1999 by CRC Press LLC

Σχετικά έγγραφα
2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

CRASH COURSE IN PRECALCULUS

Trigonometric Formula Sheet

PARTIAL NOTES for 6.1 Trigonometric Identities

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Review Exercises for Chapter 7

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Section 8.3 Trigonometric Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometry 1.TRIGONOMETRIC RATIOS

1 Elementary Functions

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Rectangular Polar Parametric

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Radians/Arc+Length+++! Converting++Between++Radians++and++Degrees+

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 7.6 Double and Half Angle Formulas

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 8 Model Solution Section

Trigonometry Functions (5B) Young Won Lim 7/24/14

Areas and Lengths in Polar Coordinates

Matrices and Determinants

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

TRIGONOMETRIC FUNCTIONS

Math221: HW# 1 solutions

Chapter 6 BLM Answers

MATH 150 Pre-Calculus

2 Composition. Invertible Mappings

Reminders: linear functions

Formulario di Trigonometria

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

COMPLEX NUMBERS. 1. A number of the form.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chap 8 Mapping by Elementary Functions

Derivations of Useful Trigonometric Identities

The Simply Typed Lambda Calculus

10.4 Trigonometric Identities

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 9.2 Polar Equations and Graphs

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Parametrized Surfaces

Class 03 Systems modelling

Example Sheet 3 Solutions

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

C.S. 430 Assignment 6, Sample Solutions

Formula for Success a Mathematics Resource

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Uniform Convergence of Fourier Series Michael Taylor

Differential equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

MathCity.org Merging man and maths

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

4.6 Autoregressive Moving Average Model ARMA(1,1)

F19MC2 Solutions 9 Complex Analysis

EE512: Error Control Coding

Lecture 26: Circular domains

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Statics and Strength of Materials

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Fractional Colorings and Zykov Products of graphs

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.2 Graphs of Polar Equations

ω = radians per sec, t = 3 sec

Vn 1: NHC LI MT S KIN TH C LP 10

d 2 y dt 2 xdy dt + d2 x

Spherical Coordinates

D Alembert s Solution to the Wave Equation

Differentiation exercise show differential equation

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ECON 381 SC ASSIGNMENT 2

Approximation of distance between locations on earth given by latitude and longitude

1 Σύντομη επανάληψη βασικών εννοιών

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

w o = R 1 p. (1) R = p =. = 1

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Chapter 7 Analytic Trigonometry

ST5224: Advanced Statistical Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Περισσότερα+για+τις+στροφές+

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

CHAPTER 8. CONICS, PARAMETRIC CURVES, AND POLAR CURVES

Transcript:

Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC,999 999 by CRC Press LLC

43 Trignmetry and Hyperblic Trignmetry 43. Trignmetry Angle Relatins f the Fnctins Fndamental Identities 43. Hyperblic Trignmetry Hyperblic Fnctins 43. Trignmetry 43.. Angle 43... Radian π 80 80 π radians; radians; radian degrees 80 π 43... Right Angle An angle f 90 43...3 Trignmetric fnctins f an arbitary angle (see Figre 43.) sin y/ r csc r/ y cs / r sec r/ tan y / ct ctn / y esec sec cvers sin vers cs hav vers ia cis cs + isin e, in radians, i 999 by CRC Press LLC

y y r FIGURE 43. 43.. Relatins f the Fnctins 43... Relatins sin csc csc sin cs sec sec cs sin tan sin + cs ct cs cs ct + tan sec tan sin *sin ± cs + ct csc *tan ± sec *cs ± sin *ct ± csc * sec ± tan + sin cs( 90 ) sin( 80 ) *csc ± ct + cs sin( 90 ) cs( 80 ) tan ct( 90 ) tan( 80 ) ct tan( 90 ) ct( 80 ) csc ct ct * The sign in frnt f the radical depends n the qadrant in which falls. 43..3 Fndamental Identities 43..3. Fndamental Identities Where a dble sign appears in the fllwing, the chice f sign depends pn the qadrant in which the angle terminates. 999 by CRC Press LLC

