Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.
|
|
- Ανάργυρος Γερμανού
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M #(Υποσυνόλων με 2 στοιχεία ( #(Διατεταγμένων υποσυνόλων με 2 στοιχεία Πχ M Μπάλες μπιλιάρδου {1, 2,, 15} P (M #(Υποσυνόλων με 3 μπάλες ( ! 12!3! ! #(Διατεταγμένων υποσυνόλων με 3 μπάλες π 1 π 2 Κανόνες αθροίσματος και γινομένου Παραδείγματα Κανόνων Ορ Πείραμα: Διαδικασία με συγκεκριμένο (αριθμήσιμο σύνολο δυνατών / παρατηρήσιμων αποτελεσμάτων Πχ Ρίψη νομίσματος, ζαριού επιλογή υποσυνόλου Εστω πειράματα με m και n δυνατά αποτελέσματα αντίστοιχα Θεώρ [Κανόνας Γινομένου] Αν γίνουν και τα 2 πειράματα, υπάρχουν m n δυνατά αποτελέσματα Θεώρ [Κανόνας αθροίσματος] Αν γίνει ακριβώς ένα εκ των 2 πειραμάτων, δηλ είτε το πρώτο πείραμα είτε το δεύτερο, τότε υπάρχουν ακριβώς m n δυνατά αποτελέσματα Πχ M {A, B, C} #(Διατεταγμένων υποσυνόλων 2 στοιχείων #(επιλογών 1 ης θέσης #(επιλογών 2 ης θέσης3 26 Πχ 15 μπάλες 7μονόχρωμες 7δίχρωμες 1μαύρη (Γινόμενο #(Επιλογών μίας μονόχρωμης και μίας δίχρωμης (Άθροισμα #(Επιλογών μπάλας εκτός της μαύρης π 3 π 4
2 Μεταθέσεις (Διατάξεις χωρίς επανάληψη Απαρίθμηση Διατάξεων Εστω n αριθμημένες μπάλες, n αριθμημένα κουτιά Σε κάθε κουτί το πολύ 1 μπάλα #τοποθετήσεων n(n 1 2 1n! Ισούται με το πλήθος μεταθέσεων n αριθμών Θεώρ r αριθμημένες μπάλες, n αριθμημένα κουτιά, n r: P (n, r : #τοποθετήσεων n(n 1 (n r 1 n! (n r! Απόδ 2 πειράματα: τοποθέτηση r και n r αριθμημ μπαλών Οι n r έχουν (n r! τοποθετήσεις σε n r κουτιά n! τοποθετήσεις P (n, r(n r! (κανόνας γινομένου π 5 π 6 Μεταθέσεις: ισοδύναμες περιγραφές Παράδειγμα μεταθέσεων Θ Εστω r αριθμημένες μπάλες, n αριθμημένα κουτιά, n r: #τοποθετήσεων n(n 1 (n r 1 n! (n r! : P (n, r Πχ Ισοδύναμα, P (n, r μεταθέσεις σε r αριθμημένες θέσεις από n διαφορετικά αντικείμενα, n r Ισούται με το πλήθος μεταθέσεων r αριθμών από {1,, n} r-άδες διαφορετικών στοιχείων A A A r, A n Πχ r 2μπάλες σε n 3κουτιά με P (3, 2 3! 6 τρόπους: [a b ], [b a ], [a b], [b a], [ a b], [ b a] π 7 π 8
3 Παράδειγμα μεταθέσεων Πχ Δεν είναι μετάθεση Δεκαδικοί αριθμοί με ακριβώς τέσσερα ψηφία που δεν ξεκινούν από μηδέν: Πχ Είναι μετάθεση Τετραψήφιοι δεκαδικοί αριθμοί, χωρίς επαναλαμβανόμενα ψηφία και να μην ξεκινούν από Μεταθέσεις 4 από 1 αντικείμενα P (1, 4 1! 6! 54 xyz P (9, 3 9! 6! 