Ιστορία των Μαθηματικών

Σχετικά έγγραφα
Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Ιστορία των Μαθηματικών

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία της μετάφρασης

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Εκκλησιαστικό Δίκαιο

Παράκτια Τεχνικά Έργα

Μηχανολογικό Σχέδιο Ι

Διοικητική Λογιστική

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία των Μαθηματικών

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ιστορία της μετάφρασης

Γεωργική Εκπαίδευση Ενότητα 9

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στους Αλγορίθμους

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία των Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Μηχανολογικό Σχέδιο Ι

Κλασσική Θεωρία Ελέγχου

Ιστορία των Μαθηματικών

Εκκλησιαστικό Δίκαιο

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Μηχανολογικό Σχέδιο Ι

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Εργαστήριο Χημείας Ενώσεων Συναρμογής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Μηχανολογικό Σχέδιο Ι

Μοντέρνα Θεωρία Ελέγχου

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διπλωματική Ιστορία Ενότητα 2η:

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Συμπεριφορά Καταναλωτή

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Στρατηγικό Μάρκετινγκ

Λογισμός 4 Ενότητα 10

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Υπόγεια Υδραυλική και Υδρολογία

Μαθηματικά Και Στατιστική Στη Βιολογία

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Φ 619 Προβλήματα Βιοηθικής

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Βάσεις Περιβαλλοντικών Δεδομένων

Κλασσική Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Οικονομετρία. Πολλαπλή Παλινδρόμηση. Στατιστικός έλεγχος γραμμικού συνδυασμού συντελεστών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Εκκλησιαστικό Δίκαιο

Κβαντική Επεξεργασία Πληροφορίας

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μαθηματικά στην Αναγέννηση. Χαρά Χαραλάμπους

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5.: Η λύση της τριτοβάθμιας εξίσωσης. Χαρά Χαραλάμπους

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 4

Περιεχόμενα Ενότητας Ιταλοί και τριτοβάθμια εξίσωση. Η λύση της τριτοβάθμιας εξίσωσης. Επίλυση της τεταρτοβάθμιας. Viete, τριγωνομετρικές συναρτήσεις και οι νόμοι του σύμπαντος. Ο καιρός των λογαρίθμων. 5

Σκοποί Ενότητας Στην ενότητα αυτή παρουσιάζονται η ιστορία και οι συλλογισμοί που οδήγησαν στους τύπους για την εύρεση ριζών πολυωνυμικών εξισώσεων τρίτου και τετάρτου βαθμού. Γίνεται μία σύντομη μνεία στους συμβολισμούς του Viete και στη χρήση τριγωνομετρικών συναρτήσεων για την επίλυση των τριτοβάθμιων. Δίνεται επίσης μία εισαγωγή στην ιστορία των λογαρίθμων. 6

Girolamo Cardano (1501 1576) Μιλάνο (γιατρός-μαθηματικός) Ars Magna (1545) Εικόνα 1 7

Λύση τριτοβάθμιας (1) x + cx = d «Κύβος και πρώτη δύναμη ισούνται αριθμό» Λύση του Cardano x = d + c + d d + c d Η τιμή αυτή για το x είναι πάντα θετικός αριθμός. 8

Λύση τριτοβάθμιας () x + cx = d: Εφαρμογή όταν το c = 6, d = 0 x + 6x = 0 x = d + c + d d + c d x = 108 + 10 108 10 Ο Cardano σημειώνει ότι η παραπάνω ποσότητα πρέπει να είναι ίση με. 9

Λύση τριτοβάθμιας () x + 6x = 0 x = 108 + 10 108 10 Οι τιμές του x που ικανοποιούν την εξίσωση x + 6x = 0 είναι οι ρίζες του πολυωνύμου Το γράφημα του y = x + 6x 0 με Mathematica x + 6x 0 = = x (x + x + 10) 100 50-4 - 4-50 -100 10

Πως προκύπτει αλγεβρικά ο τύπος x + cx = d Έστω ότι u, v ώστε u v = d, uv = c Τότε u v είναι ρίζα για x + cx = d Πράγματι c = uv και αντικαθιστώντας βρίσκουμε x + cx = u v + c u v = u u v = u v uv = u v = d του Cardano + uv u v + uv v + uv Θα δούμε λοιπόν αν υπάρχουν τέτοια u, v. u u v v 11

