EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

2 SFI

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Delta Inconel 718 δ» ¼

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Blowup of regular solutions for radial relativistic Euler equations with damping

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

High order interpolation function for surface contact problem

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Å/ ÅÃ... YD/ kod

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

ER-Tree (Extended R*-Tree)

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

p din,j = p tot,j p stat = ρ 2 v2 j,

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

v w = v = pr w v = v cos(v,w) = v w

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ


Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Electromagnetic behavior for laboratory scale and industrial scale electroslag remelting process

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Ανώτερα Μαθηματικά ΙI

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Transcript:

Ù 46 ¾ Ù 8 «Vol.46 No.8 21 8 Ù 118 124 ACTA METALLURGICA SINICA Aug. 21 pp.118 124»³ ¾ Æ À ÃÅÄ ÇÂÁ (Đ Î ÌÝÈ ³ÏÚÆ, 11819) ÛÕ½Û Sn 32%Pb 52%Bi Ä Ù ÐÞ É, Ç Ê É ÛÓ ÄÉ ( É + ³É ) Ù ± ÚÒ ÓÆ ÐÃ. Ç, Á ÞÉ Ä, ÒÝ Ã Ý, Ð É É±», Ò ÖÍ Ð ÛÀ ÀÀÒ ; Ä Ò À, ËÄÒ Ë ¾ÛÃ. É É±», Ë Ûû. É Ñ ³É ( 1.44 T) Á Ü ÞÆ É Ù ± ÀÒ Ð Ã ;» ³É ɱ, Ò. ³É Û ÞÆÒ,» ³É, ½Ô«, ³É Ù ±, Ò ¹¹. ÇÞ Ë ÔºÄÀ ³É ɱ, ËÄÒ Ð, Ò À. Æ, É, ³É, Ò ± «TF777 µ¹þ A µ Ü 412 1961(21)8 118 7 EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD DENG Anyuan, WANG Engang, XU Yongyi, ZHANG Xingwu, HE Jicheng Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 11819 Correspondent: DENG Anyuan, associate professor, Tel: (24)83681716, E-mail: dengay@epm.neu.edu.cn Supported by National High Technology Research and Development Program of China (No.27AA3Z519), National Natural Science Foundation of China (Nos.5645 and 58341) and the Program of Introducing Talents of Discipline to Universities (No.B715) Manuscript received 21 2 2, in revised form 21 3 19 ABSTRACT In order to control stability of molten metal surface during electromagnetic continuous casting, the stabilities of melting surface under applications of an alternating magnetic field and a compound magnetic field were investigated experimentally. The melting surface behavior of the Sn 32%Pb 52%Bi alloy with low melting point was measured by using a laser displacement sensor and visualized by using a high speed video camera. The Fourier analysis method was introduced to reveal the fluctuation characteristics of free surface. It is experimentally found that when only alternating field is applied, the free surface keeps fluctuating. However, with increasing the alternating magnetic flux density, two statuses of the free surface, the stable camber deformation and the swinging phenomenon, can be observed orderly, and during swinging, the square like or triangular prism like deformations appear stochastically. The Fourier analysis indicates that the dominant fluctuation frequency at free surface center increases with increasing the alternating magnetic flux density. After simultaneously superposing a transverse static magnetic field within 1.44 T, the unstable swinging behavior of free surface can be remarkably controlled. Increase of static magnetic flux density can make the swinging amplitude reduce. Also the static magnetic field can effectively * Ð Ö Ú Ô 27AA3Z519, ÐÔ Ï Ô 5645 À 58341, ÛÓ ÑÏ Ï Æ ĐÈÚ Ô B715 Ò º : 21 2 2, Ç º : 21 3 19 Ù : Ô, Ø, 1971 Ð,, Î DOI: 1.3724/SP.J.137.21.66

