NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

v w = v = pr w v = v cos(v,w) = v w

High order interpolation function for surface contact problem

2 SFI

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

p din,j = p tot,j p stat = ρ 2 v2 j,

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ανώτερα Μαθηματικά ΙI

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Motion analysis and simulation of a stratospheric airship

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Blowup of regular solutions for radial relativistic Euler equations with damping

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Delta Inconel 718 δ» ¼

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ανώτερα Μαθηματικά ΙI

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 4(181).. 501Ä510

Electromagnetic behavior for laboratory scale and industrial scale electroslag remelting process

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

NUMERICAL SIMULATION OF KEYHOLE S DYNAMIC VARIATION IN CONTROLLED PULSE PAW PROCESS

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

S i L L I OUT. i IN =i S. i C. i D + V V OUT

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Quick algorithm f or computing core attribute

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Š Œ Ÿ ˆ Œ ˆŠ ƒ Š Œ Š Ÿ ˆ DC-60

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Transcript:

Ö 7 Ö Vol.7 No. 11 Ö Ö È ACTA METALLURGICA SINICA Jun. 11 pp. ÐÅÔ ÎÔ Ê Đ 1,) 1) 1) 1) ß ÍÊ ½ Ñ٠ؽÁ, ÔÒ 51 ) ß Í Ñ ß, ÔÒ 511 µ² Ç Æ Đ, ÅËÀ Ð Ï (PAW). Â, mm É PAW» ½ËÁ ÕË, Ë Ð¹ ²Á»¼Á Î. µ²» Ǽ, PAW È À ¹ ½Ë, ÕËË ³ÆÕ Ç. Î ÅÛ, ³Đ Æ ; Ì Ì± Ó Õ ¹ ÐÀ ¼ ÅÛ ; Ð ÏÇ Ó Ð ³ĐÕ ÅÛ. À PAW Ź ¾Â, Á ÕË ½Ë¾ÂÂ. Ï À Ð Ï Å,»¼, Ç Æ, Á Ö TG5. Å Ú A à 1 191(11) 7 NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING HUO Yushuang 1,), WU Chuansong 1), CHEN Maoai 1) 1) Key Lab for Solid Liquid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 51 ) School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 511 Correspondent: WU Chuansong, professor, Tel: (531)39711, E-mail: wucs@sdu.edu.cn Supported by Key Project of National Natural Science Foundation of China (No.5933) Manuscript received 11 1 7, in revised form 11 3 1 ABSTRACT It is of great significance to develop a mathematical model of keyhole shape and dimension in order to widen the process parameter window and improve the process stability in keyhole plasma arc welding (PAW). In this study, a keyhole model was developed according to the force balance conditions on the keyhole wall. The establishing process of quasi steady state keyhole was numerically simulated for stainless steel plates of mm thickness, and the keyhole shapes and dimensions were obtained under different welding process parameters. The transformation mechanism of the keyhole from blind (partial) to open (complete) states in PAW process was analyzed based on the calculated action forces on the keyhole wall. The values of action forces at different locations on the keyhole wall were calculated. With increasing of welding current, the keyhole depth rised in a nonlinear way. There existed a critical value of welding current, i.e., if welding current was a little bit higher than this value, the keyhole inside the weld pool would suddenly transform from partial state (blind keyhole) into complete state (open keyhole). The fast centralization of the plasma arc force at the keyhole bottom region resulted in the sudden transformation from a partial keyhole to an open keyhole. The keyhole PAW experiments were conducted to validate the numerical analysis results. KEY WORDS keyhole plasma arc welding, keyhole shape, force balance equation, numerical analysis Ñ «(PAW) ¼ ÍÇ * Ø ±Ù Ñ 5933 : 11 1 7, : 11 3 1 ÆÞ : ÔÅ, Ø, 1973 µ, DOI: 1.37/SP.J.137.11.1 Ô Ê, Æ ¼, ² Ò Ñ Ú, «¾ É «º [1,]. ¼ ÁÔº ± PAW º., Á PAW, ± Þ, «º Æ, É

