Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Σχετικά έγγραφα
Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Ενεργός διατοµή Χρυσός Κανόνας του Fermi (a)

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi

Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 3 Αυθόρητη διάσπαση και χρόνος ζωής, Σκεδάσεις και Ενεργός διατομή

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Μάθημα 3 Πείραμα Rutherford, ορισμοί, χρόνος ζωής ενεργός διατομή

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 4 Mέγεθος πυρήνα

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 3a: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο

Πειραµατική Θεµελείωση της Φυσικής

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi

Ασκήσεις #1 επιστροφή 11/11/2011

Ασκήσεις #1 επιστροφή 15/10/2012

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 6: Xρυσός κανόνας του Fermi, χώρος των φάσεων, υπολογισμοί, ισοσπίν

Σχετικιστική Κινηματική

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

ΚΕΦΑΛΑΙΟ 1 : AΤΟΜΙΚΟ ΠΡΟΤΥΠΟ

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Διάλεξη 1: Εισαγωγή, Ατομικός Πυρήνας

Φυσικό Τμήμα Παν/μιο Ιωαννίνων - Σύγχρονη Φυσική ΙΙ. Κεφάλαιο 1 Τα Μοντέλα των J.J. Thompson και E. Rutherford Σκέδαση Rutherford

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

n proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)

Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Διάλεξη 6: Φυσική Ραδιενέργεια και πυρηνικές αντιδράσεις

Μάθημα 17 Σχάση, σύντηξη.

Μάθημα 12 α-διάσπαση

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Σκέδαση αδρονίων. Λέκτορας Κώστας Κορδάς

Με διεθνή σύμβαση το 1961, καθιερώθηκε ότι 1 amu (atomic mass unit) είναι το 1/12 της μάζας του ουδέτερου ατόμου του άνθρακα 12 C, επομένως:

Διάσπαση σωµατιδίων. = m C 2 + p 2 = m C 2 + E B 2! m B E C = (E B = (E C. p B. , p), p C. ,- p) = (m A , 0) p A = E B. + m C 2 + E B 2! m B.

Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017

Μάθημα Σχάση, σύντηξη.

Ο Πυρήνας του Ατόμου

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7: Οπτικό θεώρημα, συντονισμοί, παραγωγή σωματιδίων σε υψηλές ενέργειες

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα,

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Μέγεθος, πυκνότητα και σχήμα των πυρήνων. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Δομή Διάλεξης. Κλασσική Θεωρία Σκέδασης Ορισμοί μεγεθών σκέδασης. Κβαντική θεωρία σκέδασης Πλάτος σκέδασης

Γ. Τσιπολίτης.

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Το άτομο και η δομή του Ανακάλυψη του πυρήνα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Αντιδράσεις των κοσμικών ακτίνων στην ατμόσφαιρα, Καταιονισμοί.

Μάθημα 6o Οπτικό θεώρημα και Συντονισμοί 10/4/2014

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα


Ενεργός Διατοµή (Cross section)

Ασκήσεις #2 Μέγεθος και Μάζα πυρήνα. Ενέργεια σύνδεσης και το Q μιάς αντίδρασης. Κοιλάδα σταθερότητας.

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σκέδαση Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/04/16

Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

# αλλ/σεων με e # αλλ/σεων με πυρήνες

Transcript:

Μαθηµα 3 0 Ενεργός διατοµή Χρυσός Κανόνας του Fermi 12-3-2015

Μετρήσιμες ποσότητες Παρατηρώντας τη φύση για να καταλάβουμε ποιά είναι τα στοιχειώδη σωμάτια και πώς αλληλεπιδρούν μεταξύ τους, έχουμε τα εξής τρία πειραματικά εργαλεία (probes) για τις μετρήσεις μας: Bound states of particles: δέσμιες καταστάσεις, π.χ., άτομο, μεσόνιο J/ψ (=c c) Χρησιμοποιούμε μη σχετικιστική Κβαντομηχανική (Schroedinger s formulation) Pacticle scattering (σκέδαση σωματιδίων) Particle decays (π.χ., π - μ - ν μ ) Για μελέτη σκεδάσεων και διασπάσεων σωματιδίων χρησιμοποιούμε την σχετικιστική Κβαντομηχανική (Feynman calculus) 2