54 Με τον κανόνα του αθροίσματος: P (1, 4 xyz µxyz Διατάξεις με επανάληψη Θέλουμε να τοποθετήσουμε r αριθμημένες μπάλες σε n αριθμημένα κουτιά Κάθε κουτί επιτρέπεται να πάρει πάνω από μία μπάλα r, n υπάρχουν n r διαφορετικοί τρόποι τοποθέτησης Ισοδύναμα, τρόποι διάταξης r αντικειμένων (σε r αριθμημένες θέσεις από n είδη (αντικείμενα με επανάληψη r άδες στοιχείων A A A r : A n, επιλογή με επανάληψη Πχ ΠΡΟΠΟ: 14 αγώνες, 3δυνατά αποτελέσματα (1, 2, Χ Ολες οι δυνατές στήλες (αποτελέσματα είναι 3 14 π 8 π 9 Παραδείγματα Διατάξεων Πχ #(Δυαδικές ακολουθίες με r ψηφία 2 r Πχ #(Δυαδικές ακολουθίες r ψηφίων με άρτιο πλήθος από 1 Υπάρχουν 2 r 1 δυαδικές ακολουθίες με r 1 ψηφία Κατασκεύασε μια 1-1 και επί απεικόνιση από το σύνολο των δυαδικών ακολουθιών r 1 ψηφίων στο σύνολο των δυαδικών ακολουθιών r ψηφίων με άρτιο πλήθος από 1 (Πώς; Επεται πως τα δύο σύνολα έχουν τον ίδιο αριθμό στοιχείων Εφαρμογή στη Θεωρία Κωδίκων Μεταδίδουμε ένα δυαδικό μήνυμα Κάποια ψηφία αλλοιώνονται κατά τη μετάδοση, το 1 αλλάζει σε και αντιστρόφως Θέλουμε αναγνώριση σφάλματος (error detection, να ξέρουμε δηλαδή πότε το μήνυμα που παραλήφθηκε έχει λάθη, χωρίς να χρειαστεί να συγκρίνουμε με το αρχικό μήνυμα Μηνύματα a {, 1} r 1 Ο αποστολέας θέτει r-οστό ψηφίο 1ανν ο αριθμός των άσων στο a είναι περιττός Ο παραλήπτης μπορεί να ανιχνεύσει την ύπαρξη ενός λάθους (ή γενικότερα περιττού αριθμού λαθών (Γιατί; π 1 π 11
4 Παράδειγμα Διατάξεων Πλήθος υποσυνόλων Πχ Ακολουθίες με r ψηφία {, 1, 2, 3, 4} Πόσες έχουν άρτιο πλήθος από 1; 3 r περιέχουν μόνο {2, 3, 4} δηλ άσους Χωρίζουμε τις υπόλοιπες 5 r 3 r ακολουθίες σε ομάδες ως προς τις θέσεις των 2, 3, 4 Πχ x2xx4x32x, x {, 1} Σε κάθε ομάδα, οι μισές ακολουθίες έχουν άρτιο αριθμό από 1 και οι άλλες μισές περιττό (βλ β Άρα 1 2 (5r 3 r ακολουθίες με άρτιο #(1 Πχ Τρόποι επιλογής υποσυνόλων του A, A r Παλαιά απόδειξη με επαγωγή ως προς r Εναλλακτικά: Τοποθετήσεις των στοιχείων του A σε 2 κουτιά: ΕΝΤΟΣ, ΕΚΤΟΣ 2 r Εναλλακτικά: Επιλογή (s 1,, s r S S S r με επανάληψη, όπου S {, 1}, s i 1 i υποσύνολο 3 r 1 2 (5r 3 r 1 2 (5r 3 r με άρτιο πλήθος από 1 Πχ r (5 3 4, r2 1 2 ( π 12 π 13 Μεταθέσεις Συνδυασμοί Συνδυασμοί Μέχρι τώρα ασχοληθήκαμε με μεταθέσεις ή διατάξεις με επάναληψη Μας ενδιέφερε όχι μόνο ποια αντικείμενα επιλέγουμε αλλά και σε ποια σειρά τα διατάσσουμε αφού τα επιλέξουμε Αναγκαία συνθήκη ήταν τα αντικείμενα να είναι διακεκριμένα Στους συνδυασμούς μας ενδιαφέρει με πόσους δυνατούς τρόπους μπορούμε να επιλέξουμε κάποια αντικείμενα από ένα ευρύτερο σύνολο, χωρίς να μετράμε τις διαφορετικές διατάξεις των επιλεγμένων αντικειμένων π 14 π 15
5 Συνδυασμοί Συνδυαστικές ταυτότητες r μπάλες ίδιου χρώματος, n αριθμημένα κουτιά, r n, σε κάθε κουτί 1 μπάλα: #τοποθετήσεων P (n, r r! n! r!(n r! : ( n : C(n, r r διότι r! διατάξεις των μπαλών είναι ίδιες (κανόνας γινομένου Ισοδύναμα, Επιλέγουμε (χωρίς σειρά r από n διαφορετικά αντικείμενα r θέσεις χωρίς σειρά, n διαφορετικά αντικείμενα, r n, επιλέγουμε ένα αντικείμενο για κάθε θέση Χωρίς σειρά δεν πρόκειται για επιλογές στο A A Μια παράσταση της μορφής r ονομάζεται διωνυμικός συντελεστής r n! r!(n r! n r δηλ C(n, r C(n, n r ( n 1 n r :, r > n, r < π 16 π 17 Συνδυαστικές ταυτότητες (συνέχεια ( 1 ( ( n Απόδειξη: (! ( 1!(n! (!!(n 1! (! ( 1 ( 1!(n 1! (! n ( 1!(n 1! (n n 1 Συνδυαστικές ταυτότητες (συνέχεια ( 1 ( ( n Απόδειξη: (! ( 1!(n! (!!(n 1! (! ( 1 ( 1!(n 1! (! n ( 1!(n 1! (n n 1 Δώστε μια εναλλακτική «συνδυαστική» απόδειξη! π 18 π 18
