ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Σχετικά έγγραφα
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 12

Λογισμός 4 Ενότητα 10

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 14

Λογισμός 4 Ενότητα 16

Λογισμός 4 Ενότητα 17

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 4: Ιδιότητες του Ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 19

Λογισμός 4 Ενότητα 15

Λογισμός 4 Ενότητα 18

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 11

Λογισμός 4 Ενότητα 13

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ιστορία της μετάφρασης

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 6: Μερικές παράγωγοι. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Εκκλησιαστικό Δίκαιο

Παράκτια Τεχνικά Έργα

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Λογισμός 3. Ενότητα 15: Τοπικά ακρότατα υπό συνθήκες. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Ιστορία της μετάφρασης

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στους Αλγορίθμους

Μηχανολογικό Σχέδιο Ι

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γεωργική Εκπαίδευση Ενότητα 9

Εκκλησιαστικό Δίκαιο

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στους Αλγορίθμους

Θεωρία μέτρου και ολοκλήρωσης

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Εργαστήριο Χημείας Ενώσεων Συναρμογής

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διοικητική Λογιστική

Λογισμός 3. Ενότητα 3: Όρια και συνέχεια συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Διπλωματική Ιστορία Ενότητα 2η:

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Στρατηγικό Μάρκετινγκ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Φ 619 Προβλήματα Βιοηθικής

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Φ 619 Προβλήματα Βιοηθικής

Θεωρία μέτρου και ολοκλήρωσης

Εκκλησιαστικό Δίκαιο

Συμπεριφορά Καταναλωτή

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Βέλτιστος Έλεγχος Συστημάτων

Διδακτική της Περιβαλλοντικής Εκπαίδευσης

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Διαγλωσσική μεταφορά και διαμεσολάβηση

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Εισαγωγή στους Αλγορίθμους

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Παραδείγματα - Εφαρμογές του Fubini. 4

Σκοποί ενότητας Δίνουμε τα βασικά παραδείγματα εφαρμογής του Θεωρήματος Fubini. 5

Εφαρμογές του Fubini (1) Ας είναι D R φραγμένο με σύνορο D μέτρου μηδέν, και ας είναι f: D R ολοκληρώσιμη. Το D περιέχεται στο ορθογώνιο Π = Α Β, όπου Α = pr x D και B = pr y D (Σχ. 1) Σχήμα 1 6

Εφαρμογές του Fubini () Μπορούμε λοιπόν να θεωρήσουμε ότι η f είναι ολοκληρώσιμη στο Π, και το θεώρημα του Fubini μας δίνει (δες Σχήμα 1) D f x, y dxdy = f x, y 1 D x, y dxdy A B = f x, y 1 D x, y dy pr x D B dx αφού για x σταθερό, = f x, y dy pr x D D x dx, 7

Εφαρμογές του Fubini (3) f x, y 1 D x, y = f x, y, αν y D x,, αν όχι, όπου D x = y: x, y D. Το D x είναι η τομή του D με την κάθετο που φεύγει από το x. Παράδειγμα 1: Αν Τ είναι το τρίγωνο του σχήματος, Σχήμα 8

Εφαρμογές του Fubini (4) τότε T x 3 y + συνx dxdy = x 3 y + συνx dy pr x T T x = x 3 y + συνx dy π = x π x 5 = x6 1 + ημx π/ + συνx dx = 1 1 π 6 dx + 1. dx 9

Χωρία τύπου 1,, και 3 (1) Γενικά ένα χωρίο D σαν αυτό του σχήματος 3, λέγεται χωρίο τύπου 1, και έχει την ακόλουθη παραμετρικοποίηση: D = x, y : a x b, φ 1 x y φ x Σχήμα 3 1

Χωρία τύπου 1,, και 3 () Αν D είναι τύπου 1 και D f R είναι ολοκληρώσιμη, τότε από το θεώρημα του Fubini, αμέσως συμπεραίνουμε ότι D f x, y dxdy = f x, y dy pr x D b D x = f x, y dy a φ x φ 1 x dx dx. 11

Χωρία τύπου 1,, και 3 (3) Παράδειγμα : Αν D είναι το πρώτο τεταρτημόριο του δίσκου D, a, (Σχ. 4), και f x, y = a y, να υπολογιστεί το ολοκλήρωμα I = D f x, y dxdy. Σχήμα 4 1

Χωρία τύπου 1,, και 3 (4) Λύση: Έχουμε I = a dx a x a y dy Το ως άνω επαναλαμβανόμενο ολοκλήρωμα είναι δύσκολο. Κοιτάζουμε λοιπόν να δούμε μήπως η ολοκλήρωση πρώτα ως προς x μας δώσει κάτι πιο εύκολο, αφού η f x, y είναι ανεξάρτητη του x. Έχουμε D = x, y : ψ 1 y x ψ x, y α, (1) όπου ψ 1 y = και ψ x = a y.. 13

Χωρία τύπου 1,, και 3 (5) Επομένως, I = D f x, y dxdy a = dy = a y dy a a a y a y dx = a y a y dy a = a y dy = a y y3 a 3 a y dx = a 3 a3 3 = a3 3. 14

Χωρία τύπου 1,, και 3 (6) Στο προηγούμενο παράδειγμα αναγκαστήκαμε να αλλάξουμε τη σειρά ολοκλήρωσης. Αυτό μας το επέτρεψε η μορφή του πεδίου D, που μας έδωσε την παραμετρικοποίηση (1). Γενικά ένα πεδίο με παραμετρικοποίηση όπως στην (1) λέγεται χωρίο τύπου (Σχ. 5). Σχήμα 5 15

Χωρία τύπου 1,, και 3 (7) Ένα χωρίο που είναι και τύπου 1 και τύπου, όπως π.χ. το τεταρτημόριο του σχήματος 4, λέγεται τύπου 3. Παράδειγμα 3: Να υπολογιστεί το επαναλαμβανόμενο ολοκλήρωμα I = dx 1 logx x 1 1 + e y dy Λύση: Το ολοκλήρωμα φαίνεται δύσκολο. Πρέπει λοιπόν να αλλαχθεί η σειρά ολοκλήρωσης μήπως και πέσουμε σε κάτι πιο εύκολο. Πρέπει όμως πρώτα να βρούμε το χωρίο ολοκλήρωσης (δες το Σχήμα 6).. 16

Χωρία τύπου 1,, και 3 (8) Σχήμα 6 17

Χωρία τύπου 1,, και 3 (9) Αν y = φ x = logx τότε x = e y, Άρα D = x, y : 1 x, y logx = x, y : e y x, y log Συνεπώς το D είναι τύπο 1 και, δηλαδή τύπου 3, και έχουμε I = log dy e y x 1 1 + e y dx 18

Χωρία τύπου 1,, και 3 (1) log = 1 + e y dy log = 1 + e log = 1 + e = e y =w 1 e y x 1 dx y x x e y dy y ey ey dy 1 + w w 1 dw Το ως άνω ολοκλήρωμα υπολογίζεται πιο εύκολα.. 19

Χωρία τύπου 1,, και 3 (11) Παρατήρηση 1: Γενικά, όταν μας δίνεται ένα δύσκολο επαναλαμβανόμενο ολοκλήρωμα, κάνουμε τις εξής κινήσεις: πρώτα προσδιορίζουμε το χωρίο ολοκλήρωσης, και στη συνέχεια αλλάζουμε τη σειρά ολοκλήρωσης και ολοκληρώνουμε. Παράδειγμα 4: Αν Α είναι το τρίγωνο να υπολογιστεί το ολοκλήρωμα x 1, y x, I = συν πx A dxdy.

Χωρία τύπου 1,, και 3 (1) Λύση: Αν ολοκληρώσουμε πρώτα ως προς y, έχουμε 1 I = συν πx dx x dy 1 = xσυν πx dx, το οποίο υπολογίζεται εύκολα. Αν όμως ολοκληρώσουμε πρώτα ως προς x έχουμε I = το οποίο είναι δύσκολο. 1 dy y 1 συν πx dx, 1

Βιβλιογραφία 1. Γ. Γεωργανόπουλος, Ολοκληρωτικός Λογισμός Πολλών Μεταβλητών, Εκδόσεις Αδελφοί Κυριακίδη, Θεσσαλονίκη, 1995.. Τ. Χατζηαφράτης, Απειροστικός Λογισμός σε Πολλές Μεταβλητές, Αθήνα, 1996. 3. J. Marsden, A. Tromba, Διανυσματικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,. 4. M. Spivac, Λογισμός σε Πολλαπλότητες, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1994.

Σημείωμα Αναφοράς Copyright, Μιχάλης Μαριάς. «. Ενότητα 6: Εφαρμογές του Fubini». Έκδοση: 1.. Θεσσαλονίκη 14. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs437/

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4./

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 14-15