Ö ÓÄ : Î º»À À Æ 1 «Ó Ê Ã «³Â«ÝØ ± [3,], Ì º ºÉ ¹ Ê. Ì Á PAW ¾º ³Â Â, º Ø Â Þ, Đ Æ Æ «º ³ÂÒ± ¼½ Ü ÞÊ. Á PAW, ± ¼ Ͳ, ÂÖ̱ ¼½ Ͳ Å. Keanini  Rubinsky [5] ÖÌ Ì PAW ºÂ º, ± ¼½ Ù ³ à ÛÞ. Fan  Kovacevic [] Û²Ñ Þ Gauss Þ, VOF(volume of fluid) ÖÌÌÜ Þ¼³ ¾±. ÁÈÂͺ Á [7] ± Đ¾ Þ PAW º ¾Ì, ± ± ¼. Metcalfe  Quigley [] ³º Á È ÐÇ, Á ˱ Þ ¾Ì, ± ± ¼½ Þ., Í ÔÜ ± Ñß ± ¼½ ¾Ì ± [5 1], Í º. º [13] ¾ Ñ ºÂ º Â, à Level Set Ñ ÞÚ Á ¾Ì ÕÖÌ, Ì Ñ Þ ³ ¾ Ò± ¼½Â Ï Ð Â³, ± Ñ Ð «. ³ ± È ÐÇ, ÆÃ PAW б ¹, Á PAW ± ¼½Â Ï ¾Â ÖÌ, Ò Ã ¾ Æ. 1 ßÌ Þ Á PAW ««Ò± Ü. «¼½Â ÏºÞ ± ¼½  Ï, ± ¼½Â Ï ¼½Â Ï. ÍÞ PAW º, ¼ ÌÍÞ. Ô Õ¹ Ì ÍÞ¼½Â Ï ±. Æ º : Ï ÞÌ ¼½  Ï, ÞÒ ± ¼½Â Ï. Á PAW Â, º [9,1] ¾ Á PAW Æ Ú, ÆÌ Í Ã Þ ¹, Õ ÕÖÌ PAW ¼½Â Ï. ± ¹ ÖÌ ¼½Â Ï. ÆÚ + Ý Ã Þ ¹ Á PAW. Þ ¹, «¼½Â Ï [9,1]. Ó É ºÂ, Þ PAW.1 «ÕÂÛ ØÜ Ë Á PAW Ë, ± È ¼. Ø 1 ± Ô Ë È «. Ñ ³ Òº Ú ÜÚ Æ, x ³ «, z ³ º Ê. ±, ÒÑ Â, Í Ñ È p a, È p s (p s = ρgh, ρ, g ²ÈÚÊ, h ), «È p σ Â È ( Å È p r ) ¼Ñ., p a Ë ± ¼ Đ È, p σ  p s Ë ± à È. Ð Þ ± ¼ Ë, ± Í Ó²È ÐÇ. ± È ÐÇ, Ù : p a (x, y) ρgs(x, y) + λ = σ (1 + s y)s xx s x s y s xy + (1 + s x)s yy (1 + s x + s y) 3 (1), s(x, y) ± ¼½ Â; λ Lagrange»Â ( Ì p a, p s  p σ Ü È ÃÈ); σ «È Â; (x, y, xx, xy, yy) s(x, y) Ý Â, s x = s x, s xy = s x y, Ð Ù. (1), ¼ ± ¼, ± ² È Ð ÐÇ. ± ¼½ Â Æ Ê È : s(x, y)dxdy = () Ω, Ω º Ö.. p a Ý PAW, ± ¼ µæ p a Û ¹. Æ, p a «± ¼½  Ï. Ñ ÂÅ, ÉÜ r º r 1, É ¹ ³ Ü È, Ü È¾ È. Ü, ¼ Ñ Ç ¹ È, ¾ Ð È. ««Ê, ± ¼½Ñ ÍÄ Ï Ð º Ë, Æ Ô È, Ʊ ¼½. 1 Ó Ç Fig.1 Pressure acting on the bottom of the keyhole

