Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχετικά έγγραφα
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Αλγόριθμοι Αναζήτησης

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

Ουρά Προτεραιότητας: Heap

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Ασυμπτωτικός Συμβολισμός

Συντομότερες ιαδρομές

Προχωρημένες έννοιες προγραμματισμού σε C

Συντομότερες ιαδρομές

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα

Αλγόριθμοι και Πολυπλοκότητα

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

Αλγόριθμοι και Πολυπλοκότητα

Ουρά Προτεραιότητας: Heap

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 2

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Ελάχιστο Συνδετικό έντρο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

Αναζήτηση Κατά Πλάτος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Ουρά Προτεραιότητας: Heap

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

Εισαγωγή στους Αλγόριθμους

Υπολογιστική Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Δομές Δεδομένων και Αλγόριθμοι

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Πιθανοτικοί Αλγόριθμοι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

(Γραμμικές) Αναδρομικές Σχέσεις

Αλγόριθμοι Ταξινόμησης Μέρος 2

(Γραμμικές) Αναδρομικές Σχέσεις

Θεωρία Πιθανοτήτων & Στατιστική

Στατιστική Επιχειρήσεων

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

a 1 a 2 a n. 3. i = j 1 5. A[i + 1] = A[i] 6. i = i 1

Υπολογιστικά & Διακριτά Μαθηματικά

Ουρά Προτεραιότητας: Heap

Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Σχεδίαση και Ανάλυση Αλγορίθμων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Αλγόριθμοι ταξινόμησης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Προέλευση της Pazcal ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αλγόριθμοι και Δομές Δεδομένων(Θ) Ευάγγελος Γ. Ούτσιος

Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II

Διαδικασίες Markov Υπενθύμιση

Δυναμικός Προγραμματισμός

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Δομές Δεδομένων & Αλγόριθμοι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άπληστοι Αλγόριθμοι. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Θεωρία Πιθανοτήτων & Στατιστική

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

1η Σειρά Γραπτών Ασκήσεων

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Σχεδίαση & Ανάλυση Αλγορίθμων

Δυναμικός Προγραμματισμός

Εισαγωγή στους Αλγορίθμους

Transcript:

Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός του k-οστού μικρότερου στοιχείου (στοιχείο θέσης A[k] αν Α ταξινομημένος). k = 1 : ελάχιστο. k = n : μέγιστο. k = n /2: ενδιάμεσο (median). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 2

Εφαρμογές Υπολογισμός στατιστικού ενδιάμεσου (median). Χρήσιμες πληροφορίες για κατανομή. Ανήκει η Ελλάδα στο φτωχότερο 25% των χωρών ΕΕ; Ανήκει κάποιος φοιτητής στο καλύτερο 10% του έτους του; Ισομερής διαίρεση (partition) πίνακα σε ομάδες «ταξινομημένες» μεταξύ τους. Ενδιαφέρον αλγοριθμικό πρόβλημα! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 3

Μέγιστο / Ελάχιστο Μέγιστο (ελάχιστο) εύκολα σε χρόνο Θ(n), με n 1 συγκρίσεις μεταξύ στοιχείων. int maximum(int A[], int n) { int max = A[0], i; for (i = 1; i < n; i++) if (A[i] > max) max = A[i]; return(max); } Μέγιστο και ελάχιστο με συγκρίσεις! Πώς; Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 4

Κάτω Φράγμα για Μέγιστο Κάθε ντετερμινιστικός συγκριτικός αλγόριθμος χρειάζεται n 1 συγκρίσεις για μέγιστο (ελάχιστο). «Πρωτάθλημα» μεταξύ στοιχείων. Σύγκριση στοιχείων : αγώνας όπου κερδίζει μεγαλύτερο. Κάθε «αήττητο» στοιχείο είναι υποψήφιο μέγιστο. Για μοναδικό μέγιστο, πρέπει τα υπόλοιπα να «ηττηθούν». Κάθε αγώνας δίνει ένα «ηττημένο» στοιχείο n 1 αγώνες / συγκρίσεις για μοναδικό μέγιστο. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 5

Επιλογή Σε χρόνο Ο(n log n) με ταξινόμηση. Μέγιστο (k = 1), ελάχιστο (k = n): χρόνος Θ(n). Άλλες τιμές k : χρόνος Ο(n log n) ήο(n); Επιλογή σε γραμμικό χρόνο με διαίρει-και-βασίλευε βασισμένη σε διαχωρισμό της quicksort! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 6

Πιθανοτική Quickselect Έστω υπο-πίνακας A[l r] και αναζητούμε k-οστό στοιχείο. Τυχαίο στοιχείο διαχωρισμού (pivot). Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες: Στοιχεία αριστερής [l q] υπο-ακολ. στοιχείο διαχωρισμού. Στοιχεία δεξιάς [q+1 r] υπο-ακολ. στοιχείο διαχωρισμού. Αν k q l+1, αναδρομική λύση (Α[l q], k) Αν k > q l+1, αναδρομική λύση (Α[q+1 r], k (q l+1)) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 7

Ορθότητα Quickselect Τερματισμός : μέγεθος υπο-ακολουθιών n 1. Επαγωγικά υποθέτω ότι 1 k right left + 1. Πλήθος στοιχείων στα αριστερά: nel = q left + 1. Αν k nel, δεξιά στοιχεία «αποκλείονται». Αν nel < k, αριστερά στοιχεία «αποκλείονται» και k μειώνεται αντίστοιχα (k = k nel). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 8

