ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ. Τύποι καταχωρητών: (α) σειριακής-εισόδου-σειριακής-εξόδου, (β) σειριακήςεισόδου-παράλληλης-εξόδου,

Σχετικά έγγραφα
ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ. Καταχωρητές παράλληλης-εισόδου-παράλληληςεξόδου. Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου

Ψηφιακή Λογική Σχεδίαση

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

ΕΝΟΤΗΤΑ 4.1. ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ... 4

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΑΤΑΧΩΡΗΤΕΣ ΟΛΙΣΘΗΤΕΣ

Σχεδίαση Ψηφιακών Συστηµάτων

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία

ΑΣΚΗΣΗ 9. Tα Flip-Flop

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops

ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017

3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

Εργαστήριο Ψηφιακής Σχεδίασης

8.1 Θεωρητική εισαγωγή

Αρχιτεκτονικές Υπολογιστών

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος

Ελίνα Μακρή

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων

ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

Ψηφιακή Σχεδίαση Ενότητα 10:

ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Γ ΕΠΑΛ 14 / 04 / 2019

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

2. Να γράψετε τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε και στ της στήλης Β που δίνει τη σωστή αντιστοίχιση.

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.

ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ)

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ψηφιακά Συστήματα. 8. Καταχωρητές

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Καταστάσεων. Καταστάσεων

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Kεφάλαιο Λογικά Ακολουθιακά Κυκλώματα

9. ΚΑΤΑΧΩΡΗΤΕΣ (REGISTERS)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ (ΟΜΑΔΑ Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΛ (ΟΜΑΔΑ Α ΚΑΙ Β ) ΠΕΜΠΤΗ 21 ΙΟΥΝΙΟΥ 2018

7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

Απαριθμητές. Παραδείγματα Απαριθμητής Modulo 4 ελαττούμενης δυαδικής μέτρησης (2 F-F).

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)

Flip-Flop: D Control Systems Laboratory

15 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα

Σχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΑΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΩΝ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 6 ΠΑΡΑΓΡΑΦΟΣ 6.6 ΣΕΛ. 154 ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

f(x, y, z) = y z + xz

Ψηφιακή Λογική Σχεδίαση

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Μνήμη και Προγραμματίσιμη Λογική

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ... 3

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΤΡΑ

Σύγχρονα ακολουθιακά κυκλώματα. URL:

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs

Υπολογιστικά Συστήματα Λογική Σχεδίαση Διδάσκοντες: Δρ. Ευγενία Αδαμοπούλου, Δρ. Κώστας Δεμέστιχας

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ

Σχεδιασμός Ψηφιακών Συστημάτων

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

Transcript:

ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Καταχωρητές παράλληλης-εισόδου-παράλληλης-εξόδου Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου ΚΥΚΛΙΚΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Απαριθμητές δακτυλίου Απαριθμητές Johnson Τύποι καταχωρητών Τύποι καταχωρητών: σειριακής-εισόδου-σειριακής-εξόδου, σειριακήςεισόδου-παράλληλης-εξόδου, παράλληλης-εισόδου-παράλληλης-εξόδου, (δ) παράλληλης-εισόδου-σειριακής-εξόδου.

ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου D D D2 D3 FF FF2 FF3 D= J J J2 J3 Q' Q' Q'2 Q'3 K K K2 K3 (δ) S S S2 S3 Q' Q' Q'2 Q'3 R R R2 R3 Παράδειγμα: Υποθέστε ότι σ' έναν καταχωρητή ΣΕΣΕ των 4 bits με FFs τύπου D αρνητικής ακμής πυροδότησης είναι αποθηκευμένη η δυαδική λέξη. Σχεδιάστε τις κυματομορφές εξόδου καθενός FF. Θεωρείστε ότι η σειριακή είσοδος βρίσκεται στο λογικό Αρχικά ος 2ος 3ος 4ος Αρχικά ος παλμός 2ος παλμός 3ος παλμός 4ος παλμός