6 Παράδειγμα Δυαδικές ακολουθίες μήκους 32 με επτά 1 Ακολουθία τοποθέτηση 7 μπαλών σε 32 αριθμ κουτιά Δηλ r 7,n 32, τα άδεια κουτιά αντιστοιχούν σε #ακολουθιών C(32, 7 Ισοδύναμα, επιλογή 7 θέσεων για τα 1, από n 32 Θεώρ 2 n n Απόδ Με επαγωγή στο n Βήμα: n ( n 1 Επιλογές υποσυνόλου n(n 1! (n (n 1!! (n 1! (n 1!!(n (1 n 1 ( n 1 1 n 2 ( n 1 ( n π 19 π 2 Επιλογές υποσυνόλου Επιλογές υποσυνόλου Θεώρ 2 n n Θεώρ 2 n n Απόδ Με επαγωγή στο n Βήμα: n ( n 1 n(n 1! (n (n 1!! (n 1! (n 1!!(n (1 n 1 ( n 1 1 n 2 ( n 1 ( n Δώστε εναλλακτική συνδυαστική απόδειξη! Απόδ Εστω Α σύνολο με n στοιχεία Ο αριθμός υποσυνόλων του A με ακριβώς στοιχεία είναι ( n Από τον κανόνα του αθροίσματος ο αριθμός όλων των δυνατών υποσυνόλων του A είναι n ( n Γνωρίζουμε επίσης πως ο αριθμός όλων των υποσυνόλων του A είναι 2 n π 2 π 21
7 Διωνυμικό θεώρημα Διωνυμικό θεώρημα Θεώρ (x y n n x y n Θεώρ (x y n n x y n Απόδ Επαγωγικά: π 22 Απόδ Επαγωγικά: (επίσης με συνδυαστικά επιχειρήματα αν x, y N ( n 1 (x y n (x y x y 1 x 1 y x n 1 n 1 1 n ( n x y n x y n [ 1 1 ( n 1 x y n 1 ] y n 1 π 22 Μεταθέσεις - Συνδυασμοί Αναγραμματισμοί r χρωματισμένες μπάλες, n αριθμημένα κουτιά, r n και 1 μπάλα ανά κουτί: #τοποθετήσεων P (n, r Εστω από τις r μπάλες οι q 1 έχουν το ίδιο χρώμα, πχ μπλε Αριθμός τοποθετήσεων: P (n, r q 1! n! q 1!(n r! Για μία λέξη : a 1 a μπορούμε να κάνουμε! αναγραμματισμούς στην περίπτωση που όλα τα σύμβολα a 1,, a είναι διαφορετικά Στην περίτπτωση που πχ, a 1 a 2 έχουμε!/2 Γενικεύοντας: όταν q 1 σύμβολα είναι b 1 {a 1,, a }, q 2 σύμβολα είναι b 2 {a 1,, a } κοκ με t i1 q i έχουμε!/q 1! q t! αναγραμματισμούς Άλλες q 2 μπάλες με ίδιο χρώμα, πχ κόκκινο Αριθμός τοποθετήσεων: P (n, r n! q 1!q 2! q 1!q 2!(n r! π 23 π 24
8 Μεταθέσεις - Συνδυασμοί Γενικά, αν από τις r μπάλες q i 1 είναι του ίδιου τύπου i, i 1,,, t, και τις τοποθετήσουμε σε n αριθμημένα κουτιά με το πολύ μία μπάλα στο κάθε κουτί: #τοποθετήσεων P (n, r q 1! q t! Ορισμός «πολυωνυμικού» συντελεστή ( n 1, 2,, l n! 1! 2! l! αν l i1 i n αλλιώς Με βάση τον ορισμό του «πολυωνυμικού» συντελεστή, μπορούμε να ξαναγράψουμε την προηγούμενη σχέση π 25 π 26 Μεταθέσεις - Συνδυασμοί «Πολυωνυμικό» θεώρημα Εστω από τις r μπάλες q i 1 είναι του ίδιου τύπου i, i 1,,, t, δηλ r t i1 q i Θέτουμε y t i1 q i Τοποθετούμε τις μπάλες σε n αριθμημένα κουτιά με το πολύ μία μπάλα στο κάθε κουτί: ( P (n, r #τοποθετήσεων q 1! q t! n q 1,, q t, 1, 1,, 1, n r } {{ } r y φορές Θεώρ n N, (x 1 x n n 1,,n N: n 1 n n ( n n 1,, n x n1 1 xn Απόδ Δεν θα το αποδείξουμε 2 διωνυμικό θεώρημα με n 1,n 2 n 1 π 27 π 28
