Kul Models for beam, plate and shell structures, 02/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, MT

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Curvilinear Systems of Coordinates

Fundamental Equations of Fluid Mechanics

Analytical Expression for Hessian

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Laplace s Equation in Spherical Polar Coördinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

r = x 2 + y 2 and h = z y = r sin sin ϕ

Matrix Hartree-Fock Equations for a Closed Shell System

4.2 Differential Equations in Polar Coordinates

Course Reader for CHEN 7100/7106. Transport Phenomena I

Problems in curvilinear coordinates

Homework 8 Model Solution Section

Kul Finite element method I, Exercise 08/2016

Example 1: THE ELECTRIC DIPOLE

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

The Laplacian in Spherical Polar Coordinates

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Tutorial Note - Week 09 - Solution

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Chapter 7a. Elements of Elasticity, Thermal Stresses

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Matrices and Determinants

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Lifting Entry (continued)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Strain and stress tensors in spherical coordinates

Solutions Ph 236a Week 2

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Answer sheet: Third Midterm for Math 2339

Kul Finite element method I, Exercise 07/2016

Srednicki Chapter 55

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2


b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Second Order Partial Differential Equations

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

If we restrict the domain of y = sin x to [ π 2, π 2

Orbital angular momentum and the spherical harmonics

Approximation of distance between locations on earth given by latitude and longitude

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Spherical Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Statistical Inference I Locally most powerful tests

EE512: Error Control Coding

Module 5. February 14, h 0min

Homework 3 Solutions

Reminders: linear functions

Section 7.6 Double and Half Angle Formulas

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Tutorial problem set 6,

Inverse trigonometric functions & General Solution of Trigonometric Equations

Derivation of Optical-Bloch Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture VI: Tensor calculus

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

1 String with massive end-points

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Numerical Analysis FMN011

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( ) 2 and compare to M.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

ADVANCED STRUCTURAL MECHANICS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Example Sheet 3 Solutions

CRASH COURSE IN PRECALCULUS

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

The Simply Typed Lambda Calculus

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

6.3 Forecasting ARMA processes

MÉTHODES ET EXERCICES

Transcript:

Kul-49.45 Models fo beam, plate and shell stuctues, /16 Demo poblems 1. Given the Catesian stain components ε ij ij, {, xy}, deive the coesponding stain components ε αβ αβ, {, φ } of the pola coodinate system (in tems of the Catesian components). Use the invaiance of dyad quantities and elationship e cosφ sinφ i =. eφ sinφ cosφ j Answe cos φ cosφsinφ cosφsinφ sin φ ε xx ε xy ε εφ cosφsinφ cos φ sin φ cosφsinφ = εφ cosφsinφ sin φ cos φ cosφsinφ ε yx εφφ sin cos sin cos sin cos yy φ φ φ φ φ φ ε. Deive the gadient expession of the spheical coodinate system, when the mapping is given by = xi + yj + zk = (sinθcosφi + sinθsinφ j + cos θ k ). Use the geneic ecipe { e e e }[ F] T [ H] 1 α = α β γ β γ αβγ,, θφ,,. and ( ) ( ), whee [ ] x, y, z α α, α e α i H = x, β y, β z, β, eβ = [ F] j x, γ y, γ z, γ eγ k Answe 1 1 = eθ + eφ + e θ sinθ φ 3. In the intinsic coodinate system and XY-plane case, the displacement assumption of a cuved Timoshenko beam model is u = u + θ ρ, whee u = use () s + vse () n, () θ = ψ se b, and ρ = ne n. Deive the small stain component expessions ε ij αβ, {, sn} by using 1 ε = + [ u ( u) ] c, 1 = es + en, 1 n/ R s n es 1 en es = s e R, and = n es n. en Assume that cuvatue 1/ R is constant. R v 1 R 1 Answe εss = ( u, s ψ, sn ) εsn ns ( u v, s ) R n R = ε = R n R + ψ

The demo poblems ae published in the couse homepage on Fidays. The poblems ae elated to the topic of the next weeks lectue (Wed 1.15-1. hall K3 118). Solutions to the poblems ae explained in the weekly execise sessions (Thu 1.15-14. hall K3 118) and will also be available in the home page of the couse. Please, notice that the poblems of the midtems and the final exam ae of this type.

Lectue poblem Be pepaed to deive the small stain components in a specified system, when displacement, gadient expession, and deivatives of the basis vectos ae given. Lectue poblems ae specified and solved duing the lectue (Wed 1.15-1. hall K3 118). The time allocated fo this is 3 min.

