= = = = = = www.climatechange.cn 8 = 5!"#$% 212 9 PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS Vol. 8 No. 5 September 212 doi:1.3969/j.issn.1673-1719.212.5.4,,,.!"#$%&'()*+,-./123456789=[j].!"#$%, 212, 8 (5): 334J341!"#$%&'()*+,-./!"#$%& == N N N Peter Frenzel O Claudia Wrozyna P N=!"#$%&'()#$%&*+,-./12345678=NMMNMN O=!!" J!"#$!%&'(=MTTQPP=!"#$%&'(!=PUNMS =!"#$%&'()*+,-./123!"#$%&'!"#$%&'()*+,-.!"#!"#$ 162 m!"#$%&'()*+,-./1234567!"!"#$%& 7 9!"!"#$%&'(pH!"#$%&'()*+,-./!"#$%&'()*+!"#$%&'(!"#$%&'()*+,-./-12345!"#$%&'()*+,-./123J!"#$%&'()*+,-./!"#$%&'( 72 cm!"#$%&'()*+,-!"#$%&'()*+!"#$%&'()!"!"#$%&'()*! 6. kabp!"#$%& 6.4.3 kabp!"#$%4.32. kabp!"#$% 2. kabp!"#$%&'(!!"!!"!" = ====!"#$%&'()*"+,-!"#$%&'()*+,-!"#$%&'!() x1j2z =!"#$%&'()* x 3z!!"#$%&!"!"#$% x4z!" x5j6z!"#$%& x7j8z! x9j1z!"#$%&'()!"#$%&'(!"#$%&'!"#$%&'()$*+, x11j12z ====!"#$%&'()*+,-,./!"#$%&'()*+,-./!"#$%&'()!"!!"#$!"# x13j14z!"#$%& x15z x16z!"#$%&zhu x17z!"#$%&!"#$%&'()*+!,-./1!"#$!"#$%!&"!"#$%!"#$%&'()*+! 212-3-15; =! 212-5-9!!"#$%&'()4113529!"#$%&'KZCX2-EW-113!"#$%&'()*+,-./ ==========212CB95611!!!"#$%&'()*+,!"#$!lpzhu@itpcas.ac.cn
www.climatechange.cn!"#$%&'()*+,-./123456789 5 335!"#$%&!"#$%&'()*!"#"$%&'()*+,-!./1!!"#$%&'()*+,!"#$%&'()*+,-./!"#$"%&'()*+%,-./1!"#$%&'()*+,-$./ N==!" NKN==!"#$%& ====!"#$%&'()*+,-./-!"#$%&! 2832838N 913933E! 53 m 29 km 2!1232.9 km 2! 4.2! 65 m!"#$%&'()*!!"#$%&!"#$%&'()*!"#$ 35 mm 9% 69 x18z!"#$%&'()*+,!"#$%!"#$%&'()*+!"55!"#$%&!"1 62 m!"#$%&'()*55 m! 1! 72 cm! PYG9-4 12 cm!"#$ 4!!Hydro Lab DS5!"#$%&'!"#$%& 51!"#$%&'!pH!"#$%& PAR! 23! 5 m!"#$%&'()*!"# 1 NKO==! ====!"#$%13 g1 ml!"# 4 ml!"# 2 h 5%!"#$%&H 2 O 2 24 h!"#$%&'()* 2512565 µm 3!"!"#$!"#$%&!"#$!"#$%&'()*+,!"#$%!"#$%&!"!"#$%&'()*+,-./!!"#$%&'()*+,-./12 25 µm!"#$%!&!"#!"#$%!"&'!"#()*+,!"#$%&'()*+,-./!"#$!"#$%&'()!"#$%!"#$!"#$!"#!$%&'()*+,-./12!"#$ x15i19z ====!"#$%&'()*+,-.!"#$%&'()*!"# Dionex ICS 25/2!"#$%!"#!"#$%&!"# Elementar VarioE Thermo ICP-MS X!!TOC TIC!"#$% TOC-VCPH!"!"# Microtrac S35!"!"# 28.65N 28.6N!"!" 28.55N 28.5N 9.2E 9.25E 9.3E 9.35E 9.4E 9.45E 9.5E 9.55E 1!"#$%&'()*+,-./1234 Fig. 1 Distribution of samples sites and in situ measurements in Pumayum Co of Tibetan Plateau
= = = = = = www.climatechange.cn!"#$% 336 212 NKP==!"#$% ====!"#$%&'()*+,-./1!"#$%&'()*&'+,-./!"#$%&'()*+,!"#$!"#$%&'()*+!"#$%!"!"#$%&'()*+,-.!DCA!"#$%&'()*!"!#$2!"#$%!!"#$%&'()*+,-./!"#$%&'()* x2z!"#$%&'()*+,-. x21z!"#$%&pcca!"#$!"#$%& x 22z!"#$%& CCA!"#$%&'()*+,-./!"#$%&!"#$%&'()* x23j24z!"#$canoco 4.5!!"#$%&'Monte Carlo permutation test!"#$% O==!"#$%&'()*+,-.. OKN==!"#$%&'()*+, ====!"#$%&'()*7 9!"!"#$Candona candida!" Candona gyirongensis!"candona xizangensis!"eucypris gyirongensis!"ilyocypris xizangensis! Cytherissa lacustris!"limnocythere inopinata!"#leucocytherella sinensis!"#leucuocythere dorsotuberosa!"#$%&!"