Reciprcal Relatins Prdct Relatins Qtient Relatins sin, cs, tan csc sec ct csc sin, sec, ct cs tan sin tan cs, cs ct sin tan sin sec, ct cs csc sec csc tan, csc sec ct tan ct sin sin, cs, tan sec csc cs sec csc tan, sec csc cs, ct ct sin 43..3. Pythagrian Relatins sin + cs, + tan sec, + ct csc 43..3.3 Angle-Sm and Angle-Difference Relatins sin( + β) sincs β+ cssinβ sin( β) sincsβ cssinβ cs( + β) cscsβ sinsinβ cs( β) cscsβ+ sinsinβ tan+ tanβ tan( + β) tantanβ tan tanβ tan( β) + tantanβ ctβct ct( + β) ctβ+ ct ctβct+ ct( β) ctβ ct 999 by CRC Press LLC

sin( + β)sin( β) sin sin β cs β cs cs( + β)cs( β cs sin β cs β sin 43..3.4 Dble-Angle Relatins sin sincs + 43..3.5 Mltiple-Angle Relatins tan tan tan cs cs sin cs sin + tan tan ct tan, ct tan ct 3 sin3 3sin 4sin 3 cs3 4cs 3cs 3 sin 4 4sincs 8sin cs 4 cs4 8cs 8cs + 3 5 sin5 5sin 0sin + 6sin 5 3 cs5 6cs 0cs + 5cs 5 3 sin6 3cs sin 3cs sin+ 6cssin 6 4 cs6 3cs 48cs + 8cs sinn sin( n ) cs sin( n ) csn cs( n ) cs cs( n ) 3 3tan tan tan3 3tan 3 4tan 4tan tan 4 4 6tan + tan tan( n ) + tan tann tan( n ) tan 43..3.6 Fnctin-Prdct Relatins sinsinβ cs( β) cs( + β) cscsβ cs( β) + cs( + β) 999 by CRC Press LLC

sincsβ sin( + β) + sin( β) cssinβ sin( + β) sin( β) 43..3.7 Fnctin-Sm and Fnctin-Difference Relatins sin + sin sin β ( + β)cs ( β) sin sinβ cs ( + β)sin ( β) cs+ csβ cs ( + β)cs ( β) cs csβ sin ( + β)sin ( β) sin( + β) tan tan cs cs, tan tan sin( β) + β β β cscsβ sin( + β) sin( β ) ct+ ctβ, ct ctβ sinsinβ sinsinβ tan ( + β) sin+ sinβ sin sinβ tan ( β) sin+ sinβ tan ( + β). cs+ csβ sin+ sinβ ct ( β ) cs csβ sin sinβ tan ( β) cs+ csβ 43..3.8 Half-Angle Relatins cs + cs sin ±, cs ± tan ± ct ± cs cs sin + cs sin + cs + cs + cs sin cs sin cs 43..3.9 Pwer Relatins sin 3 ( cs ), sin ( 4 3 sin sin 3 ) 4 sin ( + 8 3 4 cs cs 4 ) 999 by CRC Press LLC

cs ( + cs ), cs ( cs+ cs ) 3 4 3 3 cs 4 ( + cs + cs ) 8 3 4 4 tan cs, ct + cs cs + cs 43..3.0 Epnential Relatins (a in radians) e ia cs+ isin, i e e e + e sin a, csa i e tan a i e ia ia ia ia ia ia e + e ia ia e i e ia ia + 43..3. Relatins f Trignmetric Fnctins Fnctin sin cs tan ct sec csc sin sin ± cs tan ± + tan ± +ct ± sec a sec csc cs ± sin cs ± +tan ct ± + ct sec ± csc csc tan sin ± sin ± cs cs tan ct ± sec ± csc ct ± sin sin cs ± cs tan ct ± sec ± csc sec ± sin cs ± + tan ± + ct ct sec csc ± csc csc sin ± cs ± + tan tan ± + ct sec ± sec csc Nte: The chice f sign depends pn the qadrant in which the angle terminates. 43..3. Identities Invlving Principal Vales If Arcsin, then Arcsin + Arccs π/ Arctan + Arcct π/ sin, cs, tan csc, sec, ct 999 by CRC Press LLC

