Electromagnetic Field Equation and Lorentz Gauge in Rindler Space-time

Σχετικά έγγραφα
Fourier Transform. Fourier Transform

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Analytical Expression for Hessian

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

ω = radians per sec, t = 3 sec

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Oscillatory integrals

1 3D Helmholtz Equation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Fundamental Equations of Fluid Mechanics

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

IGCSE Higher Sheet H a-1 Formulae - Answers

On Quasi - f -Power Increasing Sequences

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Lecture 12 Modulation and Sampling

Example Sheet 3 Solutions

Strain gauge and rosettes

Example 1: THE ELECTRIC DIPOLE

Space-Time Symmetries

Laplace s Equation in Spherical Polar Coördinates

Uniform Convergence of Fourier Series Michael Taylor

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Tutorial Note - Week 09 - Solution

Problem Set 3: Solutions

2 Composition. Invertible Mappings

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ANTENNAS and WAVE PROPAGATION. Solution Manual

Homework 3 Solutions

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Section 8.3 Trigonometric Equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Approximation of distance between locations on earth given by latitude and longitude

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

(2), ,. 1).

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Matrices and Determinants

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

F-TF Sum and Difference angle

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The Neutrix Product of the Distributions r. x λ

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

ST5224: Advanced Statistical Theory II

derivation of the Laplacian from rectangular to spherical coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 1 Fundamentals in Elasticity

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.3 Forecasting ARMA processes

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Second Order RLC Filters

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Areas and Lengths in Polar Coordinates

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

4.2 Differential Equations in Polar Coordinates

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Solutions_3. 1 Exercise Exercise January 26, 2017

( ) 2 and compare to M.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

1 String with massive end-points

Exercises to Statistics of Material Fatigue No. 5

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Transcript:

The fin Review of Phsis 6 : 55 leomgnei Fiel quion n Loen Guge in Rinle Spe-ime Sngwh-Yi * Depmen of Mhemis Teon Univesi Souh Koe In his ppe we eive eleomgnei fiel nsfomions n eleomgnei fiel equions of Mwell in Rinle spe-ime in he one of genel heo of elivi. We hen e he Loen guge nsfomion n he Loen guge fiing oniion in Rinle spe-ime n obine he nsfomion of iffeenil opeion he eleomgnei -veo poenil n he fiel. In iion hge ensi n he elei uen ensi in Rinle speime e eive. To view he invine of he guge nsfomion guge heo is pplie o Mwell equions in Rinle spe-ime. In ppeni we show h he eleomgnei wve funion nno eis in Rinle spe-ime. n impon poin we sse in his ile is he uniqueness of he elee fme. I is beuse in he elee fme one n e eleomgnei fiel equions.. Inouion In 7 el Csillio n Snhe isovee Mwell equions in vuum in unifoml elee fme n Mluf n Fi eive eleomgnei fiel nsfomions in Rinle spe-ime in. The use Mwell equions fo gvi fiel bu we isgee wih hei ppoh beuse Mwell equions fo unifoml elee fme hve o be ee in fl Minkowski spe-ime n no in he uve spe-ime whih implies he pesene of gviionl fiel. In his wok ou im is o fin eleomgnei fiel equions in Rinle spe-ime lso in vuum bu no in vuum of he genel elivi heo. In Se. fe woking ou eleomgnei fiel equions in Rinle spe-ime we eive he Loen guge nsfomion n he Loen fiing oniion in iion o nsfomions fo eleomgnei -veo poenil in Rinle spe-ime. In Se. we efine he eleomgnei fiel in Rinle spe-ime n we fin he nsfomion of he eleo-mgnei fiel. In Se. we obin he eleo-mgnei fiel equion in Rinle spe-ime n ppl he guge heo o Mwell equions woke ou in elie seions in Rinle spe-ime fo viewing he invins of he guge nsfomion. We hink i is impon o know he eleomgnei wve funion iion in Rinle spe-ime bu i is known h i oes no * sngwh@ne.om sisf eleo-mgnei wve equion mhemill see ppeni. Hene oing o ou gumens mn esuls publishe uing he peio 7 - see Refs. n espeill he ompuion of eleo-mgnei wve funion wee inoe. Howeve we o unesn h eleomgnei wve funion n eis in ineil fme s shown b Mwell n insein.. Tnsfomion of he leo-mgnei -veo Poenil Loen Guge Tnsfomion n Loen Guge Fiing Coniion The Rinle ooine nsfomion is osh The e e is see Refs. 5 τ η b b υ υ b υ υ ηbe e υ g υ