#$%&'( C. canc. gyic. xize. gyii. xizc. lacl. ino L. sin L. dor55!"#$%&'!!"#21 119 385!"# L. ino!" 35 m!"#!"#$%!"#$%&!"!"#$%&'(l. sin!"#$%&!"#$%&'!"#$%&'() C. xizi. xiz L. dor!"#$%&'(!c. canc. gyi E. gyi!"#$ 35 m!"#$%c. lac!"#$% 4 m!"#$% OKO==!"#$%&'()*+,-./ ====!"#$%&'()*+,!"!"#$!PAR 21212 µmol/ (sm 2 )!"5.511.8 ph!7.8 9.52!"#$%&!"# 429493 µs/cm!"#$%&'!"#8.49 1.94 mg/l!"# ====!"#$%&'()*++,-./!"#$%&'()*+,-./!"!"!"#$%&'()!"#$%&!"#$%&'()*!"#$%&'()*+,-./!"#$%&'()*+,-./12!"#$% PAR!"#$% E. gyic. canc. gyipar!"#$%& C. lac!"#$% L. dor PAR!"#$%&'()*#+,-./!"!"#$!"#$%&'!" x25z!"!"#$%&!"#$%&'()*+,-.!"!"#$%&'()*+,-./&1!"#$%&'(ph!"#$%!"#$%&'()*+,-.!"#$%&'()*+,(-.par ph!"!"#$%& '()! 4!"#$%&'()*+, P==!"#$%&'()* PKN==!"#$% ====!"#$%&'()*+,-./1 DCA!"#$ 1 2!!" 2.8 2.4!"#$%&'()!"#$%&! "#$ PCCA
www.climatechange.cn!"#$%&'()*+,-./123456789 5 337 CCA ====!"#$%&' 4!"#$%& PCCA!"#$=PAR!"#$%&' 24%!" 21%!"#$%&'!PAR!"#$%&''(R =J.94I PY.1PAR!"#$%&'()*!"#$%&'()* ====CCA!"#$%&'()*+,-./!"#$ 2!"#$%&' phpar!"#$%&'()*+c. canc. gyie. gyi!"#$%!"!"# PAR ph!" C. lacc. xiz L. dor!"#$%&i. xiz L. sin!"#$%&'()*+!"#!"#$%&'()*+,!"#$!"#$%&'(par!"#$% PAR!"#$%&'()*+&,-./!"#!"#$%&'()*!"#$%&'()*+,-#. /1!"#$%&'()*+,!"# $%&'(R 2!!!"#$!"#$ R 2!"#!"#$%&'(!"#!" bootstrapping!"#$%& x19i26z ====1!"#$%&'(9!"#$!"#$%&'()!*+,-./12!"#$WA!"#$%&'()*+!"#$%&#'()*+,-./!"#R b2!wa-pls!"!"r 2 R b2!"#$%& WA-PLS 5!"#$%&'()*+,!"# 3!"#$%&'()*!"#$!%&'()*+,-. 1= J!"#$%&#'()*+,-./ Table 1 Ostracod-inferred water depth transfer functions and bootstrapping test results! 2! R 2!" R b 1. WA_Inv WA_Cla 11.36 13.91.69.69.66.67 2 WATOL_Inv WATOL_Cla WA-PLS 1 1.89 12.75 14.39.72.72.69.7.71.67 J1. J2. 1 2. WA-PLS 2 WA-PLS 3 18.36 18.54.77.8.72.7 2!"#$%&'()*+,-./1234 Fig. 2 Canonical Correspondence Analysis ordination biplot and scores of surface sediments ostracod and selected water variables PKO==!"#$%&' ====!"#$%&'()*+,-./1!"#$%&'()*+,-weighted averaging regression and calibration modelwa!"#$%&'()*+,-./12!"#$%&'()*+,-./!"#$%&'()*+&',-./!"#$%&'()*+,-.(/12 WA-PLS 4 16.84.85.73 WA-PLS 5 15.47.87.77 ==== 3(a) 512 m= 56 m!"!"#$%&'()*!!" 1233 m!"#$% 3342 m!"#$4249 m!"#!"#$%&'(43.3 m!"#!" 35.8 m!"#$%&'()* 3(b) 24 m!"#$%!"#$%& [12 =YJ12 5!"#$%&' 2 m!"# 2464 m!"#$%!"#$%&
= = = = = = www.climatechange.cn 338!"#$% 212! /m 72 6 48 36 24 12 18 9 15 19 43 12 6 J6 J12 5 55 J18 J24 4 (a) (b) J3 12 24 36 48 6 72 8 16 24 32 4 48 56 64! /m! /m 3!"#$%"&'()*+, Fig. 3 Relationship between measured and estimated water depth by using a WA-PLS regression!"#$% Q==!"#$%&'SKM=â~_m=!"#$ QKN==mvdMV-Q!"#$ ====!"PYG9-47 cm! 21 Pb!"#$!"#$%&'()*+,!"#$% 3.7 m!"# PL6-1!"#$%&!"#$%&'()* 4aIb S!"#$%&!"# TOCTIC!"# 4cId 272 cm!"#$%&'()*+!"!"#$%&'()*+ 21 Pb!"#$%&'()*+,-.!"#$%&'()!"#$!"#$%&'()*!"# PL6-19 cm!"#$%& x27j28z PYG9-4!"#$% 72 cm!" 6. kabm 21 Pb!" /(Bq/mg) 21 Pb!" /(Bq/mg) TOC/% TIC/% 1 2 1 2 3 2 4.9 1.2 1.5 1.8.45.75 1.5 1 2! /cm 3 4 5 PYG9-4 y = J1.773lnx + 9.3612 R 2 =.746 S =.6 cm/a PL6-1 y = J1.831lnx + 8.96 R 2 =.3836 S =.6 cm/a PYG9-4 PL6-1 3 4 5! /cm 6 6 7 (a) (b) (c) (d) 7 4! PYG9-4!"# PL6-1 21 Pb!"#$%&'()*+ TOC TIC! Fig. 4 Comparions of sedimentary rates inferred by 21 Pb and TOC, TIC between gravity core PYG9-4 and piston core PL6-1