If Arccs, then sin, cs, tan csc, sec, ct If Arctan, then sin, cs + +, tan csc + sec +, ct 43..3.3 Plane Triangle Frmlae In the fllwing, A, B, and C dente the angles f any plane triangle, a, b, c, the crrespnding ppsite sides, and s a+ b+ c ( ). Radis f inscribed circle: r ( s a)( s b)( s c) s Radis f circmscribed circle: a b c R sin Α sin B sinc Law f sines: a b c sin A sin B sin C Law f csines: a b c bc A A b + c + cs, cs a bc b c a ca B B c + a + cs, cs b ca c a b ab C C a + b + cs, cs c ab 999 by CRC Press LLC

Law f tangents: tan ( B C) b c, b+ c tan ( B+ C) tan ( C A) c a c+ a tan ( C+ A) tan ( A B) a b a+ b tan ( A+ B) Half-angle frmlae: tan A r r B s a, tan r C s b, tan s c sin A sin B sin C ( s b)( s c) ss ( a), cs A bc bc ( s c)( s a) ss ( b), cs B ca ca ( s a)( s b) ss ( c), cs C ab ab Area: K bcsin A casin B absinc K a B C sin sin b sincsin A c sin Asin B sin A sin B sinc abc K s( s a)( s b)( s c) rs 4R Mllweide s frmlae: sin ( B C) b c, a cs A sin ( C A) c a b cs B sin ( A B) a b c cs C 999 by CRC Press LLC

Newtn s frmlae: cs ( B C) b+ c, a sin A cs ( C A) c+ a b sin B cs ( A B) a+ b c sin C 43..3.4 Sltin f Right Triangles a) Given acte angle A and ppsite leg a. B 90 A, b a/ tan A act A, c a/ sin A acsc A b) Given acte angle A and adjacent leg b. B 90 A, a b tan A, c b/ cs A bsec A c) Given acte angle A and hyptense c. B 90 A, a csin A, b c cs A d) Given legs a and b. c a + b, tan A a/ b, B 90 A e) Given hyptense c and leg a. b ( c+ a)( c a), sin A a/ c, B 90 A 43..3.5 Sltin f Obliqe Triangles a) Given sides b and c and inclded angle A. Nnlgarithmic sltin a b + c bccs A, cs B ( c + a b )/ ca, Lgarithmic sltin cs C ( a + b c )/ ab ( B C) A, tan ( B C) b c + b c tan 90 ( B C + ). B ( B+ C) + ( B C), C ( B+ C) ( B C). 999 by CRC Press LLC

a ( bsin A)/ sin B, K bcsin A Check. A + B + C 80, r se Newtn s frmla r law f sines. b) Given angles B and C and inclded side a. A 80 ( B+ C), b ( asin B)/ sin A, c a C A K a sin B sin ( sin )/ sin, C sin A Check. a bcsc + ccsb, r se Newtn s frmla r law f tangents. c) Given sides a and c and ppsite angle A. Check. a bcsc + ccsb, r se Newtn s frmla r law f tangents. Nte. In this case there may be tw sltins, fr C may have tw vales: C < 90 and C 80 C > 90. If A + C > 80, se nly C. d) Given the three sides a,b,c. Nnlgarithmic sltin Lgarithmic sltin sin C ( csin A)/ a, B 80 - (A + C), b (asinb)/sina, K acsinb cs A ( b + c a )/ bc, cs B ( c + a b )/ ca, cs C ( a + b c )/ ab Check. A + B + C 80. s ( a+ b+ c), r 43. Hyperblic Trignmetry 43.. Hyperblic Fnctins 43... Gemetrical Defintins (see Figre 43.) ( s a)( s b)( s c), s r r r tan A, tan B, tan C, s a s b s c K s( s a)( s b)( s c) Let O be the center, A the verte, and P any pint f the branch B AB f a rectanglar hyperbla. Set OM, MP y, OA a, and 999 by CRC Press LLC

