Μοντέρνα Θεωρία Ελέγχου

Σχετικά έγγραφα
Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Μοντέρνα Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία της μετάφρασης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Παράκτια Τεχνικά Έργα

Κλασσική Θεωρία Ελέγχου

Μηχανολογικό Σχέδιο Ι

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία της μετάφρασης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Εισαγωγή στους Αλγορίθμους

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Συμπεριφορά Καταναλωτή

Κλασσική Θεωρία Ελέγχου

Γεωργική Εκπαίδευση Ενότητα 9

Μοντέρνα Θεωρία Ελέγχου

Εκκλησιαστικό Δίκαιο

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διοικητική Λογιστική

Διπλωματική Ιστορία Ενότητα 2η:

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Στρατηγικό Μάρκετινγκ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Φ 619 Προβλήματα Βιοηθικής

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Συμπεριφορά Καταναλωτή

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Εργαστήριο Χημείας Ενώσεων Συναρμογής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κλασσική Θεωρία Ελέγχου

Ιστορία των Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εισαγωγή στους Αλγορίθμους

Φ 619 Προβλήματα Βιοηθικής

Λογισμός 4 Ενότητα 10

Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος

Διδακτική της Πληροφορικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Κλασσική Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης

Κλασική Θεωρία Ελέγχου

Μάρκετινγκ Εξαγωγών. Ενότητα 3 : Το Περιβάλλον και το Διεθνές Μάρκετινγκ Κοινωνικο-Πολιτιστικό Περιβάλλον

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

Δομές Δεδομένων Ενότητα 1

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Ομοιότητα και Όμοιες Περιγραφές Νίκος Καραμπετάκης

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα Ενότητας Περιγραφή του συστήματος S της μορφής του χώρου των καταστάσεων. Περιγραφή του ανύσματος κατάστασης του συστήματος S. Όμοιες περιγραφές. 4

Σκοποί Ενότητας Μελέτη της περιγραφής ενός συστήματος S της μορφής του χώρου των καταστάσεων. Μελέτη των όμοιων περιγραφών ενός συστήματος S της μορφής του χώρου των καταστάσεων. 5

Περιγραφή του S της μορφής του χώρου των καταστάσεων Έστω γραμμικό και χρονικά αμετάβλητο πολυμεταβλητό σύστημα S με μαθηματικό πρότυπο της μορφής του χώρου των καταστάσεων: x t = Ax t + Bu t y t = Cx t + Du t A R n n, B R n m, C R p n, D R p m x t X~R n Ορισμός. Η τετράδα πινάκων A R n n, B R n m, C R p n, D R p m ονομάζεται περιγραφή του S της μορφής του χώρου των καταστάσεων. 6

Περιγραφή του ανύσματος κατάστασης του S (1) Αν e 1, e 2,, e n είναι η ορθοκανονική βάση του χώρου των καταστάσεων X με 0 e i = 1 0 i γραμμη τότε x t = e 1 x 1 t + e 2 x 2 t + e n x n t = e 1 e 2 e n x 2 t x 1 t x n t 7

Περιγραφή του ανύσματος κατάστασης και το άνυσμα στήλης x t = του S (2) x 1 t x 2 t x n t R n, t R ονομάζεται περιγραφή του ανύσματος κατάστασης του S ως προς την βάση e 1, e 2,, e n του X~R n. 8

Περιγραφή του ανύσματος κατάστασης του S (3) Έστω e1, e2,, en μία άλλη βάση του X~R n. Τότε x t = e1x1 t + e2x 2 t + enx n t x 1 t = e1 e2 x en 2 t x n t x 1 t και το άνυσμα στήλης x t = x 2 t x n t X~R n 9

Περιγραφή του ανύσματος κατάστασης του S (4) ονομάζεται περιγραφή του ανύσματος κατάστασης ως προς την βάση e1, e2,, en του X~R n. Έστω e i = e1 e2 en p 1i p 2i p ni = Ep i, i = 1,2,, n η περιγραφή του ανύσματος e i ως προς την βάση e1, e2,, en. Για i = 1,2,, n 10

Περιγραφή του ανύσματος κατάστασης του S (5) e 1 e 2 e n = Ep 1 Ep 2 Ep n = E p 1 p 2 p n p 11 p 12 p 1n p = e1 e2 21 p 22 p 2n en = EP p n1 p n2 p nn όπου P R n n έχει στήλη i την περιγραφή του e i ως προς την βάση e1, e2,, en. e 1 e 2 e n = E = e1 e2 en P = EP Άρα 11

Περιγραφή του ανύσματος κατάστασης του S (6) x t = e 1 e 2 e n x t = e1 e2 en Px t = e1 e2 en x t Άρα οι δύο περιγραφές συνδέονται μέσω της x t = Px t Ομοίως x t = Qx t όπου Q R n n έχει στήλη i την περιγραφή του ei ως προς την βάση e 1, e 2,, e n. E = EQ 12

Περιγραφή του ανύσματος κατάστασης του S (7) x t = Px t = PQx t PQ = I n P = Q 1 P, Q ομαλοί πίνακες (non-singular) Άρα αν x(t) είναι η περιγραφή του ανύσματος κατάστασης του S ως προς κάποια βάση του χώρου των καταστάσεων X~R n και αν R R n n και R 0 R ομαλός, τότε η εξίσωση Rx t =: x t ορίζει μία νέα περιγραφή x t του ανύσματος κατάστασης x(t) ως προς μία άλλη βάση του X~R n. 13

Όμοιες περιγραφές (similar) (1) Έστω η περιγραφή του S x t = Ax t + Bu t y t = Cx t + Du t A R n n, B R n m, C R p n, D R p m x t X~R n Rx t =: x t x t x t = R 1 x t = R 1 x t x t = R 1 x t = Ax t + Bu t = AR 1 x t + Bu t x t = RAR 1 x t + RBu t 14

Όμοιες περιγραφές (similar) (2) Ορισμός. Αν Α = RAR 1, Β = RΒ, C : = CR 1, D D τότε έχουμε την περιγραφή του S x t = A x t + Bu t y t = C x t + Du t και οι περιγραφές A, B, C, D, A, B, C, D του S ονομάζονται όμοιες (similar). 15

Παράδειγμα 1 (1) Έστω η όπου x t = Ax t + Bu t y t = Cx t + Du t A = 0 1 2 3, B = 0 2 1 1, C = 2 1 0 1, D = 0 0 0 0 Έστω x t = Rx t όπου R = 2 1, R = 1 0 1 1 x t = R 1 x t = 1 1 x t 1 2 16

Παράδειγμα 1 (2) Έχουμε ότι και Α = RAR 1 = 2 1 1 1 = 1 0 0 2, Β = RΒ = 2 1 1 1 C CR 1 = 2 1 0 1 0 1 2 3 1 1 1 2 0 2 1 1 = 1 1 1 1, 1 1 1 2 = 1 0 1 2 D D = 0 0 0 0 17

Παράδειγμα 1 (3) Οι δύο περιγραφές A R n n, B R n m, C R p n, D R p m και είναι όμοιες. Α R n n, Β R n m, C R p n, D R p m 18

Βιβλιογραφία Βαρδουλάκης Α.Ι.Γ., 2012, Εισαγωγή στην Μαθηματική Θεωρία Σημάτων, Συστημάτων και Ελέγχου, Τόμος Β.. Εκδόσεις Τζιόλα. Antsaklis P. and Michel A.N., 1977, Linear Systems, The McGraw-Hill Companies Inc. New York. Charles Ε., Donald G., James L., Melsa J., Rohrs C., Schultz D., 1996, Γραμμικά συστήματα αυτομάτου ελέγχου, Εκδόσεις Τζιόλα. Chen C.T., 1970, Introduction to Linear System Theory, Holt, Renehart and Winston Inc. New York. Kailath T., 1980, Linear Systems, Prentice Hall. 19

Σημείωμα Αναφοράς Copyright, Νικόλαος Καραμπετάκης. «. Τίτλος ενότητας». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs431/ 20

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/ 21

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 22

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 2014-2015