Ù 8 «Ó Ð : ÃÈ¾Ø Ñ Â Æ 119 damp the free surface fluctuation. The stretch phenomenon was observed due to application of high static magnetic field in compound field, also a series of regular surface fluctuations appeared on free surface. There is an appropriate range of the static magnetic flux density to obtain more stable free surface, lower fluctuation amplitude and dominant fluctuation frequency. KEY WORDS continuous casting, alternating magnetic field, static magnetic field, free surface fluctuation µµ Ç ½Ì, µ ºÁÇÒ º, µîë Ç É Ì Ä Á Ò, ݼĐË ½, ÖË ½. Âе Ä Æ Ê Ù½ ßÊÅÝÉ Ó Á Á, Ï«ÖÅ, ÇÁ Đ ÊÉ. ÃÅ Æ ßÊÅ ÚÅ, ßÊÇ Ú µç Al ÁÇ Cu ¾ÐÌ Ë Å. Õ 1989 Vives [1] Đ µßê ÂÇ Î, ßÊÇ µç ÌÜĐ ÊÉ. µ ÆÌ, ¼ ¹ Á [2,3] Ê ² [4,5] Á [6 8] Ò ÄË É Á Á¾Ý Æ. Æ Ê ÁÆ ß ÚŽ ßÊÅ Ý µó, Ó,»ÇËßÊ Á ÊÉ Đ. Ì Ó Á Æ ßÊÇ Ñ. Õ, ¼ Ú ßÊÅ ÎÐ ÚÅ ÄË [9 11], µåå ¾Ý Ò Ë Đ Ó Æ [2,12], Áݵջ Û Ó. Ê Ý ßÇ, µå Ö¾Ü Sn 32%Pb 52%Bi(ÊÉ ) Å, È Ë Æ Ê ÚŲ ¾ ÆÁ Ä, ÅÂĐ Ê, Ë ÅÊ ÚŲ Ó Ä, µ ÅÁ ÇÓ Ä ¾Ý Đ º. 1 Å È Å 1 ÙÍ. Sn 32%Pb 52%Bi Å ß ¾ÜÁ Ê 95 kg/cm 3, 1.11 1 6 S/m, 94 Á 1, À¾ÜÆ, µó Æ ( ß ¾ÜÁ Ê 72 kg/m 3,.7 1 6 S/m, 15 Á 1), ̵ Å Sn 32%Pb 52%Bi Ö¾ÜÅ ÑßµÓ, Å µ¾¼ Þ² Ûµ 46 mm à Ì. µã Æ ²ÅÒ Cu Dz ½², f=23 khz Æ ß Ç, ½ Æ Ê. ² ½² 5 ±, 66 mm. ½² Ì ¾ ÊÓ. ßʲ, Æ Ê µ¾ Û½ Æ ß, ÚÅ µ¾ Æ Ò ºÛ½ Ç ¾ Æ À Ó ßÊÅ, ÉÓ Á Á, µ¾ ÛÁ ² 2» [13]. Á 2 ÙÍ. Ú ßÊ Å Å ÅÁ Ž Å Þ Ë. Ó Å Ë ( 1 (ρ s ρ f )g z = γ + 1 ) + p d + B2 a R 1 R 2 4µ (1) ËÌ, ρ s Á ρ f ÓÁÆ ¾, g Å ĐÔ, z, γ µóáóþæ ¾ Å, R 1 Á R 2 µ, p d Å, B a ÅÄ Ê². Ì Ü Å 2 ÙÍ ÓÁÆ ¾ Æ Ü. Ü ÜÄ Ê² B a Ú ÍÆ Ê. ÜÄ Ê² Å ½², È Ì Ü Ê² ǵ.6 T. µå LK 2 Ð Ó Ø ÉÓÞ ¼ Ü, Ë ¾ Ü Ó 1/2 µ ÅÁÓ Ì ÜÒ Å ( 2) Ä, µ 1 ms. Å FASTCAM ultima APX Ô Ü µæ Ê Ì» ÁÁ Æ, µò 25 frames/s. ÅÊ È Å 3 ÙÍ. Ú µæ ² ² 1 Ç ÄÌЫFig.1 Schematic of experimental apparatus ² 2 ÌЫFig.2 Schematic of meniscus