Διασπάσεις και ρυθµός διάσπασης 3

Διάσπαση σωματιδίου (Decay) Η πιθανότητα να διασπαστεί ( probability to decay ) ένα σωματίδιο στο αμέσως επόμενο χρονικό διάστημα dt είναι ανεξάρτητη από το πότε δημιουργήθηκε το σωμάτιο (ηλικία του σωματιδίου) Γ = πιθανότητα διάσπασης στη μονάδα χρόνου = decay rate = decay width dn = N(t+dt) - N(t) = - Γ N(t) dt N(t) = N(0) exp(-γt) Μέσος χρόνος ζωής = mean lifetime = τ = 1/Γ N(t) = N(0) exp(-t/τ) 4

Διάσπαση σωματιδίου (Decay) Μέσος χρόνος ζωής = mean lifetime = τ = 1/Γ Αν ένα σωματίδιο μπορεί να κάνει decay με πολλούς (= n) τρόπους, τότε ο ολικός ρυθμός διασπάσεών του (= total decay rate) θα είναι: Γ Τ Ο Τ = Γ 1 + Γ 2 + Γ 3 + + Γ n To lifetime είναι τ = 1/Γ Τ Ο Τ Το ποσοστό των σωματιδίων που κάνουν decay με τον τρόπο i, ονομάζεται branching ratio ή branching fraction Branching ratio for decay mode i = B i = Γ 1 / Γ Τ Ο Τ% π.χ., φορτισμένο πιόνιο, π + (= u d) Μάζα π + = 139.6 MeV, Lifetime = 2.6 x 10-8 sec π + μ + ν μ BR= 99.99 % BR φυσική των π + e + ν e BR = 1.2 x 10-4 αλληλεπιδράσεων 5

6

7

Ενεργός διατομή αλληλεπίδρασης και ρυθμός μιας αλληλεπίδρασης 8

Ενεργός διατομή Όταν έχουμε σκέδαση δύο σωματιδίων, μιλάμε για την ενεργό διατομή της αλληλεπίδρασης Η ενεργός διατομή μπορεί να θεωρηθεί σαν η ενεργός επιφάνεια που παρουσιάζει ο πυρήνας Χ σε σημειακό επερχόμενο σωματίδιο α α σ t o t X R Αλλά δεν είναι το ίδιο!% Δεν έχουμε hit or miss στην αλληλεπίδραση σωματιδίων. Βέβαια, η ενεργός διατομή δεν είναι γεωμετρικός παράγοντας, αλλά συλλογική ιδιότητα των δύο σωματιδίων που αλληλεπιδρούν. Εξαρτάται και από τον τύπο των σωματιδίων και από την ενέργειά τους 9

Παράδειγμα: ενεργός διατομή γ+d (d= 2 1 H= δευτέριο) γ+p Η ενεργός διατομή είναι συλλογική ιδιότητα των δύο σωματιδίων που αλληλεπιδρούν: εξαρτάται από τον τύπο των σωματιδίων και την ενέργειά τους 10

Μιά αίσθηση μεγέθους ενεργών διατομών Ας πάρουμε τη γεωμετρική θεώρηση μιας σκέδασης α Σωματίδιο α σκεδάζεται από πυρήνα με ακτίνα r = 6 fm. σ X R Αν θεωρήσουμε το α σημειακό που πέφτει τυχαία οπουδήποτε στον μεγάλο κύκλο R, και επίσης θεωρήσουμε την επιφάνεια σ που παρουσιάζει ο πυρήνας σαν την ενεργό επιφάνεια αλληλεπίδρασης, τότε η ενεργός διατομή αλληλεπίδρασης είναι σ = π * r 2 = 113 fm 2 = 1.13 b H πιθανότητα το α να πέσει πάνω στον πυρήνα = π * r 2 / π * R 2 = σ / (π * R 2 ), με σ=1.13 b, που είναι η σωστή τάξη μεγέθους για ισχυρές πυρηνικές αλληλεπιδράσεις. 11

