SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

Σχετικά έγγραφα
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function


IIT JEE (2013) (Trigonomtery 1) Solutions

CRASH COURSE IN PRECALCULUS

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Trigonometry 1.TRIGONOMETRIC RATIOS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

PhysicsAndMathsTutor.com

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Trigonometric Formula Sheet

Inverse trigonometric functions & General Solution of Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Presentation of complex number in Cartesian and polar coordinate system

Section 8.3 Trigonometric Equations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Oscillatory integrals

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

If we restrict the domain of y = sin x to [ π 2, π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

1. For each of the following power series, find the interval of convergence and the radius of convergence:

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Matrices and Determinants

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

TRIGONOMETRIC FUNCTIONS

Section 7.6 Double and Half Angle Formulas

α β

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Quadratic Expressions

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Areas and Lengths in Polar Coordinates

Solve the difference equation

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

MathCity.org Merging man and maths

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Derivations of Useful Trigonometric Identities

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Areas and Lengths in Polar Coordinates

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Orthogonal polynomials

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

Differential equations

Homework for 1/27 Due 2/5

B.A. (PROGRAMME) 1 YEAR

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 4.1 Solutions Math 5110/6830

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Homework 8 Model Solution Section

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Bessel function for complex variable

derivation of the Laplacian from rectangular to spherical coordinates

Math221: HW# 1 solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6 BLM Answers

2 Composition. Invertible Mappings

B.A. (PROGRAMME) 1 YEAR

Example Sheet 3 Solutions

Answer sheet: Third Midterm for Math 2339

Fractional Colorings and Zykov Products of graphs

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

ST5224: Advanced Statistical Theory II

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Rectangular Polar Parametric

DIPLOMA PROGRAMME MATHEMATICS HL FURTHER MATHEMATICS SL INFORMATION BOOKLET

Math 6 SL Probability Distributions Practice Test Mark Scheme

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

C.S. 430 Assignment 6, Sample Solutions

Trigonometry Functions (5B) Young Won Lim 7/24/14

w o = R 1 p. (1) R = p =. = 1

Section 9.2 Polar Equations and Graphs

F-TF Sum and Difference angle

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

Instruction Execution Times

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Ψηφιακή Επεξεργασία Εικόνας

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Reminders: linear functions

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Chapter 1 Complex numbers

On Generating Relations of Some Triple. Hypergeometric Functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Transcript:

SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos π (-) ; t π 0 where I ( + ) π ( + ) π (b)si ( ) &cos 0 where I π 5π (c)si 5 or si cos 75 or cos ; π + 5π cos 5 or cos si 75 or si ; + t 5 cot 75 ; t 75 + cot 5 + π + ; cos π (d)si π 5 (e) si or si 0 π π ; t ; t + π 5+ & cos or cos 5 TRIGONOMETRIC FUNCTIONS OF ALLIED ANGLES : If θ is y gle, the θ, 90 ± θ, 0 ± θ, 70 ± θ, 0 ± θ etc re clled ALLIED ANGLES () si ( θ) si θ ; cos ( θ) cos θ (b) si (90 - θ) cos θ ; cos (90 θ) si θ (c) si (90 + θ) cos θ ; cos (90 + θ) si θ (d)si (0 θ) si θ; cos (0 θ) cos θ (e) si (0 + θ) si θ ; cos (0 + θ) cos θ (f) si (70 θ) cos θ ; cos (70 θ) si θ (g) si (70 + θ) cos θ ; cos (70 + θ) si θ TRIGONOMETRIC FUNCTIONS OF SUM OR DIFFERENCE OF TWO ANGLES : () si (A ± B) sia cosb ± cosa sib (b) cos (A ± B) cosa cosb sia sib (c) si²a si²b cos²b cos²a si (A+B) si (A B) (d) cos²a si²b cos²b si²a cos (A+B) cos (A B) t A ± t B cot A cot B (e) t (A ± B) (f) cot (A ± B) t A t B cot B ± cot A 5 FACTORISATION OF THE SUM OR DIFFERENCE OF TWO SINES OR COSINES : C+ D C D C+D C D () sic + sid si cos (b) sic sid cos si C+D C D C+ D C D (c) cosc + cosd cos cos (d) cosc cosd si si TRANSFORMATION OF PRODUCTS INTO SUM OR DIFFERENCE OF SINES & COSINES : () sia cosb si(a+b) + si(a B) (b) cosa sib si(a+b) si(a B) (c) cosa cosb cos(a+b) + cos(a B) (d) sia sib cos(a B) cos(a+b) 7 MULTIPLE ANGLES AND HALF ANGLES : of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL () si A sia cosa ; si θ si θ cos θ