www.climatechange.cn!"#$%&'()*+,-./123456789 5 339 QKO==! SKM=â~_m!"#$%&'(!" ====!"#$% 2!"#$%&'(!"#$%&' PYG9-4!" 28!"#$%&'()"*+ WA-PLS 5!"#$%&'()*+,!"#$%&'()*+,-./)*1!"#$%&'()*+ ====!"#$%&'()*+TOCTIC!" 5!"#$ 6. kabp!"#$ 3! ==== I 6.4.3 kabp 35 m!"!"#$%&'()*+,!"#$!"#$%&'()*5.2 kabp!"#$ 1 m!"#$!"#$%&'(!"#$%&'(!"#$%&'()*!"#$%&!"#$%&'()*!"#$%&!"#$%&'()*+,-./ 5.2 kabp!"#$%&'()*+,-.!!"4.64.4 kabp!"# TIC!"#$%&'()*+!!"#$%!"#$%&'()*+!"#$!%&'()*!"#$%!"#$% ==== II 4.32. kabp!"#$%&!"4.33.6 kabp!"36 m!"#$%&'()*+,-./!!"#$%&'()*+,-./123!"#$%&'()*+,-./123!"#$%&"'()*+,-./ 3.63. kabp!" 3 m!"!"#$%&'()*+,-.!"#$%&'()*+2.8 kabp!"#!"#$%&'%()*+,!"#$%&'()!"#$%&'!"#$%&!"#$%&'(!"#$%&'!"#$%&'() 2.5 kabp!"#!"#$% 6 m!"#$%&'()!"#$%!"#$%&'()*+,-./123!"#$%&'(!"#$%&'(!"#$tic!" 2.5 kabp!"2.5 kabp!"#$% 2. kabp!"35 m!!"#$%&!"#$%&'(!"!"! L. sin!"#$%&!"#$%&'()*+,!"#$!"#$!"#$%&'()*+ TIC!" ====III2. kabp!"#$%&'!"2..8 kabp!"#$ 35 m (kabp).5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5.4.8.2.4.5 1..3.5.3.5.3.6.5 1..6 1.8 4 6 8 1 2 3 1. 2. 1. 2. 3. C. gyi C. lac C. xiz E. gyi I. xiz L. dor L. sin /m /µm TOC/% TIC/% III II I 5!"#$%&'()*+,- 6. kabp!"#$ Fig. 5 Paleo-climatic (since 6. kabp) changes in the Pumayum Co area from multi-proxies comparison
= = = = = = www.climatechange.cn!"#$% 34 212 TIC!""#$%&!"!"#$!"#$%&'()*+, 1.3 kabp!"#$%!!"!"l. sin!"!" TOC!"#$%&'()*+!"#!"!"#$%&'()*+,-.!"#$%&'()*+,-.!"#$%&!'()*!"#$%!"#$%&'()*+,-..8 kabp!"!!" TOC!!"#$%&'()*+,-./1!"#$%&'()*"+,-./!"#$%&'()*+,-#./#"!"#$%&'()*+,-./'!.2 kabp 175!"#$%!"!"!" TOC!"!"#$!"#$%&'(!!"#$%&'()*+,- R=== ====!"#$%&'()*+,-./1!"!"#$%&'()*+!"#!"#$%&!"#$!"#$%&'!"#$%&'()!"#$%&'()!"#$%&! "#$%&'()*+,-!"!"#$%&'()*+WA-PLS!"#$%&'()*+,-./1!"#$%&'()*+,-./1234 ====!"#$%&'()*+,-./1!"#$%&'()!"#$%&'!" 6.4.3 kabp!"#$%4.3 2. kabp!"#$ 2. kabp!" 4.3 kabp!"#$%&'()*+,-.!"#$%&'()*+! 4.3 kabp!"#$%&'()*+!"#$4.33.6 kabp!"#$%&!"#$%&'(!"#$%!"#$%&!"#$%&'()*!"#!$%&'()*+,-./!! [1] Oviatt C G. Lake Bonneville fluctuations and global climate change [J]. Geology, 1997, 25: 155J158 [2] Jones R N, McMahon T A, Bowler J M. Modeling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.184j199) [J]. J Hydrol, 21, 246: 159J18 [3],,,.!"#$%&'()*+,-. [J].!, 2, 45: 25J255 [4],.!" [M]. :!", 1998: 8 [5].!"#$ [J].!, 2, 55 (2): 194J22 [6],,,.!"#$%&'()*+,!"#$%&'()* [J].!, 24, 31(3): 269J277 [7] Fontes J C, Gasse F, Gibert E. Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1: chronology and stable isotopes of carbonates of a Holocene lacustrine core [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 12: 25J47 [8] Wang Ronglin, Scarpitta S C, Zhang Shuichang, et al. Later Pleistocene/ Holocene climate conditions of Qinghai-Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments [J]. Earth and Planetary Science Letters, 22, 23 (1): 461J477 [9] Lister G S, Kelts K, Chen Kezao, et al. Lake Qinghai, China: closedbasin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1991, 84: 141J162 [1],,. 15!"#$%&'()*+,- [J].!, 21, 2 (2): 199J26 [11] Mourguiart P, Wirrmann D, Fournier M, et al. Reconstruction quantitative des niveaux du petit lac Titicaca au cours de l'holocene [J]. C R Acad Sci Paris, 1992, 315 (II): 875J88 [12] Mischke S, Zhang Chengjun. Holocene cold events on the Tibetan Plateau [J]. Global and Planetary Change, 21, 72 (3): 155J163 [13],,.!"#$ : [M]. :, 2: 13J17 [14] Loffler H. The role of ostracods for reconstructing climatic change in Holocene and Late Pleistocene lake environment in Central Europe [J]. Journal of Paleolimnology, 1997, 18 (1): 29J32 [15] Mischke S, Herzschuh U, Massmann G, et al. An ostracod-conductivity transfer function for Tibetan lakes [J]. Journal of Paleolimnology, 27, 38: 59J524 [16] Frenzel P, Wrozyna C, Xie Manping, et al. Palaeo-water depth estimation for a 6-year record from Nam Co (Tibet) using an ostracod-based transfer function [J]. Quaternary International, 21, 218 (1J2): 157J 165 [17] Zhu Liping, Peng Ping, Xie Manping, et al. Ostracod assemblages and
www.climatechange.cn 5!"#$%&'()*+,-./123456789 341 their implications on environmental reconstruction in the Nam Co of the 986J111 Tibetan Plateau [J]. Hydrobiologia, 21, 648: 157J174 [24] Brooks S, Birks H. Chironomid-inferred late-glacial and early-holocene [18],,,.!"#$%&'()*+,- mean July air temperatures for Kra kenes Lake, western Norway [J].!"#$%&' [J].!", 26, 26 (5): 772J78 Journal of Paleolimnology, 2, 23 (1): 77J89 [19] Birks H. Quantitative palaeoenvironmental reconstructions: statistical [25] Meisch C. Freshwater ostracoda of Western and Central Europe [M]// modelling of quaternary science data [J]. Technical Guide, 1995, 5: 161J Schwoerbel J, Zwick P. Su βwasserfauna von Mitteleuropa. Berlin: 254 Spektrum Akademischer Verlag, 2: 522 [2] ter Braak C J F, Prentice I C. A theory of gradient analysis [J]. Advances [26] ter Braak C, Juggins S. Weighted averaging partial least squares in Ecological Research, 1988, 18: 271J317 regression (WA-PLS): an improved method for reconstructing [21] ter Braak C J F, Smilauer P. CANOCO reference manual and user's guide environmental variables from species assemblages [J]. Hydrobiologia, to CANOCO for Windows: software for canonical community ordination 1993, 269 (1): 485J52 (version 4) [R]. Newcastle: University of Newcastle, 1998 [27] Watanabe T, Matsunaka T, Nakamura T, et al. A new 14 C data set of the [22] Olander