Διαφορική Ενεργός διατομή Αν το σωμάτιο προσπίστει με b+db η σκέδαση θα γίνει σε γωνία θ+dθ (αν περάσει από απειροστή επιφάνεια dσ θα σκεδαστεί σε στεραιά γωνία dω) Σωμάτιο (ηλεκτρόνιο) σκεδάζεται (soft) από δυναμικό (Coulomb, π.χ. πρωτόνιο), κατά γωνία θ Η σκέδαση αυτή είναι συνάρτηση της απόστασης b (impact parameter) H θ(b) εξαρτάται από το δυναμικό dσ = D(θ)dΩ Ο συντελεστής αναλογίας D(θ) ονομάζεται διαφορική ενεργός διατομή 12

Διαφορική Ενεργός διατομή dσ = b db dφd(θ) dω = sin(θ) dθ dφ 13

Σκέδαση Rutherford Αν ο πυρήνας είναι σημειακό φοτίο: Rutherford approximatιοn 14

Ενεργός διατομή: επί μέρους και ολική Η ενεργός διατομή δεν είναι γεωμετρικός παράγοντας% Εξαρτάται από τα σωματίδια που αλληλεπιδρούν και τις ενέργειές τους π.χ. σ(π+p) > σ(e+p) > σ(ν+p) Εξαρτάται επίσης και από τα παραγόμενα σωματίδια και τα χαρακτηριστικά τους Mπορούμε να ορίσουμε τις επί μέρους ενεργές διατομές = exclusive cross section ) = σ i% π.χ., σ(pp W), σ(pp Z) ολική ενεργός διατομή = inclusive cross section = σ t o t = Σ σ i % π.χ., σ tot (pp) = σ(pp W) + σ(pp Z) +... 15

Ενεργός διατομή και ρυθμός αλληλεπίδρασης Δέσμη σωματιδίων α, προσπίπτει με ταχύτητα υ σε υλικό με πυρήνες Χ% Χ α ρ α = επιφανειακή πυκνότητα da δέσμης σωματιδίων α υ*dt Επιφανειακή πυκνότητα της δέσμης α = ρ α = αριθμός σωματιδίων α, ανά μονάδα επιφάνειας Ροή φ των σωματιδίων α : αριθμός σωματιδίων α, από επιφάνεια da σε χρόνο dt : ρ α * da * υ * dt. Αριθμός σωματιδίων α ανα μονάδα επιφάνειας, ανά μονάδα χρόνου: φ = ρ α * υ Αριθμός των α που διέρχεται από επιφάνεια π R 2 γύρω έναν πυρήνα Χ, στη μονάδα χρόνου (dt=1) : ρ α * υ * π R 2 Πιθανότητα αλληλεπίδρασης ενός α με έναν πυρήνα Χ = Ρυθμός (dn/dt) αλληλεπίδρασης σωματιδίων α με έναν πυρήνα Χ: (ρ α *υ*π R 2 )*(σ/ π R 2 ) = ρ α *υ*σ tot = ροή * ενεργός διατομή σ πr 2 16

Ενεργός διατομή και μέση ελεύθερη διαδρομή Δέσμη σωματιδίων α, προσπιτει με ταχύτητα υ σε υλικό με πυρήνες Χ Αντίστοιχα με την προηγούμενη σελίδα: Ρυμός αντίδρασης (dn/dt) ενός σωματιδίου α με τους πυρήνες Χ του στόχου: ρ x *υ * σ tot (σαν να είμαι πάνω στο α και να βλέπω τους πυρήνες Χ να έρχονται με ταχύτητα υ, oπότε έχω: ροή των σωματιδίων Χ * ενεργός διατομή αλληλεπίδρασης) Για μία αλληλεπίδραση απαιτείται κατά μέσο όρο χρόνος τ = 1/(ρ x *υ * σ tot ) da υ*dt Μέση ελεύθερη διαδρομή = τ*υ = 1/(ρ x * σ tot ) α Χ ρ Χ = επιφανειακή πυκνότητα πυρήνων Χ 17

Ρυθµός αλληλεπίδρασης 18

Σκέδαση: α + b -> c + d a b 19

Σκέδαση και ενεργός διατομή a b σ=κάτι σαν την επιφάνεια που παρουσίαζει το σωματίδιο b στο επερχόμενο σωματίδιο α% Αλλά δεν είναι το ίδιο!% Δεν έχουμε hit or miss στην αλληλεπίδραση σωματιδίων 20

Σκέδαση και ενεργός διατομή Ισύχει και για δέσμες σωματιδίων 21

Ο Χρυσός Κανόνας του Fermi O Χρυσός Κανόνας για την Διασπάση σωματιδίου πυκνότητα των καταστάσεων dn/de0 (Phase space) χώρος των φάσεων Phase space 22

23

Κινηματική και Φυσική των αλληλεπιδράσεων Η πιθανότητα να συμβεί κάποια διάσπαση και η κατανομή των προϊόντων στο χώρο υπολογίζεται από τη φυσική της αλληλεπίδρασης Η ενέργεια και ορμή των προϊόντων μιάς διάσπασης είναι θέμα κινηματικής 24

Ισότροπη κατανομή στο χώρο (στερεά γωνία Ω) Αν δεν το υπαγορεύη η φυσική της αλληεπίδρασης η κατανομή των προϊόντων στον χώρο είναι ισοτροπική 25

Isotropic distribution of products 26

Μερικοί σχετικοί ιστότοποι Rutherford scattering:% http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html#c2% Ενεργός διατομή σκέδασης:% http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/crosec.html#c5% Great experiments in Physics% http://hyperphysics.phy-astr.gsu.edu/hbase/grexp.html#c1 27

BACKUP SLIDES 28

29

Σχετικιστική κινηματική: Σχετικιστική κινηματική E = mc 2 = η ενέργεια πού έχω επειδή απλά και μόνο έχω μάζα m ενέργεια μάζα c = ταχύτητα του φωτός Η μάζα είναι μια μορφή ενέργειας γενικά, µ ε κινητική ενέργεια Κ,έχουµε : E= Κ+m c 2 E= m γ c 2, όπου γ = 1 1 β 2, και β = υ/c, µ ευ= ταχύτητα σωµατιδίου p= m γ υ= m γ β c,όπου p= ορµή E 2 = ( pc) 2 +(m c 2 ) 2 E [MeV], p [MeV/c], m [MeV/c 2 ] Σηµείωση: µε c = 1, γράφουµε : E 2 = p 2 +m 2,κλπ. 30

c= 197 MeV fm, όπου = h 2π Μονάδες c= 3 10 8 m /s µονάδα ταχύτητας 1 µονάδα ενέργειας ev = 1.6 10 19 C b V = 1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 10 9 ev) Σταθερά του Plank = h = 6.626 x 10-3 4 J s α= e 2 e2 [ mks]= 4 πε 0 c c [cgs]= 1 137 α = η σταθερά λεπής υφής = 1/137 µονάδα δράσης (ενέργειας χρόνου) 1 Θα χρησιμοποιούμε παντού: ev για ενέργεια (ή MeV στην πυρηνική), 1/4πε 0 = 1 σε όλους τους τύπους,% και θα βάζουμε: Μετράμε:% c= 197 MeV fm Μάζα: MeV/c 2 (αφού Ε = mc 2 ) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα δράσης = Ενέργεια * Xρόνος = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c 2 Mάζα ηλεκτρονίου = 0.511 MeV/c 2 Μάζα πρωτονίου = 938.3 MeV/c 2, Μάζα νετρονίου = 939.6 MeV/c 2 e 2 = α c, όπουα = 1 /137 31