(b) cosa cos A si A cos A si A ; cos θ cos θ si² θ θ cos si θ cos A cos A + cos A, si A cos A ; t A cos A cos θ + cos θ, si θ cos θ ta t( θ ) (c) t A ; t θ t A t ( θ ) ta t A (d) si A, cos A (e) si A sia si A t A t A (f) cos A cos ta t A A cosa (g) t A t A THREE ANGLES : ta+ tb+ tc tatbtc () t (A+B+C) tatb tbtc tcta NOTE IF : (i) A+B+C π the ta + tb + tc ta tb tc π (ii) A+B+C the ta tb + tb tc + tc ta (b) If A + B + C π the : (i) sia + sib + sic sia sib sic A B C (ii) sia + sib + sic cos cos cos 9 MAXIMUM & MINIMUM VALUES OF TRIGONOMETRIC FUNCTIONS: () Mi vlue of t θ + b cot θ b where θ R (b) Mx d Mi vlue of cosθ + bsiθ re + b d + b (c) If f(θ) cos(α + θ) + bcos(β + θ) where, b, α d β re kow qutities the + b + b cos( α β) < f(θ) < + b + bcos( α β) (d) If α,β 0, π d α + β σ (costt) the the mximum vlues of the expressio cosα cosβ, cosα + cosβ, siα + siβ d siα siβ occurs whe α β σ/ (e) If α,β 0, π d α + β σ(costt) the the miimum vlues of the expressio secα + secβ, tα + tβ, cosecα + cosecβ occurs whe α β σ/ (f) If A, B, C re the gles of trigle the mximum vlue of sia + sib + sic d sia sib sic occurs whe A B C 0 0 (g) I cse qudrtic i siθ or cosθ is give the the mximum or miimum vlues c be iterpreted by mkig perfect squre 0 Sum of sies or cosies of gles, si α + si (α + β) + si (α + β ) + + si ( α + β) cos α + cos (α + β) + cos (α + β ) + + cos ( α + β) si si EXERCISE I β β si si si α+ β β β cos α+ β Q Prove tht cos²α + cos² (α + β) cos α cos β cos (α + β) si²β Q Prove tht cos α si²β + cos (α + β) si α si β + cos (α + β) Q Prove tht, t α + t α + t α + cot α cot α Q Prove tht : () t 0 t 0 t 0 t 0 π π 5π 7π (b) t 9 t 7 t + t (c) si + si + si + si Q5 Clculte without usig trigoometric tbles : cos 0 cos0 () cosec 0 sec 0 (b) cos 0 cot 0 (c) si 0 sec5 cos0 π π 5π 7π (d) si0 + si5 (e) cos + cos + cos + cos si5 (f) t 0 t 50 + t 70 7π Q() If X si θ + π π 7π + si θ + si θ +, Y cos θ + π π + cos θ + cos θ + of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

X Y the prove tht tθ Y X (b) Prove tht si² + si² + si² 9 + si² si² 9 + si² Q7 Show tht : () cot 7 or t ( + )( + ) or + + + (b) t + m+ Q If m t (θ - 0 ) t (θ + 0 ), show tht cos θ (m ) π y Q9 If t + t π x si y + si x +, prove tht si x si x Q0 If cos (α + β) 5 ; si (α - β) 5 & α, β lie betwee 0 & π, the fid the vlue of t α tβ siβ Q Prove tht if the gles α & β stisfy the reltio ( m > ) t α tα tβ the si( α+β) m m+ m Q () If y 0 cos²x si x cos x + si²x, the fid the gretest & lest vlue of y (b) If y + si x + cos x, fid the mximum & miimum vlues of y x R (c) If y 9 sec x + cosec x, fid the miimum vlue of y x R (d) Prove tht cos θ (e) Prove tht ( ) π + + 5 cos θ + lies from - & 0 + si θ + cos θ lies betwee ( + 5) & ( 5) + ta Q If A + B + C π, prove tht (t A) (cot A) tbtc Q If α + β c where α, β > 0 ech lyig betwee 0 d π/ d c is costt, fid the mximum or miimum vlue of () si α + si β (b) si α si β (c) t α + t β (d) cosec α + cosec β Q5 Let A, A,, A be the vertices of -sided regulr polygo such tht ; + Fid the vlue of A A A A A A Q Prove tht : cosec θ + cosec θ + cosec θ + + cosec θ cot (θ/) cot - θ Q7 For ll vlues of α, β, γ prove tht; α+β β+ γ γ+α cos α + cos β + cos γ + cos (α + β + γ) cos cos cos si A cos B si A si B Q Show tht + cos A si B si(a B) + cos A cos B t α + t γ si α + si γ Q9 If t β, prove tht si β + t α t γ + si α si γ Q0 If α + β γ, prove tht cos² α + cos² β + cos² γ + cos α cos β cos γ β γ ( )( )( ), show tht Q If α + β + γ π t α t t β γ ( t α )( t )( t ) Q If A + B + C π d cot θ cot A + cot B + cot C, show tht, si (A θ) si (B θ) si (C θ) si θ π π 5π 7π Q If P cos + cos + cos + + cos d 9 9 9 9 π π π 0π Q cos + cos + cos + + cos, the fid P Q si α + siβ + si γ cosα + cosβ + cos γ Q If A, B, C deote the gles of trigle ABC the prove tht the trigle is right gled if d oly if sia + sib + sic 0 Q5 Give tht ( + t )( + t )( + t 5 ), fid EXERCISE II Q If t α p/q where α β, α beig cute gle, prove tht; Q (p cosec β q sec β) p + q Let A, A, A A re the vertices of regulr sided polygo iscribed i circle of rdius R If (A A ) + (A A ) + + (A A ) R, fid the umber of sides i the polygo of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

cosθ + cosφ Q Prove tht: (cosθ + cosφ) cos(θ + φ) (siθ + siφ) si(θ + φ) cos( θ φ) Q Without usig the surd vlue for si 0 or cos 0, prove tht si 0 cos 0 5 six six si9x Q5 Show tht, + + (t7x tx) cosx cos9x cos7x 5 5 r π r π Q Let x cos d x r cos, the show tht r π x x cos ec, where Π deotes the cotiued product π Q7 If θ, prove tht t θ t θ + t θ t θ + t θ t θ 7 7 Q For 0 < x < π cosx prove tht, > si x(cosx six) π 7 π π π Q9 () If α prove tht, si α + si α + si α (b) si si si 7 7 7 7 cosk Q0 Let k, the prove tht cos k cos( ) k si k 0 + Q Prove tht the vlue of cos A + cos B + cos C lies betwee & where A + B + C π Q If cosa tb, cosb tc d cosc ta, the prove tht sia sib sic si + cos x Q Show tht x R c ot hve y vlue betwee d Wht iferece si x si x c you drw bout the vlues of? + cos x Q If ( + si t)( + cos t) 5 Fid the vlue of ( si t)( cos t) si α cos α si α cos Q5 Prove tht from the equlity + follows the reltio ; + b + b b Q Prove tht the trigle ABC is equilterl iff, cot A + cot B + cot C Q7 Prove tht the verge of the umbers si,,,,, 0, is cot Q Prove tht : si 7 ( 5+ 5) / ( 5) / A Q9 If A+B+C π; prove tht t B C + t + t Q0 If A+B+C π (A, B, C > 0), prove tht si A si B si C α 7 ( + b) Q Show tht ellimitig x & y from the equtios, si x + si y ; b cos x + cos y b & t x + t y c gives c ( + b ) Q Determie the smllest positive vlue of x (i degrees) for which t(x + 00 ) t(x + 50 ) t x t (x 50 ) x t Q Evlute : x cos β + γ α γ + α β α + β γ Q If α + β + γ π & t t t, the prove tht; + cos α + cos β + cos γ 0 Q5 x R, fid the rge of the fuctio, f (x) cos x (si x + si x + si α ) ; α [0, π] EXERCISE III Q sec xy θ is true if d oly if : [JEE 9, ] (x+ y) (A) x + y 0 (B) x y, x 0 (C) x y (D) x 0, y 0 Q () Let be odd iteger If si θ (A) b 0, b r 0 b r si r θ, for every vlue of θ, the : (B) b 0 0, b 5 of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

(C) b 0, b (D) b 0 0, b + (b) Let A 0 A A A A A 5 be regulr hexgo iscribed i circle of uit rdius The the product of the legths of the lie segmets A 0 A, A 0 A & A 0 A is : (A) (B) (C) (D) (c) Which of the followig umber(s) is/re rtiol? [ JEE '9, + + out of 00 ] (A) si 5º (B) cos 5º (C) si 5º cos 5º (D) si 5º cos 75º θ Q For positive iteger, let f (θ) t ( sec θ) ( sec θ) ( sec θ) ( + sec θ) The π π π π (A) f (B) f (C) f (D) f 5 [JEE '99,] Q() Let f (θ) si θ (si θ + si θ) The f (θ) : [ JEE 000 Screeig out of 5 ] (A) 0 oly whe θ 0 (B) 0 for ll rel θ (C) 0 for ll rel θ (D) 0 oly whe θ 0 (b) I y trigle ABC, prove tht, cot A + cot B + cot C cot A cot B cot C [JEE 000] Q5() Fid the mximum d miimum vlues of 7 cos x si x (b) Fid the smllest positive vlues of x & y stisfyig, x y π, cot x + cot y [REE 000, ] Q If α + β π d β + γ α the tα equls [ JEE 00 (Screeig), out of 5 ] (A) (tβ + tγ) (B) tβ + tγ (C) tβ + tγ (D) tβ + tγ Q7 If θ d φ re cute gles stisfyig siθ, cos φ, the θ + φ [JEE 00 (Screeig)] π π π π π 5π 5π (A), (B), (C), (D), π Q I equilterl trigle, cois of rdii uit ech re kept so tht they touch ech other d lso the sides of the trigle Are of the trigle is (A) + (B) + (C) + 7 (D) + 7 [JEE 005 (Screeig)] π Q9 Let θ 0, d t (tθ) tθ, t (tθ) cotθ, t (cotθ) tθ, t (cotθ) cotθ, the (A) t > t > t > t (B) t > t > t > t (C) t > t > t > t (D) t > t > t > t [JEE 00, ] ANSWER SHEET (EXERCISE I) Q 5 () (b) (c) (d) (e) 5 (f) Q 0 5 Q () y mx ; y mi (b) y mx ; y mi, (c) 9 Q () mx si (c/), (b) mx si (c/), (c) mi t (c/), (d) mi cosec (c/) Q 5 7 Q Q5 EXERCISE II Q 7 Q, Q 0 Q x 0 Q Q5 si x x si α y si α si EXERCISE III Q B Q () B, (b) C, (c) C Q A, B, C, D Q () C Q5 () mx 5 & mi 5 5π π ; (b) x ; y Q C Q7 B Q B Q9 B of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

EXERCISE IV (Objective) Prt : (A) Oly oe correct optio t ( x )cos ( π π + x) si ( 7π x) cos( x π )t ( π + x) whe simplified reduces to: (A) si x cos x (B) si x (C) si x cos x (D) si x π The expressio + π + α π si α si ( ) + π + α si + α si (5 ) is equl to (A) 0 (B) (C) (D) si α + si α If t A & t B re the roots of the qudrtic equtio x x + b 0, the the vlue of si (A + B) (A) (B) (C) (D) + ( b) + b (b+ c) b ( ) The vlue of log [cos (α + β) + cos (α β) cos α cos β] : (A) depeds o α & β both (B) depeds o α but ot o β (C) depeds o β but ot o α (D) idepedet of both α & β cos0 + si70 si50 si0 5 si 0 is equl to: (A) (B) (C) / (D) oe If cos A /, the the vlue of cos (A/) si (A/) si (5A/) is 7 (A) (B) (C) (D) If y cos (5º + x) + (si x cos x) the the mximum & miimum vlues of y re: (A) & 0 (B) & 0 (C) & (D) oe π The vlue of cos 9 π 5π 7π + cos + cos + + cos is equl to: 9 9 9 (A) / (B) 0 (C) (D) oe 9 The gretest d lest vlue of log ( six cosx + ) re respectively: (A) & (B) 5 & (C) 7 & 5 (D) 9 & 7 0 I right gled trigle the hypoteuse is times the perpediculr drw from the opposite vertex The the other cute gles of the trigle re π π π π π π π π (A) & (B) & (C) & (D) & 5 0 cos90 (A) + si50 (B) (C) (D) oe π If < α < π, the cot α + is equl to si α (A) + cot α (B) cot α (C) cot α (D) + cot α π π x If x π, the cos + si x + si x is lwys equl to (A) (B) (C) (D) oe of these If cos x + si x, the vlue of 7 cos x + si x is equl to (A) or (B) or (C) or (D) oe of these 5 If cosec A + cot A, the t A is (A) If cot α + t α m d 5 (B) cos α cos α, the (C) 7 7 (D) (A) m (m ) / (m ) / (B) m(m ) / (m ) / (C) (m ) / m(m ) / (D) (m ) / m(m ) / 7 cosx + cos x + 5cosx + 0 The expressio is equl to cos5x + 5cos x + 0cos x (A) cos x (B) cos x (C) cos x (D) + cos x If sia sib cos A d cosb 5, 0 < A, B < π/, the t A + t B is equl to (A) / 5 (B) 5 / (C) (D) ( 5 + )/ 5 9 If si θ k, the the vlue of k (A) k (B) k k t t θ θ + cot cot θ θ is equl to (C) k + (D) k 7 of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

Prt : (B) My hve more th oe optios correct 0 Which of the followig is correct? (A) si > si (B) si < si (C) cos > cos (D) cos < cos If si β si (α + β), the t (α + β) t α is (A) idepedet of α (B) idepedet of β (C) depedet of both α d β (D) idepedet of α but depedet of β si( α + β) π cos ( α + β) cos It is kow tht si β & 0 < β < π the the vlue of is: 5 siα (A) idepedet of α for ll β i (0, π) (B) 5 for t β > 0 (7 + cot α) (C) for t β < 0 (D) oe 5 If the sides of right gled trigle re {cosα + cosβ + cos(α + β)} d {siα + siβ + si(α + β)}, the the legth of the hypoteuse is: α β α + β (A) [cos(α β)] (B) [ cos(α + β)] (C) cos (D) si If x sec φ t φ & y cosec φ + cot φ the: y + + x y (A) x y (B) y x (C) x y + (D) xy + x y + 0 5 ( + ) si α + ( ) cos α ( + ) if t α (A) (B) (C) (D) + b If t x, ( c) c y cos x + b si x cos x + c si x z si x b si x cos x + c cos x, the (A) y z (B) y + z + c (C) y z c (D) y z ( c) + b cosa + cosb sia + sib 7 + sia sib cosa cosb A B A B (A) t (B) cot : is eve (C) 0 : is odd (D) oe The equtio si x + cos x hs rel solutio if (A) (, ) (B), (C) (D), EXERCISE IV (Subjective) The miute hd of wtch is 5 cm log How fr does its tip move i 50 miutes? (Use π ) If the rcs of the sme legth i two circles subted gles 75 d 0 t the cetre, fid the rtio of their rdii Sketch the followig grphs : (i) y si x (ii) y t x (iii) y si x π π Prove tht cos + θ cos (π + θ) cot θ + cot(π + θ) 5 θ 9θ 5 θ Prove tht cos θ cos cos θ cos si 5 θ si π x x If t x, π < x <, fid the vlue of si d cos α π cot α 9α 7 prove tht + cos cot α sec cosec α α π cot Prove tht, si x si x + cos x cos x cos x p 9 If t α where α β, α beig cute gle, prove tht; (p cosec β q sec β) q p + q t α + t γ si α + si γ 0 If t β t α t γ, prove tht si β si α si γ Show tht: (i) cot 7 or t ( ) ( + ) (ii) t + + or + + + (iii) si 7 ( 5 + 5 ) / ( 5 ) / of 9 TRIGONO METRIC RATIO & IDENTITY TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL

Prove tht, t α + t α + t α + cot α cot α If cos (β γ) + cos (γ α) + cos (α β), prove tht cos α + cos β + cos γ 0, si α + si β + si γ 0 si α cos α si α cos α Prove tht from the equlity + follows the reltio + b + b b ( + b) 5 Prove tht: cosec θ + cosec θ + cosec θ + + cosec θ cot (θ/) cot θ Hece or π π π π otherwise prove tht cosec + cosec + cosec + cosec 0 5 5 5 5 Let A, A,, A be the vertices of sided regulr polygo such tht; + AA AA AA Fid the vlue of 7 If A + B + C π, the prove tht (i) t² A + t² B + t² C (ii) si A si B si C (iii) cos A + cos B + cos C 9 of 9 TRIGONO METRIC RATIO & IDENTITY FREE Dowlod Study Pckge from website: wwwtekoclssescom x by xsiθ bycosθ If + cosθ siθ b, 0 Show tht (x) / + (by) / ( b ) / cos θ si θ 9 If P cos θ + si θ d Q cos θ si θ, the show tht P P si θ cos θ P Q Q si θ cos θ Q d hece show tht P si θ cos θ, Q cos θ si θ 0 If si (θ + α) & si (θ + β) b (0 < α, β, θ < π/) the fid the vlue of cos (α β) b cos(α β) If A + B + C π, prove tht t B t C + t C t A + t A t B + sec A sec B sec C If t α + tα tβ t β + tβ tα, the prove tht ech side is equl to or t α ± t β EXERCISE IV D B A D 5 B C 7 B A 9 B 0 B B B B A 5 C A 7 B D 9 B 0 BC AB BC AC BCD 5 BD BC 7 BC BD EXERCISE V 75 cm r : r : 5 x si 0 x d cos 0 7 0 b TEKO CLASSES, HOD MATHS : SUHAG R KARIYA (S R K Sir) PH: (0755)- 00 000, 990 5, BHOPAL