Home poblem Deive the small stain expessions in the cylindical coodinate system, when displacement, gadient opeato and non-zeo deives of the basis vectos ae u (,, z) = ue + u e + uze 1 φ φ φ z, = e + eφ + ez φ z Solution template e eφ = eφ, and = e. φ φ, In manipulation of vecto expession containing vectos and dyads, it is impotant to emembe that tenso ( ), coss ( ), inne ( ) poducts ae non-commutative (ode mattes). The basis vectos of a cuvilinea coodinate system ae not constants which should be taken into account if gadient opeato is pat of expession. Othewise, simplifying an expession o finding a specific fom in a given coodinate system is a staightfowad (sometimes tedious) execise. 1. Conside the tems of displacements sepaately to keep expessions shot enough. Substitute the epesentations in the specified system, expand, use the poduct ule fo deivatives, and substitute the deivatives of the basis vectos. ( u 1 e ) = e ( ue ) + e ( ue ) + e z ( ue φ ) φ z u e 1 u 1 e u e = e e + eu + eφ e + eφ u + ez e + ezu φ φ z z u 1 u 1 u = ee + ee φ + ee φ φ u+ ee z φ z ( ue φ φ ) = = = ( ue ) = z z = =

. Combine the tems to get the displacement gadient u. Afte that, swap the basis vectos of each tem of u and e-aange to get the conjugate expession ( u ) (in the same ode of the tems as u ) u = ee + ee + ee + φ z c ee + ee + ee φ φ φ φ z + ee + ee + ee z z φ z z ( u) = ee + ee φ + ee z + c ee + ee + ee φ φ φ φ z + ee + ee + ee z z φ z z 3. Use the small stain definition ε = 1 [ u + ( u )] c (symmetic pat of displacement gadient!) ε = ee + ee + ee + φ z ee φ + ee φ φ + ee + φ z ee + ee + ee z z φ z z 4. Wite down the component expessions ε ε = ε z = = φ ε ε = ε z = φ = φφ φ ε z 1 u ( z u = + ) z 1 1 u u ( z φ φ = + ) φ z ε z zz u ε = z z

The compulsoy home poblems ae published in the couse homepage on Fidays and the deadline fo answes is the next weeks Fiday 15.45. Retun you homewok answes into the geen couse mailbox that can be found fom the coido of the K3 building lobby (Puumiehenkuja 5A). Please, use the solution templates given.

Kul-49.45 Models fo beam, plate and shell stuctues INDEX NOTATION (Othonomal basis) ab i i= ab i i= ab 11+ ab+ + anbn i I ai/ xj aij, δ ij ei ej {,1} ( e i e j = δ ij ) ε e ( e e ) { 1,,1} ( e i e j = ε ijk e k ) ijk i j k εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENERAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= aijee i j ac = aee ij j i a = a c a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDRICAL φ z SYSTEM = cosφi + sinφ j + zk e cφ sφ i e 1 e eφ = sφ cφ j eφ= 1 eφ φ ez 1 k ez ez 1 = e + eφ + ez φ z SPHERICAL θφ SYSTEM

( θφ,, ) = (s θ c φ i + s θ s φ j + c θ k) eθ cθφ c cθφ s sθ i eθ cθ eφ eφ = sφ cφ j eφ= sθe cθeθ φ e sθφ c sθφ s cθ k e sθeφ eθ e eφ =, θ e eθ 1 1 = eθ + eφ + e θ sinθ φ THIN BODY snb SYSTEM FOR PLANAR BEAMS (, s n) = () s + ne () s n es, s /, s, s es en / R = = = e n ess, / ess, ess, R s en es / R R = es + en R n s n ORTHONORMAL CURVILINEAR COORDINATES eα eα eα 1 i e = ( i[ F])[ F] e = [ D] () i e e = D e en en en β β β i j ijk k T T eα α eα α = e F H = e D e e T 1 β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s s jl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j Γ ijk = D i D jk a= ( a) = dda i i +Γjijda i PLATE GEOMETRY ( φ n)

(, φ, n) = [ i cosφ+ j sin φ ] + nen e cosφ sinφ i eφ = sinφ cosφ j en 1 k e eφ eφ = e φ e n d = d 1 = d = φ φ n n Γ = Γ = φφ φφ 1 dv = dndω BEAM GEOMETRY ( snb ) ( s, n, b) = [ ( s)] + ne n + be b es, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d 1 s = 1 n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b 1 ssn sns (1 n b) b Γ = Γ = κ κ dv = (1 nκ ) dads b 1 snb Γ sbn = (1 nκb ) κs Γ = CYLINDRICAL SHELL GEOMETRY ( zφ n) ( z, φ, n) = [ ir cosφ+ jrsin φ + kz] + nen ez 1 i ez eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = z z 1 φ = ( ) φ d n = n d R n Γ φφn = Γ φnφ = ( R n) 1 1 1 dv = (1 nr ) dn( Rdφ ) dz = (1 nr ) dndω LINEAR ISOTROPIC ELASTICITY σ = E : ε ε = 1 [ u + ( u )] c