Å Ö 7 Ç ±Ë ¾½. p a µ È, à Ú. þ É, p a ± ÆÚÝ,  p a (x, y) = [( µ I 1 π 1 r r1 ) ( )] 1 + C j exp 3x 3y σj A B 1 (x ) [( ) ( )] µ I 1 π 1 1 + C r r1 j exp 3x 3y σj A B (x < ) (3), µ Å ; I «Ü ; σ j Ü ³Â; A 1, A  B ÆÚÝ ³; C j p a Ý Â, C j ÒÜ Å Â¾  ÊÑ..3 σ Ý PAW Æ, ÖÌ Î σ»â. ± [1]  [15] σ ÖÌ» σ = σ m.3 1 (T T m ) RT 1.3 1 [ ( 1. 1 ln 1 + 3.1 1 3 )] a S exp RT (), σ m Ú T m ¼ «È Â, R»Â, a S ÚÉ S Â, T. 3 Ñ Ù mm Ê 3 «, Ñ «º ± ¾Â ÕÖÌ. º ¾»ĐÞ,  ± Þ, º ÖÔ± «Â Þ ÊÞ, º Ê»ĐÞ. ß Â º.,. PAW «º : (Ä Ar) Ê 3. L/min, Ê 1 mm/min, µ º 5 mm, Ü. mm, (Ä Ar) Ê 15 L/min, Å Ô Ê mm, ¼ mm. Ñ Ä «º ³Â 1. ÖÌ, Ä No.1  No., «Ü Ò, º Ô, Ç Á ; Ä No.3 No., «Ü, º Ï Ô, ÇÏÁ. Ø «Ü 13 A ¼ÖÌ ± Æ ÅÆ Đ¼½Â Ï. ½, Æ ± 3.97 mm, Ƽ ± ÁÔº,. º, ± µ z ³ (Ñ µ ³).73 mm, ± Ë µ z ³.975 mm, ±. mm. Ø 3 «Ü 135 A ¼ÖÌ ± Æ ÅÆ Đ¼½Â Ï. Ƽ, ± ÁÔº, Æ 1 PAW Ź ²Á Table 1 The PAW process parameters Sample Welding Arc voltage Penetration Keyhole current, A V condition condition No.1 15 19.5 PP PK No. 13 19. PP PK No.3 135.9 FP CK No. 1 1. FP CK No.5 15 1. FP CK No. 15 1.5 FP CK Note: PP partial penetration, - - FP full penetration, PK partial keyhole, CK complete keyhole Fusion line Keyhole boundary.975.73 3.97-1 -1 - - - - - -. -1-1 - - - - - (c) -1 - - - - - - - ÅÛ Ð 13 A»ÕË»¼ Fig. Predicted longitudinal cross section shape, transverse cross section shape and 3 D drawing shape (c) of keyhole with 13 A current Ô ¼ Á. º, ± µ z ³.9 mm, ± Ë µ z ³ 3.1 mm, ±.33 mm.

Ö ÓÄ : Î º»À À Æ 3 Ø Ñ «Ü ÖÌ ± Æ ¼½. Ð, ± Ï «Ü ڻРÚ. ÑÄ «Ü 5 A Ú, «Ü É 15 A - - Fusion line Keyhole boundary 3.1.9-1 -1 - - - - - -.33-1 -1 - - - - - (c) -1 - - - - - - - 3 ÅÛ Ð 135 A»ÕË»¼ Fig.3 Predicted longitudinal cross section shape, transverse cross section shape and 3 D drawing shape (c) of keyhole with 135 A current Ú 13 A ¼, ± Ü É 13 A Ú 135 A ¼, ÌÖ, ± - - 15 A 13 A 135 A 1 A 15 A 15 A Ú.51 mm; «± ¹ Ú.73 mm. -1-1 - - - - - - -1-1 - - - - - - - (c) -1-1 - - - - РŹ ²Á»¼ Fig. Predicted longitudinal cross section shape, transverse cross section shape and top surface shape (c) of keyhole with different welding parameters Æ Ð ÅÛ Đ Î Table Keyhole dimensions under different welding current Welding Keyhole Keyhole dimension at top surface, mm Keyhole dimension at back surface, mm current, A depth, mm Length Width Length Width 15.77.3.73 13 3.97 5.75.71 135 CK..3.. 1 CK.13.37 1.. 15 CK.13.3 1.. 15 CK.17.379 1..