Παράδειγμα: Λογικό διάγραμμα σειριακού αθροιστή Επιλογή Εισόδου είσοδος Α Ολίσθηση δεξιά Καταχωρητής ολίσ θησης Α x y z FA S C είσοδος Β Καταχωρητής ολίσ θησης Β Q D Μηδενισμός Αμφίδρομος καταχωρητής ολίσθησης των 4 bits

Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Παράλληλη Είσο δος D D D2 FF FF2 D3 FF3 Παράδειγμα: Σχεδιάστε τις κυματομορφές εισόδου-εξόδου ενός καταχωρητή ολίσθησης ΣΕΠΕ των 4 bits, του οποίου η είσοδος γίνεται "στιγμιαία" πριν τον ο ωρολογιακό παλμό και αμέσως μετά τον 3ο ωρολογιακό παλμό, ενώ η σειριακή είσοδος παραμένει μόνιμα στο λογικό. D CLEAR Καταχωρητές παράλληλης-εισόδου-παράλληλης-εξόδου Παράλληλη D D D2 D3 FF FF2 FF3 D D D2 D3 Παράλληλη Ε clock

Καταχωρητής παράλληλης-εισόδου-παράλληληςεξόδου των 4 bits με FFs τύπου SR. E I S G R G S R FF I S R I2 S2 FF2 R2 I3 S3 FF3 R3 CLEAR Καταχωρητής παράλληλης-εισόδου-παράλληλης-εξόδου των 4 bits με FFs τύπου D L Ii S G i R G i G i Di FFi Qi E I S G R G G D D CLEAR I2 D2 I3 D3 CLEAR

Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου Παράλληλη D D D2 D3 Ε Εί σοδος S S S2 S3 FF R R R2 R3 Παράλληλη 'Εξοδος Καταχωρητής των 8 bits κατασκευασμένος από δύο καταχωρητές των 4 bits Παράλληλη E Καταχωρητής 4- bits Σειρ. Σειρ. Καταχωρητής 4- bits Παράλληλη Αμφίδρομος καταχωρητής ΠΕΠΕ, με δυνατότητα σειριακής ολίσθησηςπροςταδεξιάκαιπροςτααριστερά

ΚΥΚΛΙΚΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Απαριθμητές δακτυλίου D3 D2 D D J3 J2 J J K3 Q'3 K2 Q'2 K Q' K Q' ( 3 Q 2 Q Q ) Q 8 4 2 8 4 2 Συνδυασμός απαριθμητή και αποκωδικοποιητή για την δημιουργία των ίδιων σημάτων χρονισμού ( Q 3 Q 2 Q Q ) 8 4 2 8 4 2 Α'Α' Α'Α ΑΑ' ΑΑ Αποκωδικοποιητής 2-σε-4 Α Α Απαριθμητής mod-4 Α Α

D3 D2 D D Q' J3 J2 J J K3 Q'3 K2 Q'2 K Q' K Q' Απαριθμητές Johnson ( Q 3 QQ 2 Q ) 8 2 4 5 7 3 8 2 4 5 7 Πύλη AND για την αποκωδικοποίηση = Q 3Q 2 2 = Q 2 3 3 = Q 4 4 = Q 5 5 = 6 6 = Q 3 7 7 = Q 2 8 8 = Q Q Κυματομορφές εξόδου του απαριθμητή Johnson όταν βρεθεί σε μία από τις μη επιτρεπτές καταστάσεις, κύκλωμα για την αποφυγή των μη επιτρεπτών καταστάσεων ( 3 QQ 2 Q ) Q 2 5 6 3 4 9 2 5 6 3 Q' Q' Q'2 Προς τις εισόδους των FF2, FF3 PRESET

Απαριθμητής Johnson για την δημιουργία 6 σημάτων χρονισμού Απαριθμητής Johnson για την δημιουργία 5 σημάτων χρονισμού J2 J J J2 J J K2 Q'2 K Q' K Q' K2 Q'2 K Q' K Q'