E ν σ = [ I( I : ε) + ε] 1+ ν 1 ν E ν E = ( II + I ) 1+ ν 1 ν 3 Et D = 1(1 ν ) 1 ε= [(1 + νσ ) ν I( I : σ )] E PRINCIPLE OF VIRTUAL WORK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ E = Eii + Gjj + Gkk TIMOSHENKO BEAM ( xyz ) N + bx Q y + by= Qz + bz T + cx M y Qz + cy= Mz + Qy + cz N EAu ES yψ + ESzθ Qy= GA( v ψ) GSzφ Q z GA( w + θ) + GS yφ T GSz ( v ψ) + GSy ( w + θ) + G( I yy + Izz ) φ M y = ESzu EIzyψ + EIzzθ M z ES yu + EI yyψ EI yzθ TIMOSHENKO BEAM ( snb ) N Qnκb + Qbκn + bs Qn + Nκb Qbκs + bn= Qb Nκn + Qnκs + bb T Mnκb + Mbκn + cs Mn + Tκb Mbκs Qb + cn= Mb Tκn + Mnκs + Qn + cb

N EA( u + wκ n vκ b) + ESb( θ + φκb ψκs) ESn( ψ φκn + θκs) Qn= GA( v + uκb wκ s ψ ) GSb( φ + ψκn θκb) Q b GA( w uκn + vκ s + θ ) + GSn( φ + ψκn θκb) T GSn( w uκn + vκ s + θ ) + GI ( φ + ψκn θκb) GSb( v + uκb wκ s ψ ) M n = ESb( u + wκ n vκ b) + EIbb( θ + φκb ψκs ) EIbn( ψ φκn + θκs ) M b ESn( u + wκ n vκ b) EInb( θ + φκb ψκs ) + EInn( ψ φκn + θκs ) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ dz = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) R + ( kj + jk ) R xx xy yx yy x y REISSNER-MINDLIN PLATE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + bz Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x 1 ν N (1 ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M (1 ν)( θ φ ) / xy, y, x Qn Q o w w n Nnn Nn o un un = M ns M s o θn θn = N ns Ns o us u s M nn M n o θs θs KIRCHHOFF PLATE ( xyz ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + bz ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x 1 ν N (1 ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M (1 ν ) w xy, xy

Nnn Nn o un un = N ns Ns o us us Q + M Q M o w w M nn M n o w, n + θ s n nss, ss, = REISSNER-MINDLIN PLATE ( φ z) [( N ) + N N ] / + b [( Nφ ), + Nφφ, φ + Nφ] / + bφ, φ, φ φφ = N u, + ν ( u + uφφ, )/ Et Nφφ = u ν, + ( u+ uφ, φ )/ 1 ν N (1 ν )[( u u ) / + u ] / φ, φ φ φ, [( Q), + Qφφ, ] / + bz [( M ), + Mφ, φ Mφφ ] / Q + c = [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ Q w, + θφ = Gt Q w θ φ, φ / M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/ M (1 ν)[( θ + θ ) / θ ] / φ φφ,, ROTATION SYMMETRIC KIRCHHOFF PLATE D w+ b z = 1 d d = ( ) d d MEMBRANE EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) 1 Nφz, φ + Nzz, z R bz 1 Nzφ, z + Nφφ, φ + bφ = R b 1 n Nφφ R te 1 [ u zz, + ν ( u φφ, u n)] 1 R Nzz ν te 1 Nφφ = [ ( u φ, φ un) + νuzz, ] 1 ν R Nzφ 1 tg( uz, φ + uφ, z) R MEMBRANE EQUATIONS IN SPHERICAL GEOMETRY ( φθ n ) cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ 1 csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = R Nφφ + Nθθ b n

te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) (1 + ν) un] N 1 φφ ν 1 te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( 1 + ν) un] R 1 ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDRICAL GEOMETRY ( zφ n) κ Nφz, φ + Nzz, z + bz Nzφ, z + κnφφ, φ κqφ + bφ = κqφ, φ + Qzz, + κnφφ + bn Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) 1 ν Nzφ (1 ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) M zφ D (1 ν )( ωφ, z κωz, φ κuφ, z) / = + Mφz (1 ν)( ωφ, z + κωz, φ + κ uz, φ) / M (1 νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz