ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Ορισμένη ποσότητα ιδανικού αερίου υπόκειται σε μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία παραμένει σταθερή, ενώ η πίεση του αυξάνεται. Η μεταβολή αυτή ονομάζεται: α. ισόχωρη θέρμανση. β. ισόθερμη συμπίεση. γ. ισοβαρής θέρμανση. δ. ισόθερμη εκτόνωση. Α2. Σε μια αδιαβατική αντιστρεπτή μεταβολή ορισμένης ποσότητας ιδανικού αερίου, η μεταβολή της εσωτερικής του ενέργειας είναι ίση με. Το έργο του αερίου κατά τη μεταβολή αυτή είναι: α. 0. β.. γ.. δ.. Α3. Στην ισοβαρή εκτόνωση ιδανικού αερίου, για την απορροφούμενη θερμότητα και για τη μεταβολή της εσωτερικής του ενέργειας ισχύει ότι: α.. β.. γ.. δ.. A4. Η μεταβολή της εσωτερικής ενέργειας ορισμένης ποσότητας ιδανικού αερίου που πραγματοποιεί κυκλική αντιστρεπτή μεταβολή είναι: α. θετική. β. αρνητική. γ. μηδέν. Σελίδα 1 από 9
δ. θετική ή αρνητική, ανάλογα με τη φορά διαγραφής της γραφικής παράστασης της μεταβολής στο διάγραμμα πίεσης όγκου. A5. Να γράψετε στο τετράδιο σας το γράμμα κάθε πρότασης και δίπλα σε κάθε γράμμα τη λέξη Σωστό, για τη σωστή πρόταση, και τη λέξη Λάθος, για τη λανθασμένη. α. Σε κάθε αντιστρεπτή μεταβολή το έργο που ανταλλάσσει ιδανικό αέριο με το περιβάλλον μπορεί να υπολογιστεί από το διάγραμμα πίεσης όγκου. β. Στην ισόθερμη εκτόνωση ενός ιδανικού αερίου η θερμότητα που απορροφά το αέριο μετατρέπεται εξ ολοκλήρου σε μηχανικό έργο. γ. Η γραμμομοριακή ειδική θερμότητα ενός ιδανικού αερίου υπό σταθερή πίεση ( ) είναι πάντα μεγαλύτερη από τη γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο. δ. Ο πρώτος θερμοδυναμικός νόμος εκφράζει την αρχή διατήρησης της ενέργειας στη θερμοδυναμική. ε. Κατά την ισόθερμη εκτόνωση ενός ιδανικού αερίου η μέση μεταφορική κινητική ενέργεια των μορίων του αυξάνεται. Α1. β Α2. δ Α3. β Α4. γ Α5. α. Σ, β. Σ, γ. Σ, δ. Σ, ε. Λ ΘΕΜΑ Β Β1. Στο παρακάτω σχήμα παριστάνεται η κυκλική αντιστρεπτή μεταβολή ορισμένης ποσότητας ιδανικού αερίου. Η μεταβολή ΑΒ είναι αδιαβατική, η μεταβολή ΒΓ είναι ισόθερμη και η μεταβολή ΓΑ είναι ισοβαρής. p T 2 T 1 V Σελίδα 2 από 9
Α. Να μεταφέρετε στο τετράδιο σας τον παρακάτω πίνακα κατάλληλα συμπληρωμένο. ΜΕΤΑΒΟΛΗ ΑΒ ΒΓ ΓΑ Β1. Α. ΜΕΤΑΒΟΛΗ ΑΒ 0 ΒΓ 0 ΓΑ Β. Το πηλίκο της γραμμομοριακής ειδικής θερμότητας υπό σταθερή πίεση προς τη γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο του αερίου ισούται με: α.. β.. γ.. Να επιλέξετε τη σωστή απάντηση. Να αιτιολογήσετε την επιλογή σας. (Μονάδες 2) Β. Σωστή απάντηση είναι η β. Η θερμότητα που απορροφά το αέριο κατά την ισοβαρή μεταβολή ΓΑ δίνεται από τη σχέση: (1). Η μεταβολή στην εσωτερική ενέργεια του αερίου στη μεταβολή ΓΑ δίνεται από τη σχέση: των σχέσεων (1) και (2) έχουμε: (2). Με διαίρεση κατά μέλη Σελίδα 3 από 9
Β2. Ο συντελεστής απόδοσης μιας θερμικής μηχανής ισούται με. Αν το ποσό θερμότητας που απορροφά η θερμική μηχανή σε κάθε κύκλο λειτουργίας της είναι ίσο με, τότε το ποσό θερμότητας που αποβάλλει η μηχανή σε κάθε κύκλο λειτουργίας της είναι ίσο με: α.. β.. γ.. Να επιλέξετε τη σωστή απάντηση. (Μονάδες 2) Να αιτιολογήσετε την επιλογή σας. (Μονάδες 4) Β2. Η σωστή απάντηση είναι η γ. Ισχύει: ή ή ή. Β3. Στο διάγραμμα πίεσης όγκου του παρακάτω σχήματος απεικονίζονται δύο ισοβαρείς αντιστρεπτές μεταβολές ΑΒ και ΓΔ της ίδιας ποσότητας ιδανικού αερίου, μεταξύ των ίδιων ισόθερμων και. p T 2 T 1 V Αν στη μεταβολή ΑΒ το ποσό θερμότητας που ανταλλάσσει το αέριο με το περιβάλλον είναι, τότε για το ποσό θερμότητας που ανταλλάσσει το αέριο με το περιβάλλον στη μεταβολή ΓΔ ισχύει: α.. β.. γ.. Να επιλέξετε τη σωστή απάντηση. (Μονάδες 2) Να αιτιολογήσετε την επιλογή σας. Σελίδα 4 από 9
(Μονάδες 4) Β3. Σωστή απάντηση είναι η α. Ισχύει: ή (1) και ή (2). Με διαίρεση κατά μέλη των σχέσεων (1) και (2) έχουμε:. ΘΕΜΑ Γ Ποσότητα ιδανικού αερίου, όπου η σταθερά των ιδανικών σε, που βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α υποβάλλεται στην κυκλική αντιστρεπτή μεταβολή ΑΒΓΔΑ που παριστάνεται γραφικά στο διάγραμμα πίεσης όγκου του σχήματος. p( N / m 2 ) 5 410 Δ 5 210 210 3 410 3 V ( m 3 ) Να υπολογίσετε: Γ1. την απόλυτη θερμοκρασία του αερίου στις καταστάσεις ισορροπίας Α και Β. Γ2. την εσωτερική ενέργεια του αερίου στην κατάσταση ισορροπίας Γ. (Μονάδες 4) Γ3. τη μεταβολή της εσωτερικής ενέργειας του αερίου κατά τη μεταβολή ΒΓ. Γ4. το έργο του αερίου στη μεταβολή ΑΒ. Γ5. το συνολικό ποσό θερμότητας που αντάλλαξε το αέριο με το περιβάλλον κατά την παραπάνω κυκλική μεταβολή. Σελίδα 5 από 9
Δίνονται: και. Γ1. Ισχύει: ή Από το νόμο του Gay Lussac για την ισοβαρή μεταβολή ΑΒ έχουμε: ή Γ2. Από το νόμο του Charles για την ισόχωρη μεταβολή ΒΓ έχουμε: ή Η εσωτερική ενέργεια του αερίου στην κατάσταση Γ είναι: Γ3. Η μεταβολή της εσωτερικής ενέργειας κατά τη μεταβολή ΒΓ υπολογίζεται από τη σχέση: ή Γ4. Ισχύει: Γ5. Το συνολικό ποσό θερμότητας που αντάλλαξε το αέριο με το περιβάλλον κατά την παραπάνω κυκλική μεταβολή υπολογίζεται από το πρώτο Θερμοδυναμικό νόμο. Ισχύει: ή (1). Το συνολικό έργο του αερίου κατά την παραπάνω κυκλική μεταβολή είναι αρνητικό, αφού η γραφική παράσταση της μεταβολής στο διάγραμμα διαγράφεται αντίθετα από τη φορά περιστροφής των δεικτών του ρολογιού (αριστερόστροφα) και απολύτως ίσο με το σκιασμένο εμβαδό του τετραγώνου ΑΒΓΔ που φαίνεται στο διάγραμμα. Σελίδα 6 από 9
p( N / 2 m ) 5 410 Δ 5 210 2 10 3 4 10 3 V ( m 3 ) Συνεπώς ισχύει: ( ) Με αντικατάσταση των τιμών στη σχέση (1) έχουμε:. ΘΕΜΑ Δ Το ιδανικό αέριο μιας θερμικής μηχανής βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας Α με όγκο, πίεση και θερμοκρασία. Από την κατάσταση Α το αέριο υποβάλλεται σε σειρά διαδοχικών αντιστρεπτών μεταβολών ως εξής: 1. Ισόχωρη θέρμανση μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Β με. 2. Αδιαβατική εκτόνωση μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Γ, με. 3. Ισόθερμη συμπίεση μέχρι την αρχική του κατάσταση Α. Δ1. Να παραστήσετε γραφικά (ποιοτικά) τις παραπάνω μεταβολές σε διάγραμμα πίεσης όγκου. Δ2. Να υπολογίσετε την πίεση του αερίου στις καταστάσεις θερμοδυναμικής ισορροπίας Β και Γ. Δ3. Να υπολογίσετε το έργο που παράγει η μηχανή σε κάθε κύκλο λειτουργίας της. (Μονάδες 7) Σελίδα 7 από 9
Δ4. Να υπολογίσετε το συντελεστή απόδοσης της θερμικής μηχανής. Δίνονται:,, και ( ). Δ1. p V Δ2. Από το νόμο του Charles για την ισόχωρη μεταβολή ΑΒ έχουμε: ή Από το νόμο του Poisson για την αδιαβατική μεταβολή ΒΓ έχουμε: ή ( ) ή ( ) ή ( ) Δ3. Ισχύει:. Το έργο στη μεταβολή ΒΓ υπολογίζεται από τη σχέση: Το έργο στη μεταβολή ΓA υπολογίζεται από τη σχέση: ( ) ή ( ) ή ( ) Συνεπώς το έργο που παράγει η μηχανή σε κάθε κύκλο λειτουργίας της είναι: Σελίδα 8 από 9
Δ4. Ο συντελεστής απόδοσης της θερμικής μηχανής υπολογίζεται από τη σχέση:, όπου το ποσό θερμότητας που απορροφά η θερμική μηχανή ανά κύκλο λειτουργίας της. Ισχύει: ή ή ή ή Συνεπώς, είναι Σελίδα 9 από 9