The fin Review of Phsis 6 : 56 e e osh The oienion of -is n -is is given s poenil is -veo τ 9 e e Whee he uni veo e is given s e osh 5 Theefoe osh osh 6 Now he veo nsfomion is V ' ' V U ' U 7 ' Theefoe he nsfomion of he eleomgnei -veo poenil is given b he following equions: ' ' e 8 e The nsfomion of iffeenil ooines is ' ' e 8b e n he equion of eleo-mgnei -veo Loen guge nsfomion in Rinle spe-ime is given b Whee is sl funion. g g g g g Hee is sl funion. Theefoe he Loen guge in Rinle speime n be wien s Γ ; Γ Γ g g υ υ g g g g Hene Loen guge nsfomion n Loen guge in Rinle spe-ime e s follows: ; Γ υ g υ Γ

The fin Review of Phsis 6 : 57 υ υ Γ g -i Hene one n obin Loen guge fiing oniion in Rinle spe-ime s Fom he esul obine bove we foun he nsfomion of he eleo-mgnei -veo poenil in n ineil fme n he eleo-mgnei -veo poenil in unifoml elee fme whih n be wien s osh osh If we ke he mi of he nsfomion in he iffeenil ooine hen we hve osh osh The invese mi of qn. n 5 n be obine s e osh osh 5 Hene we n obin he mi of nsfomion of iffeenil opeion s

The fin Review of Phsis 6 : 58 T T osh osh 6 Theefoe he nsfomion of iffeenil opeion is osh osh 7 The bove iffeenil opeion sisfies he following equions: 8. leo-mgnei Fiel in he Rinle Spe-ime Given he eleomgnei fiel in he ineil fme s 9 We nee o pefom ompuion in oe o efine he eleo-mgnei fiel in Rinle spe-ime whih equies h we lule eleomgnei fiel nsfomions in Rinle spe-ime. The ompuion is sighfow b using he eleomgnei -veo poenil nsfomion qn. n he nsfomion of iffeenil opeion qn. 7. One heefoe obins osh osh osh osh

The fin Review of Phsis 6 : 59 The -omponen of he elei fiel in he ineil fme is given s osh osh osh osh osh The -omponen of he elei fiel in he ineil fme n be wien s osh osh osh osh osh Now fo he mgnei fiel he n omponens e given b qns. o 5 s follows: osh osh

The fin Review of Phsis 6 : 6 osh osh osh osh 5 Hene we n efine he eleomgnei fiel in Rinle spe-ime. This is given s Now 6 We hen obin he nsfomion of he eleomgnei fiel s osh osh osh osh 7 Hene we n fin he mi of he nsfomion of he eleo-mgnei fiel. H osh osh osh osh H 8 Simill we n obin he mi of he invesensfomion of he eleomgnei fiel.

The fin Review of Phsis 6 : 6 H osh osh osh osh H 9 see lso Ref.. Hene he invesensfomion of he eleomgnei fiel is osh osh osh osh If we ppl Loen guge nsfomion qn. o eleomgnei fiel qn. 6 in Rinle spe-ime hen we ge Whee is sl funion. If we ppl Loen guge nsfomion qn. o he nsfomion of he eleomgnei - veo poenil n qn. hen we n obin he following esuls. osh osh. leomgnei Fiel quion in he Rinle Spe-ime Mwell equion is b

The fin Review of Phsis 6 : 6 We shll now pefom ompuion o eive Mwell equions in Rinle spe-ime. Fo his pupose we shll ompue i b using he eleomgnei fiel nsfomion qn. 7 n he nsfomion of iffeenil opeion s given in qn. 7. Le us fis el wih he nsfomion of - veo he hge ensi n he eleil uen ensi τ n Whee osh osh 5 Now -veo τ is efine in Rinle spe-ime. The fis of he Mwell equions is given in he ineil fme s follows:. osh osh osh osh osh osh 6. osh osh The -omponen is: osh osh osh osh Hene osh 7 The -omponen is: osh

The fin Review of Phsis 6 : 6 osh osh osh 8 n he -omponen is given s: osh osh osh osh Theefoe 9 The hi lw esibe b Mwell equions in ineil fme is:. osh osh osh osh Now he fouh equion of Mwell in he ineil fme is given s:. osh osh