12 Í Ù 46 ¾ ² 3 ÄÉ Ç ÄÌЫFig.3 Schematic of experimental setup with compound magnetic field ƳÂĐÕ» Ê, Ê ÊÑÌ ² Ì ¾ ÊÓ 3. Ê ² ½² ß Ç. Å Ü 1 Ä ( 3) Ê Ê² Ú B Í Ê, B µ 1.44 T. 2 Æ 2.1 Ý Đ ½ Æ ßÊÅ Ù, µ È ², ÑßÛÕËÆ Ê ² ÜÄ Ê² Á ßÊÅØÅ, 4 ÙÍ., ʲ ÁßÊÅÕ Ä Þ. Ë (1), µßêå ÚŲ, Ó ÅÆ Á, ØÆ Ê Ê² ¼Đ, Ó ÁÁ Ó ¼. Ó Á ßÊ Å Å ÅÁ Å Þ Ë, Ì ßÊÅ ÁßÊÅ «ÚÅ Á, Å ÃÓ. 5 ÙÍ, Ó Æ ÙÂĐÆ Ê Ê². Æ Ê Ê².44 T Å, Å Ó Á ( 5a). Æ Ê Ê².53 T Å, ÓÆ Á ( 5b). µ Å, Ó Ê².44 T Å ÊÍÆ Á, «Ä Þ Á Þ, ÔÓÖ µ Á ½ ¾ Ì, Õ, ²ÕÅ Æ Ë Å Ï, Ý µ¾ Ì,  ÏÕ, «Ê, ¹ËÓ Ø Å, Å ØÑ Ì. 5b,.44 T Å Ü Á, ÌÅ ¹ 2 ÎÁË, Ô Á Á Á, Ø ¹. Ó Å É Æ Æ Â, Ï«Đ ÊÉ,»ÇËßÊÇ. È, ØÊ² ¼Đ, Ç ¹Ï,  À, Î Ï [14]. Ó Æ ØÊ² ¼Đ«¼ Ó, ¹ Ó ½ÍØÅ. Ó, Æ ÅÆ Ê Ê² ǵŠÛ, µßêç ÌÆ µ± ÚÓ ÇÁ Â. Ίƹ ßÊÅ Æ. 4, ßÊÅ ÊÍÀ Ó, µ, ÓÕÅ Â ¹. Ó Å Ë, ßÊÅ Å, Ó Æ Á, Ï«Ó ½Ì, Õ ½². ½²Û ʲ µ Ø ½² ¼ ¼ «, Ì ½²Õ Ó Ê ¼, ßÊ Å¼, Ì ½²Õ Ó ßÊ Å, ż»ÆÉÓ Ì Å Ï. Æ, Óµ Ì Ì «ÏÕ, Ï«Å,» Î Å. Æ Ê Å, ºÓ Á, Ó Ö. Õ Ýż, ÏÕ ßÊÅ, Ì., Æ Ê ¼, º ¹ Æ. 2.2 Ý Đ ß ½ 6 Ó Ì ÜÁ 1/2 µä Ó B x, T.15. -.15 (a) B z, T.6 (b).3. -.3 -.6 F x, 1 5 N/m 3 8 4-2..1.2.3.4..1.2.3.4 Time, 1-3 s Time, 1-3 s ² 4 ¾Ûà ɱ ÀÞÉÄ Fig.4 Changes of x components (a) and z components (b) of alternating magnetic flux density (B x, B z ) and induced Lorentz force (F x, F z ) at triple phase point with time F z, 1 5 N/m 3-1

Ù 8 «Ó Ð : ÃÈ¾Ø Ñ Â Æ 121 ² 5 É É± ± Ò ÐÅ Fig.5 Photos of the swinging instability of free surface under alternating magnetic fields with B a =.44 T (a) and.55 T (b) with frequency f=23 khz Vibrating amplitude, mm 4 3 2 1-1 T.51 T.51 T.51 T -2 Triple-phase Half position Center point of radius -3 1 2 3 1 2 3 1 2 3 1 2 3 Time, s ² 6 ÄÃ Ò Fig.6 Fluctuations of melt surface at triple phase point, half position of radius and center of free surface under B a =.51 T, f=23 khz ½., ßÊÅ Ð ÚÅ, Õ Ó µßê ÚÅ²Õ Ä Þ. È Æ¹, µæ Ê Ê².43 T Å, Ó Ì Ä, µ ÜÄ. 6 ÙÍ, ʲ.51 T Å, ÓÆ Å, Ó Ì Ä «, 1.9 3.19 mm, «µ ÜÄ, 2.3 1.9 mm. Î ß ÊÅ Ó ÚÅÁÓ Æ. ÆÃ ¾ ²Á Đ. µ Ç Ì, Đ Ç ÊÉ, ÅÓ Çµ ±3 mm ÜÛ,, Æ Ý Ó Á Æ, ¾, Ã Đ ÊÉ [15,16]. Ì,»Ç Ë Ê Ê², «Ç Ë Á Đ. 7 ½º 6 Ì ½, Å Ô Fourier Ì ÜÁ ÜÄ Å ², Power spectrum density, mm 2 /s Power spectrum density, mm 2 /s 1-2 1-4 1-6 1-8 1-1 (a) 1-12 1 2 3 4 5 Frequency, Hz 1-4 1-6 1-8 (b) 1-1 1 2 3 4 5 Frequency, Hz ² 7 Ò Ë À ¾Ûà ± Fig.7 Power spectrum densities at the center of free surface (a) and triple phase point (b) obtained by Fourier transformation of Fig.6 Ë ÝÉ ². 7 ÙÍ, µó Ì, 2.12 Hz; µ ÜÄ, Ò Ìµ 5.8 Hz, ŵ 19.92 Hz µõ»î., µ ÅÄ, Æ ßÊÅ Ó»Æ. Å, È Æ¹, Æ Ê, Ó. µê²