Πιθανοτική Quickselect int RQuickSelect(int A[], int left, int right, int k) { if (left == right) return(a[left]); // 1 στοιχείο pivot = random(left, right); // τυχαίο pivot swap(a[left], A[pivot]); q = partition(a, left, right); // διαίρεση nel = q left + 1; // #στοιχείων στο αριστερό μέρος } if (k <= nel) return(rquickselect(a, left, q, k)); else return(rquickselect(a, q+1, right, k - nel)); Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 9

Χρόνος Εκτέλεσης (χ.π.) Χρόνος εκτελ. αναδρομικών αλγ. με διατύπωση και λύση αναδρομικής εξίσωσης λειτουργίας. Τ(n) : χρόνος (χ.π.) για επιλογή από n στοιχεία. Χρόνος εκτέλεσης partition(n στοιχεία) : Θ(n) Χειρότερη περίπτωση : ένα στοιχείο «αποκλείεται» σε κάθε διαίρεση! Πιθανοτικός αλγ.: χειρότερη περίπτωση έχει εξαιρετικά μικρή πιθανότητα να συμβεί (για κάθε είσοδο)! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 10

Χρόνος Εκτέλεσης (μ.π.) Καλή περίπτωση : διαίρεση (n /4, 3n /4) ήκαλύτερη. Τουλάχιστον n /4 στοιχεία «αποκλείονται». Πιθανότητα «καλής περίπτωσης» 1/2! Κατά «μέσο όρο», μία «κακή διαίρεση» πριν από «καλή διαίρεση» που μειώνει στοιχεία από n σε 3n /4. Λύση αναδρομής: Γεωμετρική σειρά : Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 11

Χρόνος Εκτέλεσης (μ.π.) Τυχαίο στοιχείο σαν στοιχείο χωρισμού (pivot). Για κάθε, πιθανότητα διαίρεσης (i, n i) = Λύση αναδρομής : Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 12

Ντετερμινιστική Επιλογή «Καλή διαίρεση» ντετερμινιστικά: Χρήση pivot κοντά στο ενδιάμεσο: πρόβλημα επιλογής! Φαύλος κύκλος : γρήγορη επιλογή καλή διαίρεση γρήγορη επιλογή. Προσεγγιστική επιλογή : όχι «ενδιάμεσο» αλλά «κοντά στο ενδιάμεσο» για pivot. Επιλογή κατάλληλου δείγματος (π.χ. n /5 στοιχεία). Ενδιάμεσο δείγματος είναι «κοντά στο ενδιάμεσο» για σύνολο στοιχείων. Αναδρομικά ενδιάμεσο στοιχείο του δείγματος. Ενδιάμεσο δείγματος για pivot εγγυάται «καλή διαίρεση». Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 13

Ντετερμινιστική Επιλογή είγμα: Χωρίζουμε στοιχεία σε 5άδες. Βρίσκουμε ενδιάμεσο κάθε 5άδας: n /5 στοιχεία. Χρόνος : Θ(n). Αναδρομικά, ενδιάμεσο στοιχείο δείγματος. Χρόνος : Τ(n /5) ιαίρεση με ενδιάμεσο δείγματος σαν pivot. Χρόνος : Θ(n). Μεγαλύτερος υποπίνακας έχει Αναδρομική επιλογή: χρόνος T(7n / 10) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 14

Ντετερμινιστική Επιλογή Χρόνος χειρότερης περίπτωσης: Λύση αναδρομής : Ντετερμινιστική επιλογή σε γραμμικό χρόνο! Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 15

Ενδιάμεσο είγματος ιαίρεση με ενδιάμεσο δείγματος σαν pivot. Μεγαλύτερος υποπίνακας 7n / 10 στοιχεία. Μικρότερος υποπίνακας 3n / 10 στοιχεία. Ταξινομούμε 5αδες και βάζουμε σε αύξουσα σειρά των ενδιάμεσων στοιχείων τους (δείγματος). Ενδιάμεσος δείγματος στη (n / 10)-οστή στήλη. Ενδιάμεσος δείγματος στοιχεία. Ενδιάμεσος δείγματος στοιχεία. Επιλογή 16

Σύνοψη Γρήγορη επιλογή (quickselect): Πιθανοτικός αλγόριθμος με γραμμικό χρόνο (μ.π.) Ντετερμινιστικός αλγόριθμος με γραμμικό χρόνο (χ.π.) Ντετερμινιστικός αλγόριθμος με «bootstrapping»: Για να βρω ενδιάμεσο για πολλά στοιχεία, βρίσκω ενδιάμεσο για λίγα. Αυτό βοηθάει να βρω ενδιάμεσο για περισσότερα, Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 17

Ασκήσεις Τροποποίηση quicksort ώστε Ο(n log n) χρόνο σε χειρότερη περίπτωση. Είναι πρακτικό; Στον ντετερμινιστικό αλγόριθμο, χωρίζω στοιχεία σε 3άδες (7άδες). Τι συμβαίνει; Α και Β δύο ταξινομημένοι πίνακες με n διαφορετικά στοιχεία ο καθένας. Σε χρόνο Ο(log n), το ενδιάμεσο της ένωσης των Α και Β. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2010) Επιλογή 18

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.