The fin Review of Phsis 6 : 6 The -omponen is given s: osh osh osh osh Hene osh The -omponen is: osh osh osh osh The -omponen is given s: osh osh osh osh Theefoe we obin he eleomgnei fiel equion fom qns. 5- in Rinle speime see lso Ref. whih is given s

The fin Review of Phsis 6 : 65 b We know h el Csillio n Snhe le isovee Mwell equions in unifoml elee fme in vuum. Hene he nsfomion of -veo τ is osh osh 5 Now -veo τ. Fo insne we know h he spheil hge ensi of sion elee fme in hge huge sphee is R R Q R Q V Q Genell he oninui equion i.e. onsevion lws fo he hge ensi n he eleil uen in Rinle spe-ime is given b Γ ; g g Γ Γ g g g g 5 We now e he Loen guge nsfomion b using qn. fo he eleomgnei fiel equions n qns. o in Rinle spe-ime. The ompuion is sighfow b using he Loen guge nsfomion qn. n he Loen guge fiing oniion qn.. qn. is

The fin Review of Phsis 6 : 66 The Loen guge in Rinle spe-ime is given s Hene 6 If we ppl Loen guge nsfomion o qn. 6 hen we hve Whee is sl funion. 7 Now he Loen guge fiing oniion qn. in Rinle spe-ime 8

The fin Review of Phsis 6 : 67 Hene qn. is 9 qn. is invin une Loen guge nsfomion in Rinle spe-ime n qn. b is 5 Theefoe 5 5

The fin Review of Phsis 6 : 68 If we ppl he Loen guge nsfomion o qn. 5 we ge Whee is sl funion. 5 Now he Loen guge fiing oniion qn. in Rinle spe-ime is

The fin Review of Phsis 6 : 69 5 Theefoe qn. 5 is 55 Hene qn. b is invin une Loen guge nsfomion in Rinle spe-ime. Now qn. is 56 n qn. is 57 Hene qn. n qn. e invin une Loen guge nsfomion in Rinle spe-ime. Hene he eleomgnei fiel equions Mwell quions in Rinle speime qns. - e lso invin une Loen guge nsfomion.

The fin Review of Phsis 6 : 7 5. Conlusion Sine el Csillio n Snhe le lule Mwell equions in unifoml elee fme in vuum n Mluf n Fi obine eleomgnei fiel nsfomion in Rinle spe-ime 5 see Xiv pepin we ompue he eleomgnei fiel nsfomion n he eleo-mgnei equion in unifoml elee fme in single heo. Genell he ooine nsfomion of elee fme see Ref. 6 is I osh II ep 58 ep osh 59 If one uses qn. 59 o fin Mwell equions in Rinle spe-ime one fils o o so. In insein s ile see 7 he obine Loen nsfomions fo Mwell equions in ineil fme n i no use Glilei nsfomions in ineil fme. In n elee fme we hink ou hoie of Rinle ooine I is bee one n e eleomgnei fiel equions in mnne simil o insein s hoie. ppeni In -imensionl Rinle spe-ime if we use inoe lulion we hink h he eleomgnei wve funion will look like he epession given below: Now X sinω sinω ep sin Φ osh ep osh mus sisf he following equion. sin Φ sin Φ sin Φ sinω ep ω osφ ω ep sin Φ ep u his ompuionl siuion is iffeen. sin Φ sinω ep

The fin Review of Phsis 6 : 7 osφ ω ep Now D β βd Dβ osφ ω ep sin Φ ω Hene if we ompe qn. n qn. 5 osφ ω ep ep osφ ω ep 5 ω sin Φ sin Φ ep sin Φ ω ep osφ ω ep sin Φ 6 We onlue h i nno eis s he eleomgnei wve funion in Rinle speime. Refeenes G. F. Toes el Csillio n C. I. Pee Snhe Revis Mein De Fisi 5 7. J. W. Mluf n F. F. Fi The eleomgnei fiel in elee fmes iv:g-q/.567v. W. Rinle m. J. Phs. 7 966. S. Yi The fin Review of Phsis 8 7. 5 F. Shoi n. Shoi The equivlene piniple n he elivi veloi of lol ineil fme iv:g-q/55.669v 5. 6 Mssimo Pui n Mihele Vllisne Mke-Wheele ooines fo elee obseves in speil elivi iv:g-q/695. 7. insein Zu lekonmik bewege Köpe nnlen e Phsik 7 89 95. Reeive: 6 Oobe 6 epe: 5 Novembe 6