122 Í Ù 46 ¾.29,.36 Á.43 T Å, Ó Ì Ä 1.17, 1.17 Á 5.7 Hz. ØÊ ² ¼Đ, Ì ÜÄ ¼. µê² Ï.43 T ¼Đ.51 T Å, Æ Õ»Å. Ð Ó Ï Á Þ Å Þ. 2.3 Đ ½ º ÅÁ ÇÓ Á Ä ( 3), µ Æ ßÊ Ó ÅÂĐÕ»Ê Ê. 8 µ Ê Ê².65 Á 1.44 T Å Å Ó Å. ÙÍ, ÂĐ Ê Î, Æ Ê ÚŲ Ó Æ, Ó ÆÆ¹ Ì, Áµ Ê ÊÅ½Ç Æ Å. Ê Ê², Ó Å. Ê Ý ßÇÆ Ê ÚŲ ÁÓ Ä. 2.4 Đ ß ¼ º 9 Ê Ê² ² Ó., ÅÂĐÒ Ê Î, Ó»Æ Æ, ÊŽ, Ó. È, ÌÅ Ê ÊŽ Ä Ì Á ÊÅ½Ç Á. Ê.65 T Å, Ú ¹ËßÊÇ ¹, Ê, Ä ¹Ë º ². Ê.81 T Å, ßÊÇ, ÌÅ Ó. Ê.97, 1.2 Á 1.44 T Å, Ø Ê Ê ² ¼Đ, Ó ¹Ë ºº. Ê Ê².97 T Å, º Áµ Ü ¹, µ ¾ Ì º, µó Ì ÕÏ» º, Ø Ê Ê² ¼Đ, º Ó Ì Å, Ê Ê² 1.44 T Å, Ó Ì ¹º, «. ι µ ¾ Û µê ² ² ß Á ¹ÊŽ ½ ² ß, Ê ÚŽ 2 ÎßÊÅ, ßÇ Á, Î º Ó. Ê Ê² ÖÅ, ßÇ ßÊÅ Ø, Ø Ê Ê² ¼ Đ, Î ¼, Ì ÃÓ Æ¼ Ï, µ ÚŲ Ý ¹ º. 1 Ê ²Ó Ì Ü ½., Ø Ê Ê² ¼Đ,, µ Ê Ê².97 T Å, Ó Ì ÜÄ Ö ±1 mm Û; ß˼ Ê Ê², Ì Ü Ä ¼. Ó Ê Æ ß ÊÅ Ó ÆÈ ßÇÚÅ, µõ»å Ê Ê², µåì ßÇ. Ù, Ó Ì Ä Ø Ê Ê² Ó ½ º Æ. ̵µÅ Ê ÇÆ Ê Ó Ä ÅßÊÇ Ì, Æ µå Ù Ê Ê². 11 Å Ô Fourier 1 Ì Ê Ê² ²Ì Ü ½ ². ² 8 ³É ɱ ± Ò ÐÅ Fig.8 Photos of the swinging instability of free surface under application of compound field with static magnetic flux densities B =.65 T (a), 1.44 T (b) and f=23 khz, B a =.55 T