FIGURE 43. area OPAP a. Then hyperblic sine f sinh y/a, hyperblic csine f csh /a. 43... Epnential Defintins hyperblic sine f sinh ( e e ) hyperblic csine f csh ( e + e ) hyperblic tangent f sinh e tanh csh e e + e csch h sinh csh tanh 43...3 Fndamental Identities sinh( ) sinh, csc h( ) csch csh( ) csh, sec h( ) sech tanh( ) tanh, cth( ) cth csh sinh tanh + sech cth csch csch sech csch sech 999 by CRC Press LLC

sinh( + v) sinhcshv+ cshsinhv sinh( v) sinhcshv cshsinhv csh( + v) cshcshv+ sinhsinhv csh( v) cshcshv sinhsinhv tanh+ tanhv tanh( + v) + tanhtanhv tanh tanhv tanh( v) tanhtanhv sinh( + v)sinh( v) sinh sinh v csh csh v csh( + v)csh( v) sinh + csh v csh + sinh v sinhcshv sinh( + v) + sinh( v) cshsinhv sinh( + v) sinh( v) cshcshv csh( + v) + sinh( v) sinhsinhv csh( + v) csh( v) sinh+ sinhv sinh ( + v)csh ( v) sinh sinhv csh ( + v)sinh ( v) cshh + cshv csh ( + v)csh ( v) cshh cshv sinh ( + v)sinh ( v) tanh sinh tanh + tanh csh tanh tanh tanh tanh 999 by CRC Press LLC

+ tanh sinh+ cs tanh ( ) sinh + v tanh+ tanhv cshcshv ( ) sinh v tanh tanhv cshcshv ( ) sinh + v cth+ cthv sinhsinhv ( ) sinh v cth cthv sinhsinhv sinh sihcsh csh csh + sinh csh + sinh tanh tanh + tanh 3 sinh3 3sinh+ 4sinh 3 csh3 4csh 3csh 3 3tanh+ tanh tanh3 + 3tanh sinh ± (csh ) csh (csh + ) csh sinh tan sinh csh + 43...4 Inverse Hyperblic Fnctins * sinh lg ( + + ) e csh lg e( ± ),. The pls sign is sed fr the principal vale. 999 by CRC Press LLC

tanh + lg,, < ± + csch lg e. The pls sign is sed if > 0, the mins sign if < 0. ± sech lg e, 0 <. The pls sign is sed fr the principal vales. lg + cth e, > * sinh, csh. etc., are smetimes replaced by arg sinh, arg csh, etc., i.e., sinh arg sinh. 43...5 Relatins with Circlar Fnctins sinhi isin, sinh isini cshi cs, csh csi tanhi i tan, tanh i tani sinh( + iv) sinhcsv+ icshsinv sinh( iv) sinhcsv icshsinv csh( + iv) cshcsv+ isinhsinv csh( iv) cshcsv isinhsinv tanh( + iv) sinh + i sin v csh+ csv sinh isinv tanh( iv) csh+ csv sinh isinv cth( + iv) csh csv sinh+ isinv cth( iv) csh csv sinh + i icsh, csh i isinh + π π sinh( + πi) sinh, csh( + πi) csh sinh( + πi) sinh, csh( + πi) csh e csh+ sinh, e csh sinh i e cs+ isin, i e cs isin 999 by CRC Press LLC

43...6 Special Vales f Hyperblic Fnctins π 3π 0 i πi i sinh 0 i 0 i csh 0 0 tanh 0 i 0 i csch i i 0 sech 0 cth 0 0 999 by CRC Press LLC