H, Birks H J B, Korhola A, et al. An expanded calibration model PY68W-PC sediment core from Lake Pumoyum Co (southeastern for inferring lakewater and air temperatures from fossil chironomid Tibetan Plateau) over the 19 kyr [J]. Radiocarbon, 21, 52 (2J3): 1435J assemblages in northern Fennoscandia [J]. The Holocene, 1999, 9 (3): 1442 279 [28] Lu Xinmiao, Zhu Liping, Nishimura M, et al. A high-resolution [23] Smol J P, Cumming B F. Tracking long-term changes in climate using environmental change record since 19 cal ka BP in Pumoyum Co, algal indicators in lake sediments [J]. Journal of Phycology, 2, 36: southern Tibet [J]. Chinese Science Bulletin, 211, 56 (27): 2931J294 Lake Level Fluctuations and Environmental Changes Reflected by Ostracods of Pumayum Co on Tibetan Plateau Since MiddleJLate Holocene Peng Ping 1, Zhu Liping 1, Ju Jianting 1, Peter Frenzel 2, Claudia Wrozyna 3 1 Key Laboratory of Tibetan Plateau Environmental Changes and Land Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 111, China; 2 Institute of Geosciences, Friedrich-Schiller University, Jena 7743, Germany; 3 Institute of Environmental Geology, Technical University of Braunschweig, Braunschweig 3816, Germany Abstract: The Pumayum Co is in the Indian monsoon rain shadow zone of the Tibetan Himalaya ranges. It is mainly supplied by glacial melting water, and sensitive to climatic changes. According to the lake s isobath distribution and transportation routes of the inputting rivers, we collected and analyzed ostracods of surface sediments and water indices from 1 to 62 m water depth in different areas. Our results have shown that there are 7 genera and 9 species ostracods in surface sediments of Pumayum Co. Their distributions are mainly influenced by lake water depth, ph, temperature and photosynthetically active radiation (PAR). Water depth is the most important environmental variable to dominate ostracods distribution through the Dentrended Correspondence Analysis and Canonical Correspondence Analysis. An ostracodsjwater depth transfer function with high precision has been built by using the weighted averaging partial least squares regression and calibration model. The transfer function has been applied to analyze ostracods of a 72 cm long gravity core and a historical lake water depth sequence has been reconstructed. We have compared the lake level fluctuations with TOC, TIC, grain-size of the core sediments. The results showed that the environmental changes since 6. kabp in Pumayum Co area could be divided into 3 stages: a warm-cool period with a shallow lake level from 6. to 4.3 kabp, a warm period with a fluctuated lake level from 4.3 to 2. kabp, and a warm period with expanding lake area from 2. kabp to present. Key words: Tibet; Pumayum Co; ostracod; lake level; environmental change; paleoclimate