Å Ö 7 ± Ï. Ó Ä ÍÇ ± Ø a  b ÖÌ 1 û, Ï Ï «Ü ڻРÚ, Í Í²± Ö Ú «Ü. Ò «Ü É 13 A Ú 135 A ¼, ± Ö Ú, É ( 3.97 mm) Áº Ê ( mm) ±. Á PAW, ± ¼ È ± ¼Ñ. ± Ö Þ È«Î, p a, p s, p σ  λ È. (1) ( ² È) ±, p a, p s Â È ÃÈ F P, F L  F λ. (1) ±, p σ ÃÈ F σ. ± ¼, F P + F L + F λ = F σ (5) 3 Ñ «Ü ± È Ã ÈÖÌ ( È» º Ê ). Ð, Ï «Ü Ú, λ ÈÂ, F L ±, F P. «Ü É 13 A 13 A ¼, F P É 11.5 1 3 N Ú 1.79 1 3 N, 1.9 1 3 N. ² F P, Ç ± Ö ¹ Ü. Æ, ÆÉ È ± Ñ ÛÆÄ Í., ± ² Ö (Ø 5), Ö A ± mm Ö, Ò s(x, y) mm; Ö B Ô ± ± mm Ö, Ò s(x, y) < mm. ÖÌ F P Ö A  B Ô ÆÄ. Ï «Ü Ú, ± Ú, ±, Ö A F P ÆÄ Ú (Ø ). «Ü 133 A ¼, ÆÄ 3.59%, Æ 3 Ð ÅÛ»³Ç Á Table 3 Values of various forces under different levels of welding current Current F λ F L F P F σ A 1 3 N 1 3 N 1 3 N 1 3 N 15.51.7 11.3 5. 13.3.3 11.5.193 13.5 1.1 1.79 7.9 135. 1.1 1.99 7.73 1.9 1.35 1.17 9.3 15.7 1. 15.3 1. 15.7 1.5 1.37 11. 5 ÆÕ A Á B Fig.5 Schematic of regions A and B with side view and Percentage, % 7 5 3 1 top view 13 133 13 135 Current, A ÆÕ A Á B Ó F P Ú Fig. Distribution of F P at region A and B «Ü 13 A ¼, ÆÄ 5.3%. Æ, ² Ü, «Ü ß± ÊÒ F P ± Ô, ± É Ñ º Áº Ê 5 ÐÆÆ A B ±. ± 1 º ³Â¼ PAW º Ã, à ÖÌ. «¼ Á ¼, º Ü Ñ À. Ý º Ñ ÀÜ, Á ± Ï. ± ÀÜ Ý Ò [3,13], «ÀÜ ¾ ¼± ÂÍ. Ø 7. «Ü 13 A ¼, ÀÜ, Ƽ, À¼, ± (Ø 7a). «Ü 135 A ¼, ÀÜ É Ð mv, À, ¼ Á º ± (Ø 7b). «Ü Í Ú¼, ÀÜ 1 mv, Ç ± ÏÇÏ. Ëà Ä, Úº Ëà Stemi DV/DR Æ ß Ù ß. Ø «Ü 13  135 A ¼ Å. ½, «Ü 13 A ¼ Ô, «¼ Á ; «Ü 135 A ¼º Ô, «¼ ÌÁ. Ò ÕÖÌ Ã.

Ö ÓÄ : Î º»À À Æ 5 Efflux plasma voltage, mv 1 Time, s Efflux plasma voltage, mv 1 Efflux plasma voltage, mv 1 1 1 (c) 1 Time, s 1 1 Time, s 7 Ð ÅÛ Å Û µ Fig.7 Measured efflux plasma voltage under welding current 13 A, 135 A and 1 A (c) PAW Ä Þ Fig. Weld cross section under welding current 13 A and 135 A ÑÙ (1) ³± È ÐÇ, PAW ¾Ì ÕÖÌ, Ì Ñº ³Â ± ¼½Â Ï. ÖÌ, Ï «Ü Ú,, ± ÏÇÏ «Ü Ú. Í Í² «Ü, ± º Ô Ö º Á ½. () ± Á Ö ¾Ì, ± Ö µæü : Ï «Ü Ú, Ñ È ± Ô ÎÕ. (3) Ñ ÀÜ Â Å ß Â ¾Ì ÃÃ, à ÒÖÌ Ã. ÈÒ [1] Lucas W. In: Japan Welding Society ed., Proc th Int Welding Symposium, Osaka, Japan: Japan Welding Society, : 19 [] Zhang Y M, Zhang S B. Weld J, 1999; 75: 53s [3] Wu C S, Jia C B, Chen M A. Weld J, 1; 9: 5s [] Dong C L, Wu L, Shao Y C. China Mech Eng, ; 11: 577

Å Ö 7 ( ÃÏ, «Ï, ½. ³¹, ; 11: 577) [5] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 3: 33 [] Fan H G, Kovacevic R. J Phys, 1999; 3D: 9 [7] Li L, Hu S S. J Tianjin Univ, 7; : (À Ç, ̹À. «, 7; : ) [] Metcalfe J C, Quigley M B C. Weld J, 1975; 5: 99s [9] Wu C S, Hu Q X, Gao J Q. Comp Mater Sci, 9; : 17 [1] Hu Q X, Wu C S, Zhang Y M. China Weld, 7; 1: 55 [11] Huo Y S, Wu C S. China Weld, 9; 1: 1 [1] Nehad A K. Int Comm Heat Mass Transfer, 1995; : 779 [13] Wang X J, Wu C S, Chen M A. Acta Metall Sin, 1; : 9 (Ý, ÂÈ, ½. «, 1; : 9) [1] Toit M D, Pistorius P C. Weld J, 7; : s [15] Sahoo P, DebRoy T, McNallan M J. Metal Trans, 19; 19B: 3