με 3 χρώματα Χρησιμοποιώντας μόνο κόκκινο, μπλε και πράσινο μπορούμε να χρωματίσουμε όλες τις κορυφές του πολυγώνου έτσι ώστε γειτονικές κορυφές να μη λαμβάνουν το ίδιο χρώμα Αν η διαδικασία γίνει σωστά, κάθε τρίγωνο καταλήγει με μία κορυφή από κάθε χρώμα

Τοποθέτηση φυλάκων Διαλέγουμε ένα από τα χρώματα και τοποθετούμε φύλακα σε όσες κορυφές έχουν το χρώμα αυτό Σε ένα σχήμα με n κορυφές, όπου το n δε διαιρείται ακριβώςμετο3, όλα τα χρώματα δε θα έχουν ίδιο πλήθος κορυφών Μας ενδιαφέρει ο ελάχιστος αριθμός φυλάκων που πρέπει να τοποθετήσουμε, οπότε επιλέγουμε ένα χρώμα με ελάχιστο αριθμό κορυφών

Λύση του προβλήματος Αφού κάθε τρίγωνο έχει κάθε χρώμα στις 3 κορυφές του, γνωρίζουμε ότι οι φύλακες, αν τοποθετηθούν στις κορυφές ενός δοσμένου χρώματος, θα μπορούν να βλέπουν κάθε τρίγωνο, συλλογικά Αφού κάθε τρίγωνο είναι προστατευμένο, το συνολικό πολύγωνο είναι επίσης προστατευμένο Άρα, ένα πολύγωνο με n κορυφές μπορεί να προστατευτεί από [n/3] φύλακες

Το 1980, οι Kahn, Klawe, και Kleitman απέδειξαν ότι ο αριθμός των φυλάκων που απαιτούνται και επαρκούν γιατηνπροστασίαενός παραλληλόγραμμου πολυγώνου με n κορυφές είναι [n/4] Παραλλαγές (Ι)

Παραλλαγές (ΙΙ) Το 1982, ο Shermer εξέτασε μια πιο ρεαλιστική κάτοψη πινακοθήκης Η αίθουσα περιείχε εμπόδια, τα οποία αναπαράστησε με οπές Έλυσε το πρόβλημα για n κορυφές και h οπές

Εφαρμογές Οι λύσεις που έχουν προταθεί για το Πρόβλημα της Πινακοθήκης έχουν αποτελέσει στρατηγικές για τη βελτίωση πολλών προβλημάτων (φυσικής) ασφάλειας Για παράδειγμα: σεποιασημείασεμια πανεπιστημιούπολη είναι καλύτερο να τοποθετηθούν φύλακες και πόσοι απαιτούνται;

Το πρόβλημα της πινακοθήκης Πόσες κάμερες απαιτούνται για την εποπτεία της πινακοθήκης; Πώς πρέπει να τοποθετηθούν;

Απλό μοντέλο πολυγώνου Αναπαριστούμε την πινακοθήκη σαν περιοχή περιορισμένη από κάποιο απλό κυρτό πολύγωνο Δεν επιτρέπονται περιοχές με ασυνέχειες (οπές) Πρόβλημα: η εύρεση του ελάχιστου αριθμού καμερών για δοσμένοπολύγωνοείναιnp hard (εκθετικός χρόνος) Κυρτό πολύγωνο Μία κάμερα Αυθαίρετοπολύγωνομεn γωνο

Τριγωνοποίηση (triangulation) Αποσυνθέτουμε το πολύγωνο σε κομμάτια που είναι εύκολο να τα εποπτεύσουμε Προσθέτουμε διαγωνίους μεταξύ ζευγών κορυφών Ανοιχτά ευθύγραμμα τμήματα που συνδέουν δύο κορυφές και βρίσκονται στο εσωτερικό του πολυγώνου Τριγωνοποίηση: διαχωρισμός ενός πολυγώνου σε τρίγωνα μέσω μέγιστου συνόλου μη τεμνόμενων διαγωνίων Εποπτεύουμε το πολύγωνο τοποθετώντας μία κάμερα σε κάθε τρίγωνο

Αριθμός τριγώνων (Ι) Θεώρημα: Κάθε απλό πολύγωνο έχει μια τριγωνοποίηση Κάθε τριγωνοποίηση απλού πολυγώνου με n κορυφές περιέχει ακριβώς n 2 τρίγωνα Απόδειξη (με επαγωγή) Βασική περίπτωση: n = 3. Επαγωγική υπόθεση: έστω ότι η δήλωση είναι αληθής για κάθε m < n. Επαγωγικό βήμα: έστω v η αριστερότερη κορυφή και u, w οι δύο γειτονικές της uw είναι εντός του P είναι διαγώνιος Διαφορετικά, το τρίγωνο που ορίζεται από τις u, v, w περιέχει τουλάχιστον μία κορυφή Έστω v ηπλησιέστερηστηv Τότε vv είναι διαγώνιος Η διαγώνιος χωρίζει το πολύγωνο σε δύο (που τριγωνοποιούνται λόγω της επαγωγής)

Αριθμός τριγώνων (ΙΙ) Θεώρημα: Κάθε απλό πολύγωνο έχει μια τριγωνοποίηση Κάθε τριγωνοποίηση απλού πολυγώνου με n κορυφές περιέχει ακριβώς n 2 τρίγωνα Απόδειξη Κάθε διαγώνιος χωρίζει το P σε δύο απλά πολύγωνα με k και m κορυφές, αντίστοιχα Λόγω επαγωγής, τα δύο αυτά πολύγωνα τριγωνοποιούνται Αποσυντίθενται σε k 2 και m 2 τρίγωνα, αντίστοιχα. Οι κορυφές που ορίζουν τη διαγώνιο εμφανίζονται μία φορά σε κάθε πολύγωνο Οι υπόλοιπες κορυφές του P εμφανίζονται η κάθε μία ακριβώς σε ένα υποπολύγωνο Επομένως k + m = n + 2 Από επαγωγή, η τριγωνοποίηση του P έχει (k 2) + (m 2) = n 2 τρίγωνα

Αριθμός καμερών για την πινακοθήκη Αποδείξαμε ότι n 2 κάμερες μπορούν να εποπτεύσουν ένα απλό πολύγωνο Μια κάμερα σε διαγώνιο εποπτεύει δύο τρίγωνα ο αριθμός των καμερών μπορεί να μειωθεί σε περίπου n/2 Μια κορυφή ανήκει σε πολλά τρίγωνα η τοποθέτηση καμερών σε κορυφές δίνει ακόμα καλύτερα αποτελέσματα

3 χρωματισμός Ιδέα: Διαλέγουμε ένα σύνολο κορυφών, έτσι ώστε κάθε τρίγωνο να έχει τουλάχιστον μία κορυφή του στο σύνολο αυτό Αναθέτουμε σε κάθε κορυφή ένα χρώμα: ροζ, πράσινο, ή κίτρινο Κορυφές που συνδέονται με ακμή ή με διαγώνιο πρέπει να λάβουν διαφορετικά χρώματα Επομένως οι κορυφές κάθε τριγώνου θα έχουν 3 διαφορετικά χρώματα Αν υπάρχει 3 χρωματισμός, τοποθετούμε κάμερες σε όλες τις κορυφές ίδιου χρώματος Επιλέγουμε τη μικρότερη χρωματική κλάση για την τοποθέτηση καμερών n/3 κάμερες

Το δυικό γράφημα (Ι)

Το δυικό γράφημα (ΙΙ) Το δυικό γράφημα G έχει μία κορυφή μέσα σε κάθε τρίγωνο και ακμή μεταξύ ζεύγους κορυφών των οποίων τα αντίστοιχα τρίγωνα έχουν κοινή κάποια διαγώνιο το G είναι συνεκτικό Κάθε διαγώνιος κόβει το πολύγωνο σε δύο Κάθε διαγώνιος αντιστοιχεί σε ακμή στο δυικό γράφημα Απομάκρυνση οποιασδήποτε ακμής από το δυικό γράφημα το κάνει μη συνεκτικό το δυικό γράφημα είναι δέντρο

Αλγόριθμος για 3 χρωματισμό Βρίσκουμε έναν 3 χρωματισμό διασχίζοντας το γράφημα (π.χ., με DFS) Κατά το DFS, πρέπει: Όλες οι κορυφές του πολυγώνου σε τρίγωνα που έχουμε ήδη συναντήσει χρωματίζονται ώστε γειτονικές κορυφές να μην έχουν το ίδιο χρώμα Ξεκινάμε DFS σε κάποια κορυφή του G Χρωματίζουμε τις 3 κορυφές του αντίστοιχου τριγώνου Έστω ότι πάμε στη v από τη u τα τρίγωνά τους T(v) και T(u) είναι γειτονικά Μόνο μια κορυφή του T(v) δεν χρωματίζεται το χρώμα της καθορίζεται μονοσήμαντα Αφού το G είναι δέντρο, δεν έχουμε επισκεφθεί ακόμα τις άλλες γειτονικές κορυφές της v αλλιώς υπάρχει κύκλος (αντίφαση αφού το G είναι δέντρο) Δίνουμε το χρώμα στην v

Μια κακή περίπτωση Ένα τριγωνοποιημένο πολύγωνο είναι πάντα 3 χρωματίσιμο Κάθε απλό πολύγωνο μπορεί να φυλαχθεί με n/3 κάμερες Δεν υπάρχει θέση που να μπορεί μια κάμερα να εποπτεύσει δύο ακίδες n/3 κάμερες είναι αναγκαίες Η προσέγγιση του 3 χρωματισμού είναι βέλτιστη στη χειρότερη περίπτωση n/3 ακίδες

Ηλύση Γιααπλόπολύγωνομεnκορυφές, n/3 κάμερες αρκούν ώστε κάθε εσωτερικό σημείο να είναι ορατό από τουλάχιστον μία από τις κάμερες αυτές Λύση στο πρόβλημα της πινακοθήκης 1. Τριγωνοποίηση απλού πολυγώνου με έναν γρήγορο αλγόριθμο 2. Παραγωγή ενός 3 χρωματισμού με DFS 3. Τοποθέτηση καμερών σύμφωνα με τη μικρότερη χρωματική κλάση

Chvătal 1975, Fisk 1978 n/3 φύλακες είναι πάντα επαρκείς και μερικές φορές αναγκαίοι για την παρακολούθηση ενός απλού πολυγώνου με n κορυφές Απόδειξη: Αναγκαιότητα:

Chvătal 1975, Fisk 1978 n/3 φύλακες είναι πάντα επαρκείς και μερικές φορές αναγκαίοι για την παρακολούθηση ενός απλού πολυγώνου με n κορυφές Απόδειξη: Επάρκεια: T = τριγωνοποίηση του πολυγώνου 3 χρωματισμός των κορυφών του T (ώστε οι κορυφές κάθε τριγώνου να λαμβάνουν 3 διαφορετικά χρώματα) Αυτό γίνεται αν διασχίσουμε με DFS το δυικό δέντρο του T Επιλογή του λιγότερο χρησιμοποιούμενου χρώματος (αυθαίρετηεπιλογήσεπερίπτωση ισοπαλίας) Τοποθέτηση φύλακα στις κορυφές με το επιλεγμένο χρώμα (Κάθε τρίγωνο έχει φύλακα)