9 Παράδειγμα Συνδυασμοί με επανάληψη 15 γραφεία στον νέο όροφο του κτηρίου Πληροφορικής, 12 βάφονται: 3πράσινα, 2ιώδη, 2κίτρινα, 5λευκά Πόσοι τρόποι βαφής υπάρχουν; Οσοι κι οι τρόποι τοποθέτησης 12 μπαλών (3 πράσινες κλπ σε 15 αριθμημένα κουτιά, άρα P (15, 12 3!2!2!5! ( , 2, 2, 5, 3 Πχ 4 γραφεία, 2πράσινα, 1ιώδες: ( 4 2,1,1 12: , , , , , Θεώρ r όμοιες μπάλες, n αριθμημένα κουτιά, r, n, ( n r 1 οσεσδήποτε μπάλες ανά κουτί: #τοποθετήσεων r Απόδ Πείραμα: τοποθέτηση n 1 διαχωριστικών σε r στοιχεία, δηλ διαλέγω n 1 διαχωριστικά από n 1r αντικείμενα, άρα C(n r 1,n 1 C(n r 1,r Ισοδύναμα: επιλογές r αντικειμένων από n είδη με επανάληψη, {x Z n,x i, i x i r} C(n r 1,r π 29 π 3 Παραδείγματα Συνδυασμοί με επανάληψη χωρίς κενά Πχ Κορώνα ή γράμματα με 3 νομίσματα: 3r, n 2 αποτελέσματα (κουτιά #αποτελεσμάτων ( :3Κ, 2Κ-Γ, Κ-2Γ, 3Γ Πχ 3 ζάρια, #αποτελεσμάτων ( ! 3!5! ! 56 ΟΧΙ: 6 3 γιατί (η σειρά δεν μας αφορά Θεώρ r όμοιες μπάλες, n αριθμημένα κουτιά, τουλάχιστον 1 μπάλα ανά κουτί (r n : ( r 1 #τοποθετήσεων n 1 Απόδ y i μπάλες στο κουτί i, βρες {y Z n,y i >, i y i r} Θέτω y i x i 1, ισοδύναμα, βρες #{x i } Ομως x i, i x i n i y i r n Προηγ θεώρ #{x i } C(n (r n 1,n 1 Ισοδύναμα, επιλογές r αντικειμένων από n είδη με επανάληψη, κάθε είδος επιλέγεται τουλάχιστον μία φορά π 31 π 32
10 Άσκηση Άσκησης Συνέχεια 5 διαφορετικά άτομα σε σειρά 12 καρεκλών (αριθμ: 1ος Τρόπος: Μεταθέσεις 5(καρέκλες εκ των 12 αντικειμένων (καρεκλών, δηλ, διατεταγμένες 5-άδες A 5 : A 12: P (12, 5 12! 7! Η θέση υποδηλώνει άτομο 2ος Τρόπος: Μεταθέσεις 12 αντικειμένων με 6 τύπους (5 για τα άτομα, 1για άδεια: q 1 q 5 1,q 6 7: ( 12 1,1,1,1,1,7 12! 7! 954 Η θέση υποδηλώνει καρέκλα 3ος Τρόπος: 5! διατάξεις ατόμων: A 1 A 2 A 3 A 4 A 5 2ο πείραμα: 7καρέκλες σε 6 κενά, δηλ 7όμοιες μπάλες σε 6 αριθμημένα κουτιά, χωρίς περιορισμό ανά κουτί: C(12, 7 Κανόνας Γινομένου 5! C(12, 7 5! 7!5! 12! 12! 7! 4ος Τρόπος: Επιλέγω τις 7 άδειες καρέκλες με C(12, 7 τρόπους, διατάσσω τα άτομα με 5! τρόπους Κανόνας Γινομένου 5! C(12, 7 π 33 5 διαφορετικά άτομα σε σειρά 12 καρεκλών (αριθμ, αλλά να ΜΗΝ υπάρχουν 2 διπλανά άτομα 5! διατάξεις ατόμων για A 1 KA 2 KA 3 KA 4 KA 5, απομένουν 3 καρέκλες: τοποθέτηση 3 καρεκλών (όμοιες μπάλες σε 6 κενά (αριθμημένα κουτιά με C(8, 3 τρόπους 5! 3!5! 8! 8! 3! 672 Επιπλέον, απαιτούμε να υπάρχουν άτομα στις 2 ακραίες καρέκλες: 5! διατάξεις ατόμων για A 1 A 2 A 3 A 4 A 5, απομένουν 3 καρέκλες σε 4 κενά με C(6, 3 τρόπους 5! 6! 3!3! 24 π 34 Σύνοψη n! (n r! r P (n, r, r n n r, r, n C(n, r Ασκήσεις n!/r 1! r t!(n r!, r r 1 r t n C(n r 1,r, r, n C(r 1,n 1, r n Πρέπει να ξέρουμε σε ποια σενάρια αντιστοιχεί η κάθε μία σχέση Εχουμε διάταξη ή συνδυασμό; Επιτρέπεται επανάληψη ή όχι των στοιχείων; π 35 π 36