Πως προκύπτει γεωμετρικά η ανάγκη αναζήτησης των u και v: Έτσι η αντιστοιχία είναι u=κύβος α ενώ v=κύβος β Από το σχήμα είναι φανερό ότι ο εξωτερικός κύβος (με ακμή α) προκύπτει από τον εσωτερικό κύβο (με ακμή a-b), τον μικρό κύβο (με ακμή b) στην επάνω δεξιά γωνία και άλλα τρία παραλληλεπίπεδα στις όψεις μπροστά, επάνω και δεξιά ππου φαίνονται στο σχήμα. Έτσι συγκρίνοντας τους όγκους προκύπτει 1

ΥΠΑΡΧΟΥΝ ΟΜΩΣ ΤΕΤΟΙΑ u ΚΑΙ v? u v = d, uv = c Αν πολλαπλασιάσουμε την πρώτη εξίσωση με v και αντικαταστήσουμε από τη δεύτερη τότε βρίσκουμε ότι u c = du Βρίσκουμε τη (θετική) ρίζα u. Στη συνέχεια αντικαθιστούμε στη σχέση u v = d και βρίσκουμε v. Τέλος αφαιρούμε τις κυβικές ρίζες των u και v και προκύπτει ο τύπος του Cardano. (Γιατί υπάρχει θετική τέτοια ρίζα?) 1

Λύση τριτοβάθμιας (4) x + cx = d x = u v x = d + c + d d + c d 14

Όταν x + cx = d ο Cardano έδωσε τον τύπο για ρίζα της εξίσωσης d x = d + d/ c/ + Τι γίνεται όταν Λύση τριτοβάθμιας (5) d c < 0? d/ c/ Η κυβική εξίσωση x = 15x + 4 ανήκει στη παραπάνω κατηγορία. 15

Λύση τριτοβάθμιας με Mathematica x = 15x + 4 x = + 11 11 Το γράφημα του y = x 15x 4 με Mathematica είναι Οι τρεις ρίζες του x = 15x + 4 είναι πραγματικές! Η ρίζα που προκύπτει από τον τύπο του Cardano ποια από όλες είναι? 40 0 0 10-4 - 4-10 -0 16

Cardano Ο Cardano δεν χρησιμοποίησε σύμβολα, και ο τύπος του δόθηκε ρητορικά (με λόγια). Ο προηγούμενος τύπος δίνει μόνο μία ρίζα του κυβικού πολυωνύμου. Τι γίνεται με τις υπόλοιπες? Υπάρχουν περιστάσεις στις οποίες βρίσκει αρνητικούς αριθμούς ως ρίζες: τους αποκαλεί «πλασματικούς». Παρατήρησε ότι το άθροισμα των ριζών είναι «το αντίθετο» του συντελεστή του x. Έδωσε γεωμετρική δικαιολόγηση για τη μεθοδολογία και τον τύπο. 17

Cardano και μιγαδικοί Στο έργο του Cardano έχουμε την εμφάνιση μιγαδικών για την επίλυση ενός προβλήματος με δευτεροβάθμια εξίσωση: Πρόβλημα: Να διαιρεθεί το 10 σε δύο μέρη, έτσι ώστε το γινόμενο να είναι 40: Ο Cardano βρίσκει ότι τα μέρη πρέπει να είναι 5 + 15, 5 15 και σχολιάζει ότι η αριθμητική δεν οδηγεί πουθενά. 18

Βιβλιογραφία Carl B. Boyer; Uta C. Merzbach, Η ιστορία των Μαθηματικών, Εκδόσεις Πνευματικός Γ. Α., 1997. Dirk Struik, Συνοπτική ιστορία των μαθηματικών, Εκδόσεις ΔΑΙΔΑΛΟΣ, 008. Katz V.,, Μια Εισαγωγή, Πανεπιστημιακές Εκδόσεις Κρήτης, 01. 19

Σημείωμα Χρήσης Έργων Τρίτων (1) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 1: "Jerôme Cardan" by Unknown - this website. Licensed under Public domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/file:jer%c%b4me_cardan.jpg# mediaviewer/file:jer%c%b4me_cardan.jpg

Σημείωμα Αναφοράς Copyright, Χαρά Χαραλάμπους. «. Ενότητα 5: Μαθηματικά στην Αναγέννηση. Ενότητα 5.: Η λύση της τριτοβάθμιας εξίσωσης.». Έκδοση: 1.0. Θεσσαλονίκη 014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs49/

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 01-014