Ù 8 «Ó Ð : ÃÈ¾Ø Ñ Â Æ 123 ² 9 ³É ɱ ± Ò Fig.9 Photos of the fluctuation behavior of the melt surface under compound field with different static magnetic flux densities (f=23 khz, B a =.55 T) (a) T (b).65 T (c).81 T (d).97 T (e) 1.2 T (f) 1.44 T Vibrating amplitude, mm 2-2 T.65 T.81 T.97 T 1.2 T 1.44 T 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Time, s ² 1 ³É ɱ ± Ò ¼ Fig.1 Fluctuations of the melt surface at its center position under different static magnetic flux densities (f= 23 khz, B a =.55 T) 1 Ì Ø Ê Ê² Õ Ã, Ó Ì Ø Ê Ê² ¼Đ Î ¼, µ B =.97 T Å, Æ., µ B =.97 T Å, Ó, Ü. Å Ó ÁÞÁ, Æ Ê.55 T Å Ó, Æ Ê Ê² µ.8 1. T. Frequency, Hz 6 4 2..4.8 1.2 B, T ² 11 ÄÉ Ù ±Ò Ë ± 3 Fig.11 Curve of main fluctuation frequency vs static magnetic flux density obtained by Fourier transformation of Fig.1 (1) µæ Ê ÚŲ, ØÆ Ê Ê² ¼Đ, Ó Î ¹ Ü ÁÁØ Å Á¹, µ Å Ì ØÆ Ì. (2) Æ Ê É Õ Ó Õ Ä Þ, Ó Ì Ä ÜÄ. ØÆ Ê Ê² ¼Đ, Ì ÜÄ ¼.

124 Í Ù 46 ¾ (3) Ê Ò Ê Ý ßÇÆ Ê ÚŲ Á Ó Å ÁÌ. (4) Ê ÜÆ ßÇÓ, ¾ Õ µ ¹, Ï«µÓ ¹ ºº, µõ»åá Ê Ê², ÉÓ Á. Ð µ¹ [1] Vives C. Metall Trans, 1989; 2B: 623 [2] Zhu X R, Harding R A, Campbell J. Appl Math Model, 1997; 21: 27 [3] Zeng D H, Mao B, E X Q. Acta Metall Sin, 2; 36: 162 (½ Ì,, ϳ. Ï, 2; 36: 162) [4] Na X Z, Zhang X Z, Qiu S T, Gan Y. Acta Metall Sin, 22; 38: 15 (Öµ, Ë,,. Ï, 22; 38: 15) [5] Xia X J, Wang H M, Dai Q X, Li G R, Zhao Y T. Chin J Nonferrous Met, 28; 18: 529 (³ «, Í,, », ß. Ë Ï, 28; 18: 529) [6] He J C, Wang E G, Deng A Y, Yu G W, Wang Q, Zhang Y J, Chen Z P, Zhou Y M, Feng C B. In: Asia S, Fautrelle Y, Gillon P, eds., 4th Int Conf on Electromagnetic Processing of Materials, Lylons: EPM Madylam, 23: 195 [7] Nakata H, Inoue T, Mori H, Ayata K, Murakami T, Kominami T. ISIJ Int, 22; 42: 264 [8] Park J, Kim H, Jeong H, Kim G, Cho M J, Chung J S, Yoon M, Kim K R, Choi J. ISIJ Int, 23; 43: 813 [9] Fautrelle Y, Perrier D, Etay J. ISIJ Int, 23; 43: 81 [1] Karcher C, Minchenya V. In: Nacke B, Baake E, eds., International Scientific Colloquium Modeling for Electromagnetic Processing, Hannover: University of Hannover, 28: 143 [11] Zhou Y M, Iwai K, Asai S. Tetsu Hagane, 2; 86: 16 (, ±Ô, ±Ó., 2; 86: 16) [12] Zhang B, Li T J, Jia F, Ji S H. Foundry Technol, 22; 23: 388 (,  ¹,, Ù. Ö, 22; 23: 388) [13] Xu X J, Deng A Y, Wang E G, Zhang L T, Zhang X W, Zhang Y J, He J C. Acta Metall Sin, 29; 45: 133 (ÊÈ, Ô, ų, Îß,,, ÆØ. Ï, 29; 45: 133) [14] Xu X J, Deng A Y, Wang E G, Zhang L T, Zhang X W, Zhang Y J, He J C. Acta Metall Sin, 29; 45: 464 (ÊÈ, Ô, ų, Îß,,, ÆØ. Ï, 29; 45: 464) [15] Zhang H X, Liang J G, He Q W, Han Y G. Laigang Sci Technol, 27; (4): 26 (, È, Â, ³. Ö, 27; (4): 26) [16] Wang W X, Wang Y, Chi J H. Iron Steel Vanadium Titanium, 26; 27: 63 ( Ï,, ². Û, 26; 27: 63)