11 Παράδειγμα Αρχή εγκλεισμού/αποκλεισμού Υπόθ 1 7 ημέρες, καθεμιά αντιστοιχεί σε 1 μάθημα, Υπόθ 2 4μαθήματα, πρέπει να μελετηθούν όλα Πόσα Προγράμματα υπάρχουν; Λύση: 4 7 A 1 A 4, όπου και A i : {Προγράμματα χωρίς μάθημα i}, i 1, 2, 3, 4 A i 3 7, A i A j 2 7, A i A j A A 1 A 4, από Υπόθ 1 Εγκλεισμός / Αποκλεισμός: A 1 A ( ( ΑΠΑΝΤΗΣΗ: A 1 A n A 1 A n A 1 A 2 A 1 A 3 A A n A 1 A 2 A 3 ( 1 J 2 [n] J j J A j ( 1 n A 1 A n n 1 ( 11 1 i 1< <i n A i 1 A i Σημειώστε πως J [n] : {1,, n} & J π 37 π 38 Παράδειγμα Υπόθ 1 7 ημέρες, καθεμιά αντιστοιχεί σε 1 μάθημα, Υπόθ 2 4μαθήματα, πρέπει να μελετηθούν όλα Πόσα Προγράμματα υπάρχουν; Άλλη απόπειρα: 1 Διάλεξε τέσσερεις από τις επτά ημέρες {1, 2, 3, 4, 5, 6, 7} για να προγραμματίσεις τέσσερα μαθήματα A, B, C, D P (7, 4 τρόποι 2 Διάλεξε τρία μαθήματα για τις υπόλοιπες τρεις ημέρες 4 3 τρόποι Άρα συνολικά P (7, τρόποι; ΛΑΘΟΣ!! Προγράμματα όπως το [ 1, 2, 5, 7, A, B, C ] έχει μετρηθεί πάνω από μία φορά (πράγματι : [ 3, 4, 6, 7, A, B, C ] Κανόνας του Γινομένου και Παράδειγμα Το λάθος που παρουσιάζει ο προηγούμενος συλλογισμός είναι ότι όπως εφαρμόσαμε τον κανόνα του γινομένου μετράμε ζεύγη της μορφής [ f 1,f 2,f 3,f 4, X, Y, Z ] όπου f 1,f 2,f 3,f 4 μετάθεση μήκους 4 από 7 στοιχεία και A, B, C μετάθεση μήκους 3 από 7 στοιχεία με επανάληψη Το πρόβλημα του συλλογισμού είναι ότι υποθέτει ότι υπάρχει μια αμφιμονοσήμαντη αντιστοιχία μεταξύ τέτοιων ζευγών και προγραμμάτων Στην πραγματικότητα (και όπως είδαμε με το αντιπαράδειγμα τα ζεύγη είναι πολύ περισσότερα π 39 π 4
12 Κυρτότητα Ορ Ενα αντικείμενο I λέγεται κυρτό αν κάθε ευθύγραμμο τμήμα που ενώνει 2 σημεία του I κείται ολόκληρο στο εσωτερικό του αντικειμένου Παράδειγμα Κυρτό 1-γωνο στο επίπεδο (πχ κανονικό 1-γωνο, διαγώνιοι σε γενική θέση δηλ τριάδα ΔΕΝ τέμνεται Πόσα ευθύγραμμα τμήματα ορίζονται πάνω στις διαγωνίους; ( 1 2 τμήματα μεταξύ 2 κορυφών 45 (1 ακμές 35 διαγώνιοι Κυρτό Μη-κυρτό Υπολογίζουμε πρώτα το συνολικό αριθμό εσωτερικών σημείων τομής των διαγωνίων (ζεύγη διαγωνίων που τέμνονται σε κορυφή δεν ορίζουν τομή Σε κάθε τετράδα κορυφών αντιστοιχίζεται ένα διαφορετικό σημείο τομής και αντιστρόφως (γιατί; ( τομές π 41 π 42 Παράδειγμα (συνέχεια Συνολικά 21 τομές σε 35 διαγώνιους i τομές στην i-οστή διαγώνιο ορίζουν i 1τμήματα, i σταθ αριθμός τμημάτων 35 i1 ( i 1 35 i1 i (κάθε σημείο τομής ανήκει σε 2 ακριβώς διαγωνίους Άσκηση Με πόσους τρόπους τοποθετούνται κόκκινες και l λευκές μπάλες σε n αριθμημένα κουτιά, ώστε κάθε κουτί να περιέχει τουλάχιστον μια κόκκινη και μια λευκή μπάλα; Υποθέτουμε πως n, l n, αλλιώς η απάντηση είναι Με 1 τρόπο τοποθετώ n κόκκινες και n λευκές μπάλες Απομένουν n κόκκινες και l n λευκές μπάλες, που τοποθετούνται αυθαίρετα, άρα το πλήθος τοποθετήσεων είναι ( ( ( ( n ( n 1 n (l n 1 1 l 1 n l n n l n Ισοδύναμα: τοποθετούνται κόκκινες μπάλες στα n κουτιά με 1 μπάλα ανά κουτί και ομοίως οι λευκές Κανόνας γινομένου: ( ( 1 l 1 n 1 n 1 π 43 π 44
13 Άσκηση (α r διαφορετικές μπάλες τοποθετούνται σε n διαφορετικά κουτιά Σε κάθε κουτί, οι μπάλες βρίσκονται σε μια σειρά Πόσοι τρόποι υπάρχουν; Οταν έχουμε τοποθετήσει μπάλες υπάρχουν n τρόποι να τοποθετήσουμε την επόμενη, άρα n(n 1 (n r 2(n r 1 (β Με πόσους τρόπους διατάσσονται τα 8 γράμματα a, b, c, d, e, f, g, h ώστε το a να βρίσκεται αριστερά του b και το b αριστερά του c; Η διάταξη a b c ορίζει n 4κουτιά όπου τοποθετούμε, διατεταγμένα, τα υπόλοιπα r 5γράμματα Από το (α έχουμε π 45
P(n, r) = n r. (n r)! n r. n+r 1
Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων
Διαβάστε περισσότεραΔιατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή
Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;
Διαβάστε περισσότεραGutenberg
Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,
Διαβάστε περισσότερα(n + r 1)! (n 1)! (n 1)!
Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:
Διαβάστε περισσότερα[Rosen, κεϕ. 6] Γιάννης Εµίϱης. Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ
Απαϱίϑµηση [Rosen, κεϕ. 6] Γιάννης Εµίϱης Τµήµα Πληϱοϕοϱικής & Τηλεπικοινωνιών, ΕΚΠΑ Νοέµϐϱιος 2018 Πεϱιεχόµενα Βασικές έννοιες απαϱίϑµησης Η αϱχή του πεϱιστεϱώνα Μεταϑέσεις και Συνδυασµοί ιωνυµικοί Συντελεστές
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διαβάστε περισσότεραn ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα
Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:
Διαβάστε περισσότεραΠεριεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα
Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραα n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
Διαβάστε περισσότεραΑπαρίθμηση: Εισαγωγικά στοιχεία
Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΣυνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές
Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)
Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου
Διαβάστε περισσότεραΔιακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1
Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές
Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις
1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραHY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα
Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών
Διαβάστε περισσότεραP(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!
Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός
Διαβάστε περισσότεραΣυνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017
HY118-Διακριτά Μαθηματικά Πέμπτη, 27/4/2017 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων
Διαβάστε περισσότεραΛύσεις 1ης Ομάδας Ασκήσεων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,
Διαβάστε περισσότεραΥπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 5: Μεταθέσεις & Συνδυασμοί Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Διαβάστε περισσότεραΠροχωρημένη απαρίθμηση
Κεφάλαιο 4 Προχωρημένη απαρίθμηση Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι C L Liu ad C Liu 1985, Graham, Kuth, ad Patashi 1994, Camero 1994 και Staley 1986 41 Διαμερίσεις και συνδυασμοί
Διαβάστε περισσότεραΣυνδυαστική Ανάλυση. Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα:
Συνδυαστική Ανάλυση Υπολογισμός της πιθανότητας σε διακριτούς χώρους με ισοπίθανα αποτελέσματα: P( A) N( A) N ( ) Ν(Α): πλήθος ευνοϊκών αποτελεσμάτων του Α Ν(Ω): πλήθος συνολικών αποτελεσμάτων του Ω Χρειαζόμαστε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ
ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή
Διαβάστε περισσότεραP( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
Διαβάστε περισσότεραΔιακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13
Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (
Διαβάστε περισσότεραΣυνδυαστική Απαρίθµηση
Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση
Διαβάστε περισσότεραΣυνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).
Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). ιαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης
Διαβάστε περισσότεραΣυνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018
HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Σύνθετο Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα
Διαβάστε περισσότεραΓεννήτριες Συναρτήσεις
Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:
Διαβάστε περισσότεραΓεννήτριες Συναρτήσεις
Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα
Διακριτά Μαθηματικά Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 3 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ
ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά
Διαβάστε περισσότεραf(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Διαβάστε περισσότεραΦροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016
Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για
Διαβάστε περισσότερα2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.
11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν
Διαβάστε περισσότεραΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων
Διαβάστε περισσότεραΓενικευμένες Μεταθέσεις και Συνδυασμοί
Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς) ή να διαλέξουμε και να βάλουμε
Διαβάστε περισσότεραΑριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί
Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότερακ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)
Διαβάστε περισσότεραΣυνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016
HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων
Διαβάστε περισσότερατρόπους, i = 1,2,3,, j = 1,2,3,, ν i j τότε οποιοδήποτε από τα
ΒΑΓΓΕΛΗΣ ΨΥΧΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ Συνδυαστική είναι ο κλάδος των μαθηματικών που ασχολείται με την καταμέτρηση (απαρίθμηση) των στοιχείων διαφόρων συνόλων. Τα τελευταία χρόνια η συνδυαστική αποτελεί
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm
Διαβάστε περισσότερα2 ) d i = 2e 28, i=1. a b c
ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
Διαβάστε περισσότεραΔιακριτά Μαθηματικά Συνδυαστική
Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί
Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς)
Διαβάστε περισσότεραΓιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.
HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +
Διαβάστε περισσότερα1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Διαβάστε περισσότεραpdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες
Διαβάστε περισσότεραΠόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές; Αυτές οι
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί
Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί με απλά ή πολλαπλά αντίγραφα στοιχείων Διατάξεις Διάλεξε και βάλε σε σειρά 1 αντίγραφο κάθε στοιχείου n*n-1*n-2*
Διαβάστε περισσότεραΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν
Διαβάστε περισσότεραΠεριεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ
Πιθανότητες και Αρχές Στατιστικής (3η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 38 Περιεχόμενα
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε
Διαβάστε περισσότεραP(n, r) = n r. (n r)! n r. n+r 1
Διακριτά Μαθηματικά Ι Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙΙ 1 / 16 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων
Διαβάστε περισσότεραΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και
Διαβάστε περισσότεραΠεριεχόμενα 3ης Διάλεξης 1 Σύνοψη Προηγούμενου Μαθήματος 2 Δεσμευμένη Πιθανότητα 3 Bayes Theorem 4 Στοχαστική Ανεξαρτησία 5 Αμοιβαία (ή πλήρης) Ανεξαρ
3ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 3ο Μάθημα Πιθανότητες
Διαβάστε περισσότεραΔιακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός
Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος
Διαβάστε περισσότεραΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:
Διαβάστε περισσότεραΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]
Διαβάστε περισσότεραΦροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/2017
Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/207 Ο κανόνας του Pascal + = +, 0 ή ισοδύναμα, = +, 0 + Απόδειξη + =!!( )! +! ( )!( )! = = ( )! ( )!( )! + = ( )!!!( )!! ( )!( )! = = ( )!!!( )! (
Διαβάστε περισσότεραΘεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος
Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος
Διαβάστε περισσότεραΘεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr
Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας
Διαβάστε περισσότεραpdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
Διαβάστε περισσότεραΑσκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις
Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου
Διαβάστε περισσότεραΦροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018
Φροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018 Ο κανόνας του Pascal ( n + 1 k ) = (n k ) + ( n ), 0 k n k 1 ή ισοδύναμα, ( n k ) = (n 1 k ) + (n 1 ), 0 k n + 1 k 1 Απόδειξη ( n k ) + ( n k
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη
Διαβάστε περισσότεραΚ Ε Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Ιούνιος 206 Σελ. από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας
Διαβάστε περισσότερα#(A B) = (#A)(#B). = 2 6 = 1/3,
Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.
Διαβάστε περισσότεραm + s + q r + n + q p + s + n, P Q R P Q P R Q R F G
Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότερα, για κάθε n N. και P είναι αριθμήσιμα.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.
Διαβάστε περισσότεραΘεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Διαβάστε περισσότεραΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις. Ρίζου Ζωή
Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότερα