S/Na2S S2 2- Na2S/Na2SO3

Σχετικά έγγραφα
Journal of Fuzhou University Natural Science Edition. The preparation and visible - light photocatalysis of Ag 3 PO 4 /TiO x N y

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Νανοσύνθετα πολυαιθυλενίου υψηλής πυκνότητας (HDPE) / νανοϊνών χαλκού (Cu-nanofibers) με βελτιωμένη σταθερότητα στην υπεριώδη ακτινοβολία

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Σπανό Ιωάννη Α.Μ. 148

Environmental applications of Graphene-based materials

Energy Level Analysis of Nano and Organic Semiconductor by Photoelectron Spectroscopy

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

. O 2 + 2H 2 O + 4e 4OH -

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

2 1, 2 A 2F 10 : : 00 1A01 C 4F B 5F 10 : : 40 1B01 1C01 1A02 1C02 BC2N 1B02 1B04. 1A03 C/N Fe 1C03. 1C04 DNA Somlak Ittisanronnnachai

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΜΕΛΕΤΗ ΝΕΩΝ ΦΩΤΟΕΝΕΡΓΩΝ ΥΛΙΚΩΝ ΜΕ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΥΠΟΒΛΗΘΕΙΣΑ ΣΤΟ ΓΕΝΙΚΟ ΤΜΗΜΑ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Development of New High-Purity Alumina

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Μελέτη Πρότυπων Καταλυτικών Συστηµάτων. µε Επιφανειακά Ευαίσθητες Τεχνικές

Electronic Supplementary Information

E#ects of Imogolite Addition on Colloidal Stability of Montmorillonite and Kaolinite

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

ΗΛΙΑΚΕΣ ΚΥΨΕΛΙΔΕΣ ΜΕ ΒΑΣΗ ΚΒΑΝΤΙΚΕΣ ΤΕΛΕΙΕΣ ΧΑΛΚΟΓΕΝΙΔΙΩΝ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Capacitors - Capacitance, Charge and Potential Difference

Supplementary material

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Table of contents. 1. Introduction... 4

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΧΗΜΙΚΑ ΠΡΟΣΘΕΤΑ ΠΟΥ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΤΟ ΝΕΡΟ ΤΟΥ ΑΤΜΟΛΕΒΗΤΑ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics


JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

1 Vol. 16 No ELECTROCHEMISTRY Feb nanotio 2 Pb /nanotio S-2150 HITACHI Sn + SnCl 4 SnCl 2 3-4

38 7 Vol.38, No RARE METAL MATERIALS AND ENGINEERING July 2009

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Phase Segregation of ZnO / ZnMgO Superlattice Affected by Ⅱ-Ⅵ Ratio

Supporting Information

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Microwave Sintering of Electronic Ceramics

[1] P Q. Fig. 3.1

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Conductivity Logging for Thermal Spring Well

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

. (SERS),,. ( 1.2~ 0.9 V),

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

the total number of electrons passing through the lamp.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

TiO2 , (1. ,, ; 3., ) 1. 1 Nd. A, ; 1 ml 0. 1 mol L - 1. (Nd/ Ti) Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II), UV/H2O2/Fe (III) Processes

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ& ΠΕΡΙΒΑΛΛΟΝΤΟΣ

TiO 2. Preparation of nano-la (S, C)-TiO 2 oriented films by hydrothermal-templating method. XU Ke-jing, XI Jin-tao

Table of Contents 1 Supplementary Data MCD

Prey-Taxis Holling-Tanner

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

ΜΕΛΕΤΗ ΔΙΕΠΙΦΑΝΕΙΩΝ ΜΕΤΑΛΛΟΥ / ΑΝΘΡΑΚΟΠΥΡΙΤΙΟΥ ΜΕ ΕΠΙΦΑΝΕΙΑΚΑ ΕΥΑΙΣΘΗΤΕΣ ΤΕΧΝΙΚΕΣ

Vol. 15,No HIGH POWER LASER AND PARTICL E BEAMS Apr.,2003 ,,,,,, , ) SiO 2. ; ZrO 2 PVP [2 22J / cm 2 ( 1064nm, 1ns) [3 ]

) ; GSP ) ;PXD g, 100 ml

ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΜΕ ΧΡΗΣΗ ΤΟΥ ASPEN HYSYS: ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΛΛΗΝΙΚΗ ΑΕΡΟΠΟΡΙΚΗ ΒΙΟΜΗΧΑΝΙΑ

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

2. Chemical Thermodynamics and Energetics - I

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΒΙΟΛΟΓΙΚΗ ΑΝΑΓΩΓΗ ΕΞΑΣΘΕΝΟΥΣ ΧΡΩΜΙΟΥ ΜΙΧΑΗΛ Κ. ΜΙΧΑΗΛΙΔΗ

Ó Ú Ô ÏÏÈÎÎ, Ph.D. ƒ π ª À ƒ À. Προλογίζει: Νίκος Χατζηαργυρίου Καθηγητής ΕΜΠ και Αντιπρόεδρος ΕΗ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fused Bis-Benzothiadiazoles as Electron Acceptors

SnO 2. Research Progress in the Preparation Modification and Aplication of Ti-based SnO 2. Electrode. LI Xiaoliang XU Hao YAN Wei SHAO Dan

ΜΕΛΕΤΗ ΜΟΡΦΟΛΟΓΙΑΣ ΣΤΕΡΕΩΝ ΥΜΕΝΙΩΝ ΓΙΑ ΦΩΤΟΝΙΟΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Supporting Information

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Supporting Information

Transcript:

ω ω ω Η Δ δ τορ ή Δ τρ ή " ", 2016

Η Ω Ω Ω Η Η Η Η Η Ω Ή ω ω Η Ε Ε Ε :., -,. (Ε ω ).., -,.., -,.., -,.., -,.., -,..., -,.

ί -.,..,,,.,.....,.,..,,..,,..,...,.,.,.,.,.,.,.,...,.

ί.,. Έ.., -.,, /,.,. Ω TiO2.,., (S/Na2S Na2S/Na2SO3)., S/Na2S S2 2-., Na2S/Na2SO3. Ω TiO2

(CuS, CoS, Cu2S).,, TiO2 WO3 BiVO4..

Abstract The aim of this study was the photoelectrochemical production of electricity and hydrogen using Photo-fuel cells. Photo-fuel cells are basically photoelectrochemical cells which can be used as an alternative way to convert solar energy into useful forms of energy photo-degrading simultaneously organic or inorganic wastes which are used as sacrificial agents. The basic configuration of such a cell comprises of a photoanode which is a light-absorbing semiconductor electrode and of a counter electrode in which an electrocatalyst is deposited. The two electrodes are immersed in an aqueous electrolyte solution which contains the sacrificial agent and are connected through an external circuit. When the photoanode is irradiated with photons that have energy equal to or higher than the band gap of the semiconductor, electron-hole pairs are created. The photo-generated holes in the valence band diffuse to the semiconductor-electrolyte interface where they oxidize the sacrificial agent, while the electrons are transferred through the external electrical circuit to the counter electrode and they take part in reduction reactions. In the case of Photo-fuel cells using organic sacrificial agents, ethanol was studied as a representative example of alcohols that can be found in different kind of wastes and biomass by-products. TiO2 was used as photo-anode both sensitized and non-sensitized in the visible spectrum with different kind of quantum dots. Also, alternative electrocatalysts were studied in order to subsistute platinum. Apart from the different kind of organic sacrificial agents, there are also inorganic coumpounds that can be used as very efficient hole acceptors, enabling the effective separation of the charge carriers. In the present study, two different sulfur mixtures were used (S/Na2S and Na2S/Na2SO3), high amounts of which are released from fossil fuel processing. In the first case, only electricity production was studied due to the fact that the photoelectrocatalytic efficiency of H2 production is very low in solutions containing only sulfide ions. This is attributed to the formation of disulfide ions, S 2- which exhibit a less negative reduction potential than protons. In the case of Na2S/Na2SO3 mixture, both photoelectrochemical electricity and hydrogen production were studied. TiO2 was again used as photo-anode combined with different quantum dots whereas in that case metal sulfides (CuS, CoS, Cu2S) were studied as electrocatalysts because platinum is unstable and increases the charge carrier transfer resistance in the presence of sulfur mixtures.

Finally, for the photoelectrochemical production of hydrogen, in addition to TiO2, WO3 and BiVO4 were synthesized and studied as well. These materials are medium band gap semiconductors which exhibit better photocatalytic activity than titania due to their visible light absorption.

ό Ε ω :... 1 1.... 2 2.... 3 3.... 5... 8... 9 Κ 1: Ε ω ω ω... 11 1.1... 12 1.2... 15 1.2.1 Ά... 15 1.2.2... 15 1.3 Fermi (Fermi Level)... 16 1.4... 17 1.5... 19 1.6... 20 1.7 TiO2... 23 1.8 TiO2... 27... 29 Κ 2: ω... 33... 34 2.1... 35 2.2... 39 2.2.1... 39 2.2.2... 43 2.3 /.... 44 2.4... 48

2.5... 54 2.5.1... 54 2.5.2 ph... 54 2.5.3... 55 2.6... 56... 62 Κ 3: Π... 68... 69 3.1... 69 3.1.1... 69 3.1.2 TiO2... 70 3.1.3 TiO2... 74 3.1.4 WO3... 77 3.1.5 BiVO4... 78 3.2... 79 3.2.1 Pt... 80 3.2.2....81 3.2.3... 82 3.2.4 Pt FTO... 83 3.2.5 FTO... 84 3.3... 85 3.4 ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ...86 3.4.1... 86 3.4.2... 87 3.4.3... 90 3.4.4... 91 3.5... 93 3.5.1... 93

3.5.2 (IPCE) 93 3.5.3... 94 3.6... 96 3.7... 98 3.7.1 (SEM)... 98 3.7.2... 98 3.7.3-99 3.7.4 Π (X-ray diffraction, XRD)... 101 3.7.5 Π... 102... 104... 106 Κ 4: Φω ω ω ω ω.. 107... 108 4.1 X... 108 4.1.1 TiO2... 108 4.1.2... 111 4.1.3 TiO2 Π... 115 4.1.4 - (UV-Vis DRS)... 117 4.1.5 CdS/TiO2 UPS... 122 4.2... 124 4.2.1... 124 4.2.2 GMC-S-X.. 127 4.2.3 XPS GMC-S-X... 128 4.3... 130 4.3.1 ( )... 130 4.3.2... 131

4.3.4... 135 4.4 TiO2... 143 4.5... 155... 163 Κ 5: Φω ω ω ω ω ω 166... 167 5.1... 167 5.1.1 (DRS)ΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙΙ..ΙΙΙΙ.167 5.1.2 Raman... 171 5.2... 173 5.2.1... 173 5.2.2 Cu2S Π... 177 5.3 CdS CdS/TiO2... 177 5.4 TiO2... 181 5.4.1 ZnS/CdSe/CdS/TiO2... 181 5.4.2... 186 5.5... 192... 199 Κ 6: Ε ω ω ω... 202... 203 6.1 WO3 BiVO4... 204 6.2... 209... 223

... 224... 227... 228... 229

ή ί ί ή ί ή 1: ή (816000 Km 2 ) ά ί ϊ ά ή ό % ή ή ύ ί 20 TW [1]. - 1 -

1. ό ό ύ ή., (, ), [2]. 56% ( ) 2010 2040, US Energy Information Administration (US-EIA) [3] ( 1)., (,, ) 85% [4],. ή 2: ό ώ ά έ έ - 2040 [3]. - 2 -

2. ώ έ έ.,. ( ) (United States Environmental Protection Agency) [5].,,..,., [6,7]., [8]. ( ). : Ε :. Η Θ. ( ). - 3 -

Υ Ε :. (,,,, ).,. ω Ε :,.. ( ). :, ( ).. (,,..) (,..). Η :.,..,. - 4 -

3. ή έ ί ή 3β10 24 J, 10.000 [9,10]., 100.000 TW, ( 3),. ή 3: ά ή ί. 2012, 7 18 TW [11].,,., [12]. Π 1. - 5 -

ί : ή ί ά ό έ ό ά ί ώ ώ [1]. ή έ ύ TW) ή Α σ - % ς Α 4 ς ς σ ς. Υ 1-2 Τ ς, TW. Γ ω 12 Μ σ σ. Α σ σ Π 10 ς ς GW/ ώ ς. Ε ό ό 10 Α % ς ς ς ς. Α, % ς Η >20 ς ς ς ϊ σ σ σ ς %. Έ 20 TW, 10% 816000 m 2 900x900 m 2 ( 1) [1].,.,,. (Solar-Thermal System). Έ.,,. - 6 -

(Photovoltaic Systems).,,. 35-40% [13]. (Photoelectrochemical Systems),,.,., 1839 Edmund Becquerel ω ( ) [14]. 1954 1972 Fujishima Honda [15].. Ό,,. ( ),., [16].,,.. - 7 -

,. /..,. ό ή.,. - 8 -

ί [1] R. van de Krol, M. Grätzel, Photoelectrochemical hydrogen Production, Electronic Materials: Science & Technology, Springer, 2013. [2] J. K. Casper, Fossil Fuels and Pollution: The Future of Air Quality, Facts On File, New York, 2010. [3] US Energy Information Association (US-EI ): http://www.eia.gov/ [4] M. I. Hoffert, Farewell to fossil fuels? Science, 2010, 329, 1292 1294. [5] United States Environmental Protection Agency: http://www3.epa.gov/ [6] N. L. Panwar, S. C. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 2011, 15, 1513 1524. [7] I. Dincer, Renewable energy and sustainable development: a crucial review, Renewable and Sustainable Energy Reviews, 2000, 4(2), 157 175. [8] έ ώ ώ ό έ : http://www.cres.gr/kape/index.htm [9] A. Fujishima, D. A. Tryk, Energy Carriers and Conversion Systems: vol. I, Photochemical and Photoelectrochemical Water Splitting. In: Encyclopedia of Life Support Systems, T. Ohta and T. N. Vezirozeu (Eds.). ELOSS & UNESCO. [10] C. A. Grimes, O. K. Varghese, S. Ranjan, Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis, Springer Science + Business Media, LLC, New York, 1988. [11] International Energy Statistics: http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm. [12] N. S. Lewis, D. G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci., 2006, 103, 15729 15735. [13] T. M. Razykova, C. S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyayae, Solar photovoltaic electricity: Current status and future prospects, Solar Energy, 2011, 85(8), 1580 1608. - 9 -

[14] E. Becquerel, Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques, Comptes Rend. Acad. Sci., 1839, 9, 145 149. [15] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37 38. [16] A. Heller, Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells, Acc. Chem. Res., 1981, 14, 154 162. - 10 -

ά 1 ή ί ώ ή 1.1: ό ά έ ύ ώ ό ά ά ά ύ [1]. - 11 -

1.1 ά ά ώ..,,,. Ό,. ( 10 22 Π 10 23 cm -3 ).,,., ( 1.2).,. (Valence band, VB).. - 12 -

ή 1.2: ό ώ ώ ό ί ύ ό [2]. ω (Conduction band, CB)., ( nergy band gap, Eg) [3]: Ε = E E V ev (1.1)..,.,.,.,, - 13 -

.. (Eg > 4 ev), ω (insulator)., ω (conductors).,. ω (Semiconductors),.,, ( ) [4,5].,. 1.3. ή 1.3: έ ώ ό ά έ, ύ ύ. - 14 -

1.2 ί ώ 1.2. Ά έ ί,. ω (direct semiconductor).,.,,, k [6]. ω (indirect semiconductor).,. (defect energy state) [7]. 1.2.2 ί ί ί. Έ,, ω (Intrinsic semiconductor). Si, Ge InAs, SiC, GaAs [3]. ω ω (Extrinsic semiconductors) ω ω, TiO2, ZnO NiO. Έ ( ),, - 15 -

. -n -p. ( -n ),,., -p [4]..,., -.,,., [8,9]. 1.3 ί Fermi (Fermi Level).,. Fermi Fermi (Fermi energy level), ½.. Fermi,., Fermi ( 1.4).,, Fermi - 16 -

. n-, Fermi, p- Fermi ( 1.4). ή 1.4: έ έ Εκχςξ έ ώ ό έ ή ό ή ό ύ n ύ p. 1.4 έ ώ ώ έ ά,. e - h + Φ.,, - 17 -

., y e - ( ) (Normal Hydrogen electrode, NHE). + / 2 4,5 ev., ph., -59 V ph : =. (1.2) 1.5. ή 1.5: έ ώ ώ ά ύ ή ό ύ ph=1 ά ά έ ά [10]. - 18 -

1.5 έ ύ ό ό Ό,.., : (1.3) Planck. (threshold wavelength),, : = = (1.4), (h + ): Ημιαγωγ ς h + h +,. Έ, e - h +. Έ,.,., - [2,11]. 1.6 - Πn Πp. - 19 -

ή 1.6: ή ί ύ ί - ή ά ύ/ ύ ό ύ n ί ί ύ p ί ώ [12]. 1.6 ό ώ ώ. : (1), (2), (3), (4) (5) [13,14].,.,, TiO2, - 20 -

Si. 1.7 1.5 ( 1.5) 1., 1 3 ev Φ (Eg>2.2 ev)., (Eg>1.0 ev).,. ή 1.7: ά ύ ό AM 1.5 έ ό ά ύ [15]. 1 ΑΜ 1.5: αφο ά σ ο ια ό φ ς ό ς α ό α α ί αι σ ιφά ια ς ς αι αφού ο φ ς ια ά ι ο ιά ή ο ς 1.5 φο ές ο ά ος ς α όσφαι ας [16]. - 21 -

.. [17].,, /..,. Ό,, /..,. Έ,, (.. TiO2, ZnO), (.. CdS, ZnS) (.. Ge3N4).,. n-, TiO2, WO3, SrTiO3, ZnO ZnS,..,.,, CdS, PbS - 22 -

CdSe.,,. p-,, [18]. 1.7 TiO2 ό έ ί, TiO2.,,. Έ,. -n, (anatase), (rutile) (brookite) ( 1.8). TiO2. [19] 700 όc., [20]. Π 1.1. TiO2, [21-23]. - 23 -

ή 1.8: έ έ TiO2: A) ή (a=b= 4,5937 Å, c= 2,9581 Å), ί (a= 9,16 Å, b= 5,43 Å, c= 5,13 Å), ά (a=b= 3,7842 Å, c= 9,5146 Å) [24,25]. ί 1.1: έ ό ώ ώ ά ί [2], [26]. g (ev) ECB (V vs NHE, ph=0) EVB (V vs NHE, ph=0) ά 3.23-0.32 2.91 ή 3.02-0.11 2.91-24 -

2.,.,, [27]. TiO2, silica gel,,,, [28-30].. TiO2,,,,., TiO2, Φ. (chemical vapor deposition), (hydrothermal deposition), - (sol-gel method) [31-34].,,. (electrodeposition), (dip coating), doctor blading spin coating TiO2. 2 Ως ο ής α α ί αι φ ο α ά σ ό ο ο α α ύ ς β ίσ αι σ σ ά ο φή αι ο φ ο α α ό ο σύσ α ί αι σ ή ή αέ ια φάσ. - 25 -

TiO2 Degussa P-25 3:1. Degussa P-25 Π 1.2.,, [2]. Degussa P-25. ί 1.2: έ έ ό ά, ί ά έ Degussa P-25 [35]. BET surface are (m 2 /g) Ό ό (cm 3 /g) Μέ ά ό (nm) ά 267.0 0.37 5.4 ή 4.5 0.02 10.5 Degussa P-25 65.3 0.17 12.1-26 -

1.8 ή ά TiO2 TiO2 [15, 36, 37]. Ό, TiO2,,. : έ TiO2: io + hv e + + h V 1.9 TiO2 -.,. ή.9: ό ί ύ ί - ή έ έ ί TiO2 ό ύ ό ά [38,39]. - 27 -

ϋ CO2 H2O. ( ϋ) (2.80 V) [38,39]. : h + V + CO + O h + V + O O + + ΟΗ + CO + O Ό.,, 2 - HO2 H2O2 [40-42]. - [27,43]: e + Ο Ο Ο + ΟΗ ΗΟΟ ΗΟΟ + e O OO + + O - 28 -

ί [1] A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 2009, 38, 253-278. [2]., /,,, 2012. [3] N. Arora, Review of Basic Semiconductor and pn Junction Theory, MOSFET Models for VLSI Circuit Simulation Computational Microelectronics, Publisher Springer, Vienna, pp 15-68, 1993. [4] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, Chapter 3: Introduction to the Quantum theory of solids, 4th Edition, McGraw- Hill, New York, 2012. [5] B. V. Zeghbroeck, Principles of Semiconductor Devices, e-book of Electrical and Computer Engineering Department of University of Colorado at Boulder, http://ecee.colorado.edu/~bart/book/contents.htm [6] J. Allison, Electronic Engineering Semiconductors and devices, McGraw-Hill, Shoppenhangers Rd Maidenhead Berkshire England, 1971. [7].. ό, ή ό ό ώ ώ ί ύ ί CdSe, ή ί ή ό ώ ώ ώ ύ ό ί, 2014. [8] N. M. Ravindra, V. K. Srivastava, Technical note: Temperature dependence of the energy gap in semiconductors, Journal of Physics and Chemistry of Solids, 1979, 40(10), 791 793. [9]. ύ, έ έ ώ ώ έ έ, ή ή, ή ώ,. [10] M. Grätzel, Review article: Photoelectrochemical cells, Nature 414, 2001, 338-344. [11]. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 1995, 95, 735-758. [12] I... Hassan, Solar Energy Conversion by Photoelectrochemical Processes, PhD thesis, University of Bath, 2011. - 29 -

[13] R. A. Al-Rasheed, Water Treatment by Heterogeneous Photocatalysis: A Review, In Proceedings of the 4th SWCC Acquired Experience Symposium, Jeddah, Saudi Arabia, 2005. [14] R. van de Krol, M. Grätzel, Photoelectrochemical hydrogen Production, Electronic Materials: Science & Technology, Springer, 2013. [15] A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1-21. [16].. ά, ϊ ά ή, ό ή, 2007, ί. [17] D. Bahnemann, A. Henglein, J. Lilie and L. Spanhel, Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide, J Phys. Chem. 88 (1984) 709. [18] K. Triantafyllidis, A. Lappas, M. Stöcker, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 1st Edition, 2013, edited by Elsevier, Amsterdam, The Netherlands. [19] A. I. Kokorin, D. Bahnemann, Chemical Physics of Nanostructured Semiconductors, VSP:Boston, MA, USA, 2003. [20] O. Carp, C. Huisman and A. Reller, Photoinduced reactivity of titanium dioxide, Progress in solid state chemistry, 2004, 32, 33-177. [21] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano, R. J. D. Tilley, A structural investigation of titanium dioxide photocatalysts, Journal of Solid State Chemistry, 1991, 92(1), 178 190. [22] A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1 3), 366 376. [23] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer, Explaining the Enhanced Photocatalytic Activity of Mixed Phase TiO2 Using EPR, J. Phys. Chem. B, 2003, 107, 4545. - 30 -

[24] J. Moellmann, S. Ehrlich, R. Tonner and S. Grimme, A DFT-D study of structural and energetic properties of TiO2 modifications, J. Phys. Condens. Matter, 2012, 24, 424206 (8pp). [25] M. Landmann, E. Rauls and W. G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.: Condens. Matter, 2012, 24, 195503 (6pp). [26].,,,, 2009. [27] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, 2015, 79, 128Π146. [28] M. Langlet, A. Kim, M. Audier, J. M. Herrmann, Sol-Gel Preparation of Photocatalytic TiO2 Films on Polymer Substrates, Journal of Sol-Gel Science and Technology, 2002, 25(3), 223-234. [29] X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, Z. Wen, A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon, Applied Surface Science, 2009, 255(7), 3953 3958. [30] S. Sfaelou, V. Dracopoulos, P. Lianos, Quantum-dot sensitized Solar Cells with Metal Electrodes, Journal of Advanced Oxidation Technologies, 2014, 17(1), 53-58. [31] S. K. Dong, S.-Y. Kwak, The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity, Applied Catalysis A: General, 2007, 323, 110 118. [32] Y.-C. Liu, Y.-F. Lu, Y.-Z. Zeng, C.-H. Liao, J.-C. Chung and T.-Y. Wei, Nanostructured Mesoporous Titanium Dioxide Thin Film Prepared by Sol-Gel Method for Dye-Sensitized Solar Cell, Hindawi Publishing Corporation, International Journal of Photoenergy, 2011, Article ID: 619069, 9 pages, doi:10.1155/2011/619069 [33] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna and G. Madras, Synthesis and Structure of Nanocrystalline TiO2 with Lower Band Gap Showing High Photocatalytic Activity, Langmuir, 2004, 20 (7), 2900 2907. - 31 -

[34] C. Su, B.-Y. Hong, C.-M. Tseng, Sol gel preparation and photocatalysis of titanium dioxide, Catalysis Today, 2004, 96(3), 119 126. [35] Zebao Rui, Shangren Wu, Chao Peng, Hongbing Ji, Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion, Chemical Engineering Journal, Volume 243, 1 May 2014, Pages 254 264. [36] U. I. Gaya, A. H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9, 1-12. [37] K. Nakataa, A. Fujishima, TiO2 photocatalysis: Design and applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 169 189. [38] R. Liang, A. Hu, M. Hatat-Fraile, N. Zhou, Nanotechnology for Water Treatment and Purification, Chapter 1: Fundamentals on Adsorption, Membrane filtration and advanced oxidation processes for water treatment, edited by A. Hu and A. Apblett, Springer 2014, Switzerland. [39] 0. Legrini, E. Oliveros and A. M. Braun, Photochemical Processes for Water Treatment, Chem. Rev., 1993, 93, 671-698. [40] M. Umar and H. Abdul Aziz, Chapter 8: Photocatalytic Degradation of Organic Pollutants in Water, Book: Organic Pollutants - Monitoring, Risk and Treatment, edited by M. Nageeb Rashed, 2013, http://dx.doi.org/10.5772/53699. [41] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, 2010, 44, 2997-3027. [42] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chem. Rev., 2014, 114 (19), 9919 9986. [43] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chemical Reviews, 1995, 95, 69-96. - 32 -

ά 2 έ έ ώ ώ ή 2.1: ό ά ύ ύ [1]. - 33 -

ή,, ( ) ( ),. ( ).,.,., [2]. ( 2.2).,,., -., / H + H2., [3]. - 34 -

ή 2.2: ή ά ύ ύ ί ί ό ώ ά ά ό έ ύ. 2.1 ά ά ά ύ.. + 2 (0 V vs. NHE ph=0) - 35 -

2 2 (1.23 V vs. NHE ph=0) ( 2.3)., 1.23 ev. ή 2.3: έ έ ώ έ ό ό ύ ί ά ύ [4]. (1.23 ev) (0.3-0.4 ev) [5] (0.4-0.6 ev) [6]., 1.9 ev, 650 nm. 2.4.,,., CdS CdSe. S 2- Se 2- - 36 -

[7]: Cd v e + + h V + Cd + h V Cd + +S ή 2.4: ό ά έ ύ ώ ό ά ά ά ύ [8]., : + + +, + +, E o o o E = +. V vs. N E =. V vs. N E, : + + + +, + +, E o o o E = +. V vs. N E = +. V vs. N E - 37 -

Gibbs : =. : : : Faraday : (T=298 K, C= 1mol/L P= 1bar),, Gibbs = /. 2.5. ή 2.5: ό ί ί ί ό ώ ά έ ό ί έ ύ ί ό ά [9]. - 38 -

2.2 ά ά ή ό ώ Έ.., (sacrificial agents) e -, -., O2, [10,11]., H2. Ω [7].,. ω (Photo-fuel cells).. 2.2.1 έ ό ώ [12-16]. - 39 -

,,... / ( ) CO2 2 ( Ο2) CO2 H2O ( O2) [17]: ί : C O + κ z O κco + κ z + λ ί : C O + κ + O κco + λ O ( 2 -, 2,, 2 2). - (photo-reforming)., ( G = 237 J/mol), Gibbs. e -. - e -. - TiO2 CO2. Ό, 2,.,. / ( ) : Η Ο + h + O + + O + h + O - 40 -

.,.. TiO2, ( ).., CdSe TiO2 S 2- /SO3 2- S2/S2 2-.,,. Π 2.1., : + + Ό, CO2., ph. ph, + ( ) 2 ( V )., ( OH - ), OH - ( V). (V )., -., - 41 -

3 2 : + + Ό, ( VIII IX). ί 2.1: ά ί ί ί ύ TiO2 ό ό έ [12]. Φω : h TiO 2 e h (I) e - 2 ( ) : O O HO HO H O OH OH (II) e + H e + H e 2 2 2 2 2 2 : C2H5OH + 3H2O + 12h + 2CO2 + 12H + ( ph) (II ) OH - + h + OH C2H5OH+12OH 2CO2 + 9H2O ( ph) (IV) : C2H5OH+2h + CH3CHO+2H + C2H5OH+h + C2H5O +H + (V) Κ ph (0.00 V ph=0) 2H + + 2e - H2 ph (-0.77 V ph=13) 2H2O + 2e - H2+2OH - (VI) (VII) ph (1.23 V ph=0) 2H + +½ O2 + 2e - H2O (VIII) ph (0.46 V ph=13) H2O+½ O2 + 2e - 2OH - (IX) ( ) 2 (ethanol reforming): C 2H 5OH + 3H 2O 2CO 2 + 6H 2 2 (ethanol mineralization): C 2H 5OH + 3O 2 2CO 2 + 3H 2O (X) (XI) - 42 -

2.2.2 ό ό ώ,. : H2S, S 2Π /SO3 2-, Br Π, I Π, CN Π Fe 2+. S, S 2- SO3 2-,. ( S 2- /SO3 2- ). Έ S 2- / SO3 2-.,. Έ CdS/TiO2, Cd 2+ S 2- CdS [10].,, S/Na2S Na2S/Na2SO3., S 2- S2 2- S 2-. : + + +, S2 2-. Ό S 2- /SO3 2-, SO3 - ( - 43 -

). SO3 2- SO4 2- S2O6 2- : + + + + ή + + + + S 2- Na2S, S2 2- SO3 2- : + + + + + +, S2 2- [10, 18, 19]. 2.3 ά ύ/ ύ ό ί Ό,.. ph, / /.. - 44 -

Ό, H + OH -. : Μ ΟΗ k O + + a + Μ ΟΗ + k + a O ph ( 2.6).,,,. ph (point of zero charge, pzc) [20]. ή 2.6: έ ή ί ί έ ά TiO2 ί ύ ύ ί ά ph ύ. pzc TiO2 ί 6.0 ± 0.2 [20-22]. e - ( h + ). Ό, /., Fermi Fermi. (e - n- h + p- - 45 -

)., Fermi n- (. Fermi ) e -.,, e -, (depletion layer, DL) ( 2.7) [9]. ή 2.7: ί ά ά n- ύ ό ό έ ή ά ύ [23]. (Space Charge layer (SCL)). 2.7 [23,24]., /.,. Helmholtz Helmholtz (Inner Helmholtz plane (IHP)) e - / - 46 -

, Helmholtz (Outer Helmholtz plane (OHP)) ( 2.8). Helmholtz ( 2-5 Å),, Å., Gouy-Chapman 30 nm. w Helmholtz [26, 26]., Csc, CH CG, Helmholtz Gouy-Chapman [20, 23]. ή 2.8: ό έ ά Helmholtz ί ά ύ/ ύ. ό ί Helmholtz (IHP) ί ό ό + - έ ά ύ ό ί Helmholtz (OHP) ά έ έ ό [9]. - 47 -

2.4 ά ύ ύ έ ό ή - (I-V curves)...,.,,. ω (short circuit current, ISC).,, (open circuit potential, VOC). Έ (Pmax) -, Pmax= ( V)max. 2.9 -. - 48 -

ή 2.9: ύ ύ ά ό ύ ύ ά ό ό.. (Fill Factor, FF). : F. F. = V x SC V OC., 0 1 ( ). - 49 -

. (efficiency, n) (Pin) : n% = V x i % = x i %. (quantum efficiency),..,. 0, 1.,, 1.,, 0., ( 2.10).,. - 50 -

ή 210: ή ή ύ ή ό ό ύ ύ.,. ω (External Quantum Efficiency). (Incident Photon to Current Efficiency, IPCE) : =. Ό, : : : - 51 -

ω (Internal Quantum Efficiency). (Absorbed photon-to-current Efficiency, APCE). APCE IPCE : = =. Ό A, R, T (Absorption), (Reflectance) (Transmission)., (Solar to Hydrogen Efficiency, STH%) : % =. %. Ό J, P 1.23 V ( ph=0).. Ό,.. 2.11. - 52 -

ή 2.11: ά ά ό ό ή ό STH Efficiency) ό ύ ή ύ ά ά ό ά ί ώ ώ ό ί ί. mw/cm 2 ) [27]. - 53 -

2.5 ά ά ό ό ύ ύ,. ph. 2.5.1 ά.,. [28]. : O + λ κ h+ η ε τρο της κ / a + λ O Gibbs [9]. 2.5.2 ph, ph., - 54 -

ph, Φ [29]., ph. Ό, ph 0. pzc TiO2 [21],. Ό ph (ph>pzc) ph pzc (ph<pzc) [29,30]., < : io + + io +, p T 2 + =. > : io + O io + O, p T =., ph [31]. 2.5.3 ί.,., 80 C. 80 C, 0 C [29]., 20 C - 80 C [32]., - 55 -

,. 2.6 Μέ ί ή ά TiO2.. Έ.,, [24]., /. Έ. /.,. (Highest Occupied Molecular Orbital, HOMO) (Lowest Unoccupied Molecular Orbital, LUMO) [33,34]., [35], [36], [37].. ( 2.12) [38]. - 56 -

ή 2.12: ή ά ώ ώ ά ά ύ ύ ύ [39]. doping,, [9]. doping e -, e - [40,41]. doping TiO2 Cu, Ni, Co, Fe, Mn, Cr, Au, Ag, Pt [42-44]. Ω,. TiO2 TiO2 ( 2.13). Φ, e -., - 57 -

[45].., C, N, B, P, F, I TiO2 [46,47]. Ό, ( 2.13). doping., 2 [48]. 1-2%, 10 21 cm -3. [9]. ή 2.13: ό ά TiO2 ί doping (hv1) ό ί έ hv2 έ hv3) [49]. - 58 -

Έ TiO2, [50]. TiO2 [51]..,, e -., TiO2 Η Θ e - [52]., (Quantum Dots) [51].,, [53-55].. 2.14. - 59 -

ή 2.14: ά ί έ ύ ώ ώ ύ έ. ί έ ί ί : ΒιΣ σς, ΒιΣκ σς, ΒιΤκ. σς, ΟηΣ. σς, ΟηΣκ. σς, Sb2S3 σς, Ση2Se3 σς [56]. Έ TiO2 CdS n- Eg= 2.4 ev., CdS/TiO2,., e - CdS., TiO2, e - TiO2 CdS., ( 2.15). - 60 -

ή 2.15: ό ά ό ί TiO2 έ ί CdS ί ά ί ά ό ύ ύ., [57,58]. Ό, TiO2. - 61 -

ί [1] C.-H. Liao, C.-W. Huang and J. C. S. Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting (Review), Catalysts, 2012, 2, 490-516. [2] J. Li, N. Wu, Semiconductor-Based Photocatalysts and Photoelectrochemical Cells for Solar Fuel Generation: A Review, Catal. Sci. Technol., 2015, 5, 1360-1384. [3] D. Wei and G. Amaratunga, Review paper: Photoelectrochemical Cell and Its Applications in Optoelectronics, Int. J. Electrochem. Sci., 2007, 2, 897 912. [4] M. Kitano and M. Hara, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem., 2010, 20, 627-641. [5] M. F. Weber, M. J. Dignam, Splitting water with semiconducting photoelectrodes-efficiency considerations, Int. J. Hydrogen Energy, 1986, 11, 225 232. [6] J. R. Bolton, S. J. Strickler, J. S. Connolly, Limiting and realizable efficiencies of solar photolysis of water, Nature, 1985, 316, 495 500. [7] J. Schneider, T. A. Kandiel, D. W. Bahnemann, Solar Photocatalytic Hydrogen Production: Current Status and Future Challenges, Chapter in Materials and Processes for Solar Fuel Production, Volume 174 of the series Nanostructure Science and Technology, 2014, pp 41-74. [8] A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 2009, 38, 253-278. [9] R. van de Krol, M. Grätzel, Photoelectrochemical hydrogen Production, Electronic Materials: Science & Technology, 2012, Springer. [10] J. Schneider and D. W. Bahnemann, Undesired Role of Sacrificial Reagents in Photocatalysis, J. Phys. Chem. Lett., 2013, 4 (20), 3479 3483. [11] T. Kawai, T. Sakata, Conversion of Carbohydrate into Hydrogen Fuel by a Photocatalytic Process, Nature, 1980, 286,. [12] P. Lianos, Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the - 62 -

Photofuelcell: a review of a re-emerging research field, J. Hazard Mater., 2011, 185(2-3), 575-90. [13] M. Kaneko, J. Nemoto, H. Ueno, N. Gokan, K. Ohnuki, M. Horikawa, R. Saito, T. Shibata, Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode, Electrochem. Commun., 2006, 8, 336 340. [14] M. Antoniadou, P. Lianos, Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell, Catal. Today, 2009, 144, 166 171. [15] A. Patsoura, D. I. Kondarides, X. E. Verykios, Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen, Catal. Today, 2007, 124, 94 102. [16] P. A. Mandelbaum, A. E. Regazzoni, M. A. Blesa, S. A. Bilmes, Photoelectrooxidation of alcohols on titanium dioxide thin film electrodes, J. Phys. Chem. B, 1999, 103, 5505 5511. [17] I. Rossetti, Review article: Hydrogen production by photoreforming of renewable substrates, ISRN Chem. Eng., 2012, Article ID: 964936, 21 pages, doi:10.5402/2012/964936. [18] N. Buhler, K. Meier, J. F. Reber, Photochemical Hydrogen-Production with Cadmium-Sulfide Suspensions. J. Phys. Chem., 1984, 88,. [19] H. K. Jun, M. A. Careem, and A. K. Arof, A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells, Hindawi Publishing Corporation, International Journal of Photoenergy, 2013, Article ID: 942139, 10 pages, http://dx.doi.org/10.1155/2013/942139. [20] R. Beranek, Review Article: (Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials, Hindawi Publishing Corporation, Advances in Physical Chemistry, 2011, Article ID: 786759, 20 pages, doi:10.1155/2011/786759. [21] T. Preocanin and N. Kallay, Point of Zero Charge and Surface Charge Density of TiO2 in Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration, Croatica Chemica Acta, 2006, 79 (1), 95-106. - 63 -

[22] C. Jiang-Lin, L. Wen-Hua, Z. Jian-Qing, C. Chu-Nan, Adsorption Behavior and Photooxidation Kinetics of OH- at TiO2 Thin Film Electrodes, Acta Phys. Chim. Sin., 2004, 20(07), 735-739. [23] J. Poppe, S. G. Hickey and A. Eychmuller, Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells, J. Phys. Chem. C, 2014, 118 (30), 17123 17141. [24] G. Garcia Bessegato, T. T. Guaraldo and M. V. Boldrin Zanoni, Chapter 10- Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes, Nanotechnology and Nanomaterials, "Modern Electrochemical Methods in Nano, Surface and Corrosion Science", edited by Mahmood Aliofkhazraei, 2014. [25] H. Luth, Chapter 7- Space charge layers at semiconductor interfaces, Solid surfaces, interfaces and thin films,, 6 th edition, Springer, 2010. [26] R. N. Pandey, K. S. Chandra Babu, O. N. Srivastava, High conversion efficiency photoelectrochemical solar cells, Progress in Surface Science, 1996, 52(3), 125 192. [27] J. Li and N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catal. Sci. Technol., 2015, 5, 1360-1384. [28] A. J. Nozik, Photoelectrochemical Cells, Phil. Trans. R. Soc. Lond. A, 1980, 295, 453-470. [29] M. Nan Chong, B. Jin, C. W. K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, 2010, 44, 2997-3027. [30] C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions, Environ. Sci. Technol., 1991, 25 (3), 494 500. [31] K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of Surface Area, Primary Particle Size and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties, Nanoscale Res Lett, 2011, 6:27. - 64 -

[32] S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 2009, 147, 1-59. [33] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem., 1986, 90(12), 2555-2560. [34] V. Diesen, Heterogeneous TiO2 Photocatalysis-Fundamental Chemical Aspects and Effects of Solid Phase Alterations, Doctoral Thesis, KTH Royal Institute of Technology, 2013. [35] P. Roy, S. Berger and P. Schmuki, TiO2 Nanotubes: Synthesis and Applications, Angew. Chem. Int. Ed., 2011, 50, 2904 2939. [36] I. Sun Cho, Z. Chen, A. J. Forman, D. Rip Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production, Nano Lett., 2011, 11, 4978 4984. [37] T. Feng, G. Sheng Feng, L. Yan, and J. Hong Pan, Review Article: One- Dimensional Nanostructured TiO2 for Photocatalytic Degradation of Organic Pollutants in Wastewater, Hindawi Publishing Corporation-International Journal of Photoenergy, Volume 2014, Article ID: 563879, 14 pages. [38] R. Govindaraj, M. Senthil Pandian, P. Ramasamy, S. Mukhopadhyay, Synthesis of titanium dioxide nanostructures and their effects on current-voltage (I-V) performance in dye sensitized solar cells, International Journal of ChemTech Research, 2014, 6(13), 5220-5225. [39] A. Fujishima, K. Nakata, T. Ochiai, A. Manivannan, and D. A. Tryk, Recent Aspects of Photocatalytic Technologies for Solar Fuels, Self-Cleaning, and Environmental Cleanup, Electrochemical Society Interface, 2013, 22(2), 51-56. [40] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations, Chem. Rev., 2014, 114,. [41] Y. Cui, H. Du and L. Wen, Doped-TiO2 Photocatalysts and Synthesis Methods to Prepare TiO2 Films, J. Mater. Sci. Technol., 2008, 24(5), 675-689. [42] W. Choi, A. Termin, M. R. Hoffman, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 1994, 98, 13669-13679. - 65 -

[43] A. O. Ibhadon and P. Fitzpatrick, Review-Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, 2013, 3, 189-218. [44] S. Bingham and W. A. Daoud, Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping, J. Mater. Chem., 2011, 21, 2041 2050. [45] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Review: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, 2015, 79, 128-146. [46] D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible light photocatalytic activity, Ind. Eng. Chem. Res., 2007, 46, 2741-2746. [47] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium dioxides, Science, 2001, 293, 269-271. [48] T. L. Thompson, J. T. Yates Jr, TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer, Topics in Catalysis, 2005, 35(3), 197-210. [49] A. Zaleska, Doped-TiO2: A Review, Recent Patents on Engineering, 2008, 2, 157-164. [50] H. Tada M. Fujishima, H. Kobayashi, Photodeposition of metal sulfide quantum dots on titanium(iv) dioxide and the applications to solar energy conversion, Chem Soc Rev, 2011, 40, 4232 43. [51] P. V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C, 2008, 112 (48), 18737-18753. [52] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, D. D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 2012, 125, 331 349. [53] T. J. Macdonald and T. Nann, Quantum Dot Sensitized Photoelectrodes, Nanomaterials, 2011, 1, 79-88. - 66 -

[54] S. Ruhle, M. Shalom, and A. Zaban, Quantum-Dot-Sensitized Solar Cells, Chem. Phys. Chem., 2010, 11, 2290 2304. [55] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells, Chem. Rev., 2010, 110, 6873 6890. [56] J. Hui Rhee, C.-C. Chung and E. Wei-Guang Diau, A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites, NPG Asia Materials, 2013, 5, 68, doi:10.1038/am.2013.53. [57] N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes, Electrochimica Acta, 2013, 91, 246 252. [58] J. Tian, R. Gao, Q. Zhang, S. Zhang, Y. Li, J. Lan, X. Qu, and G. Cao, Enhanced Performance of CdS/CdSe Quantum Dot Co-sensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film, J. Phys. Chem. C, 2012, 116 (35), 18655 18662. - 67 -

ά 3 έ έ ά ή 3.1: ή ά ά ί ί ί ή ό έ ή ό ύ ό ώ ά ό. - 68 -

ή. Έ...,. 3.1 ή ό ώ 3.1.1 ό ί ώ.,.,., (SnO2:F, Fluorine doped Tin Oxide, FTO) (In2O3:Sn, Indium Tin Oxide, ITO). (>80%). Π 3.1-69 -

. FTO. ί 3.1: ά ά ά ώ ά FTO ITO. ά ώ ό έ ό (S/cm) έ έ cm -3 ) ό έ (cm 2 /Vs) ή ό έ ( C) SnO2:F (FTO) ~1x10 3 ~4x10 20 ~30 < 700 C In2O3:Sn (ITO) ~1x10 4 ~10 21 ~40 < 350 C 3.1.2 ή ί TiO2 FTO ( : 8 Ω/ ).,. TiO2,..,., TiO2 (sol-gel) Degussa P25. (nc-tio2) :.,,. - 70 -

. sol-gel TiO2.,,., sol-gel TiO2 : 3.5 gr Triton X-100 (t-oct-c6h4-(och2ch2)xoh, x= 9-10) 19 ml (CH3CH2OH)., 3.4 ml (CH3COOH) 1.8 ml (Ti[OCH(CH3)2]4) 20 min.. Ω 3 [1].,., (Triton X-100). Triton X-100 - ( 3.2). 3 Οι σ ο ι ές α ι άσ ις ό σ ς αι ο ισ ού ο αϊσο ο ο ι ίο ο ι α ίο ί αι οι ής: Υ ρό υση: Ti (OCH(CH3)2)4 + H2O Ti (OCH(CH3)2)3OH + (CH3)2CHOH, Πο υ ρισ ός: Ti (OCH(CH3)2)3OH+Ti (OCH(CH3)2)4 Ti2O(OCH(CH3)2)6+(CH3)2CHOΗ αι σ ο ι ή α ί ασ ς ό ς ι ασίας ί αι: Ti (OCH(CH3)2)4 + 2H2O TiO2 + 4(CH3)2CHOH. Η αφή ο ισο ο ο ι ίο ο ι α ίο ο ό ο ί σ βίαι ό σή ο αι ά σ α αβύθισ ι ή α ος ο ι ίο ο ι α ίο TiOH ο ο οίο σ σ έ ια ο ί αι αι ο ί σ ο σ α ισ ό ά ο έθο ς σ α ι ί TiO 2 α ο οιό ο φ ο ή. - 71 -

TiO2. ή 3.2: ή ή ύ Triton X-100. (dip coating) sol-gel TiO2 ( 3.3).,,.,,.,, Π 550 C ( 20 C/min) 10 min... 170 nm FE-SEM. - 72 -

ή 3.3: ί ό ί έ ί ό ιξυ θτζωξσμ. sol-gel TiO2., Degussa P25 / (3:1). : 0.3 g Degussa P25, 0.5 ml CH3COOH 5 min., 1.5 ml.., CH3CH2OH., 1 ml 10 1.25 ml CH3CH2OH 6 ( 17.5 ml ). 50 ml CH3CH2OH. 10 g Terpineol (C10H18O) 2.82 g CH3CH2OH (10% w/v ). 35 C. - 73 -

TiO2 doctor blading ( 3.4) 550 C ( 20 C/min) 10 min. 3.4 m - 2. ή 3.4: ή ά ύ ί έ doctor blading [2]. 3.1.3 ί ί TiO2. CdS, PbS ZnS, ω (Successive Ionic Layer Absorption and Reaction, SILAR method).,,. TiO2.,. - 74 -

3.5. Silar. ή 3.5: ή ά ό ώ ώ έ ή ό ί ό SILAR method) [3]. CdS/TiO2: CdS 3 Cd 2+ : Cd(NO3)2 4H2O (98%), 3CdSO4 8H2O ( 98%) Cd(CH3COO)2 2H2O (98%). S 2- Na2S 9H2O ( 98%)., 0.1. TiO2 5 min.,., 5 min. Silar. - 75 -

CdS 10. ZnS/TiO2: ZnS Silar : 0.1 Zn(NO3)2 6H2O 0.1 Na2S 9H2O. 2 Silar. CdS-ZnS/TiO2: CdS-ZnS 0.1 Cd(NO3)2 4H2O Zn(NO3)2 6H2O. S 2- Na2S 9H2O., 10 Silar. PbS/TiO2: PbS TiO2 CdS ZnS., 0.1 Pb(CH3CO )2 3H2O 0.1 Na2S 9H2O. TiO2 2 Silar. CdSe, ZnSe Sb2S3 (Chemical Bath deposition, CBD). CBD,. TiO2. TiO2 [4,5]. CdSe/TiO2:, 0.08 Se 0.02 Na2SO3 ( - 76 -

, Reflux) 80 C 15 h., 0.08 CdSO4 8/3H2O 0.12 N(CH2COONa)3 H2O.,., (5 C) 4 ½ h. ZnSe/TiO2: ZnSe CdSe 0.08 CdSO4 8/3H2O 0.08 Zn(NO3)2 6H2O. CdSe-ZnSe/TiO2: CdSe-ZnSe, CdSe CdSO4 8/3H2O Zn(NO3)2 6H2O. Sb2S3/TiO2: 2 ml Sb2S3 ( 1 ) 20 ml Na2S2O3 ( 1 ).,, 5 C 80 ml., TiO2 10 C 2.. QDs. : CdS-ZnS/TiO2, CdSe/CdS/TiO2, ZnS/CdSe/CdS/TiO2, CdSe-ZnSe/TiO2, CdS/PbS/TiO2. 3.1.4 ή ί WO3 TiO2 WO3. - 77 -

WO3 FTO., sol-gel WO3 : 0.4 g W (10 m, 99.99%) 3 ml H2O2 (30 wt% H2O)., H2O2 Pt ( 12 h)., 3 ml CH3CH2OH 0.3 g Triton X-100., FTO doctor blading 500 C (20 C/min) 10 min. - 5 WO3. 4.5 mg/cm 2. 3.1.5 ή ί ΑξΦO4 Έ BiVO4 FTO.,. sol-gel BiVO4 : : 0.12 Bi(NO3)2 5H2O CH3COOH 0.12 V(C5H7O2)3 CH3COCH2COCH3., 1 ml Triton X-100. 0.025-0.5 g/ml. FTO doctor blading 500 C (20 C/min) 10 min. - 3 350 nm. - 78 -

. ή ό ώ 4,.. Ω,,.,. Έ, ( ) : (1) NiO, (2) NiO (3) (graphene-based sulfur-doped porous carbon nanosheets). WO3, Pt FTO.,, : (1) CuS, CoS FTO (2) Cu2S. 4 Ως έ ο ό ο ο ί αι ο ά ισ ο έ ο ο α αι ί αι ια α ι ήσ ι έ α ό ιο ις ι ές ά ις ο ι ού σ α ό α ό α ό οι α φο ία έσα σ έ α έ α ο αι α α ο α θ ί ύθ ο α ό ο α ι ό έ α. - 79 -

.. ό ί Pt ύ ά,. Έ (Carbon Cloth, CC)... :, 2.46 g (Vulcan XC 72) 60 ml 0.8 ml PTFE (polytetrafluoroethylene, 60 wt% H2O) ( C:PTFE=70:30) mixer (2500./min)., carbon cloth 80 C 30 min. Έ, 340 C 30 min PTFE., 0.0599 g Pt C (30% Pt on Vulcan XC 72), 0.52 ml (Nafion, 5 wt. % ), 0.573 ml 0.45 ml. 80 C. 0.5 mg Pt/cm 2 ( ). - 80 -

3.2.2 ή ή ά ύ ώ,,.,. (Multiwalled carbon nanotubes, MWCNTs)., 0.35 nm 2 100 nm cm. ( ).,. MWCNTs : 7 g 3-150 ml CH2Cl2 1.50 g. 20 h, PTFE ( : 0.2 m) CH2Cl2. 150 ml CH2Cl2 3-. 80 C. films PTFE 230 m 7 cm [6].. NiO Carbon Cloth., 1 g NiCl2 1 g Triton X-100., 3 ml 6 ml., 400 C 30 min. - 81 -

3.2.3 ύ ύ ά έ έ έ ί,. Jiao Tong ( ). 3.6 :, (Reduced graphene oxide, RGO) p-. RGO, (DMF, 1.0 mg/ml),., 1,3,5-2,5- RGBr, DMF Hagihara-Sonogashira., GMP-S, 700, 800 900 όc 2 h (GMC-S700, GMC-S800 GMC- S900). : 10 mg (GMC-S700, GMC-S800 GMC-S900) 1.3 ml 0.5 ml., 0.1 ml (PTFE, 60 wt% H2O). CC 340 όc 20 min. 10 cm 2 (3.0cm 3.3cm) 5 mg [7]. - 82 -

ή 3.6: ή ί ύ GMP-S GMC-S. (i) Sodium dodecylbenzenesulfonate, N2H4 H2O, 100 C, 8 h, (ii) 4-bromobenzenediazonium tetrafluoroborate, 0 C έ ί ί, 2 h, (iii) Ar, Pd[(PPh3)4], CuI, Et3N, DMF, 80 Β, 3 days (M1: 1,3,5-triethynylbenzene; M2: 2,5- dibromothiophene), (iv) Ar, ί ί έ 700, 800 and 900 Β, 5 Β/min, 2 h. Ω GO RGO ί ί ί έ ί ί ί [7]. 3.2.4 ό ί Pt ί FTO WO3 BiVO4, Pt FTO.,, (Elcocarb C/SP (Solaronix)) FTO doctor blading - 83 -

450 C 30 min., Pt Diamminedinitritoplatinum(II) (3.4 wt.% NH4OH) CH3CH2OH ( 99.8%) 450 C 15 min. Pt 0.1 mg/cm 2. 3.2.5 ό ύ ά ί FTO,., [8]., (CuS, CoS) FTO Cu2S. CuS/FTO: FTO,. CuS FTO. 0.5 mol/l Cu(NO3)2 H2O CH3OH 1.0 mol/l Na2S 9H2O - (50% v/v)., Cu(NO3)2 H2O.,.,. 15. CoS/FTO:,. CoS FTO., 5 mmol/l CoCl2 6H20 0.5 mol/l NH2CSNH2 (Thiourea). Έ, 4-84 -

ph 6., FTO, - Ag/AgCl. 1 cm.,, 1.2 V +0.2 V 5 mv/s., FTO CoS, 100 όc 20 min. Cu2S/ :., HCl (37%) 70 όc 5 min., 1.0 mol/l Na2S 9H2O 70-80 όc 1.0 mol/l S. 5-7 min 100 όc 10 min.. ύ ί ί,,.,,.,. ph.,, NaOH - 85 -

., Na2SO4, LiClO4, NaClO4 NaCl., Na2S, Na2SO3 ( S/Na2S). Ό ( ). : Na2S 9H2O 1M 70-80 C. Έ, S (99.998%) Na2S 1. 3.4 ά ή ή ώ ή.,,. 3.4. ή ή ί., Φ - 86 -

., ( Xe, Oriel 450W) 100 mw/cm 2. Xe 3.7. ή 3.7: ή ή ά Xe ύ ό [9]. 3.4.2 ή ώ ή Έ.., 5.5 x 6.0 x 5.5 cm Plexiglas ( 3.8). - 87 -

ή. : ή ά ή ή ά ή ώ ή ύ ύ ί. 2.5 3.0 cm. 0.5 cm.,.,.,,., SiO2-88 -

. Π 3.2 25 mm 2 mm. ί 3.2: ή ύ ώ ί VitraPOR (Robu, Germany) ή ά ή ί ύ ά. Silica, SiO2 80.60% Magnesium oxide, MgO 0.05% Boric oxide, B2O3 12.60% Iron oxide, Fe2O3 0.04% Sodium oxide, Na2O 4.20% Calcium oxide, CaO 0.10% Alumina, Al2O3 2.20% Chlorine, Cl 0.10%,, Plexiglas, 5.0 x 4.5 x 3.5 cm 1.5 x 1.5 cm., 1 cm. Ό, Pyrex Glass. 55 mm 10 cm ( 3.9).. Ό, 5. 5 Για ιο ία ι ής ό σ ς chemical bias) α ύ α ό ο αι αθό ο ο ού α σι ο οι θού ο ύ ς ιαφο ι ές ι ές ph. Σ α ή ί σ σ ο ια έ ισ α ς α ό ο ο οθ ί αι ά οιος βασι ός ο ύ ς.. NaOH) ώ σ άθο ο ό ι ο ιά α (.. H 2 SO 4 ). - 89 -

ή. : ή ά ή ύ ά ή ά ή ί ό. 3.4.3 ά ώ ή, ( 3.10). - (linear sweep voltammetry), AUTOLAB PGSTAT 128N NOVA 1.9. - 90 -

ή 3.10: ή ά ή ώ ή. 3.4.4 ή ί ά Ό,.., (Reference electrode)., ( ). Π 3.3. 3.11. - 91 -

ί 3.3: ά ά ί ά ή. ό ά ά ή ό vs SHE) RHE (Reversible Hydrogen electrode) SHE (Standard Hydrogen electrode) ό ύ ύ ύ έ έ H2) [H + ] = 1.18 mol/l p(h2) =10 5 Pa E0= 0.00 E0= 0.0-0.059 x ph 0.1 M KCl 0.289 Ag/AgCl 3 M KCl 0.210 έ KCl 0.198 ή. : ή ά ί ί ύ ή ό ώ ί ά ό ό ί ό ά. - 92 -

3.5 ί ώ ή 3.5.1 ή ή ή ί,, ( ). -,. 5 mv/s. ( )..,,, [10].,. 3.5. έ ό ή ί ύ IPCE).,.. - 93 -

. 3.5.3 ί ή έ (Electrochemical Impendance Spectroscopy),.. /,., ( ). ( ),, ( ). : = +. j (j j = -1).,.., Nyquist. Nyquist, =,. 3.14 Nyquist. - 94 -

ή 3.14: ά Νyφuξψω ύ ό ύ ά ί R) έ ή C) έ ά. Έ - Randles. (Rs) / ( 3.15). ή 3.15: ύ ό ύ Randles (Ref. el.: ό ά, WE: ό ί, CE: ό. Rs,. Rp - 95 -

, - (Rct).,, Cdl. 3.6 Μ ή ή ί ό, ( Xe, Oriel 450W) 100 mw/cm 2. SRI 8610C, ( Silica Gel). (Molecular sieve) silica gel H2, O2, N2, CH4 CO., 0.25% 2 Ar. :,. Ω Ar Φ (21 cc/min). 10-, 600 C. Silica Gel Molecular Sieve.,, (Thermal Conductivity Detector, TCD)., ( 3.17). - 96 -

ή 3.17: έ ό ά ή ή ό. PeakSimple 3.56. Έ 3.18. ή 3.18: ή ό ή έ ί. - 97 -

3.7 έ ύ ά 3.7. ή ί ά SEM) (Scanning Electron Microscopy, SEM)..,.,. (x y).,,, (secondary), (backscattered) -. SEM, ( ) Zeiss SUPRA 35VP 1.5 nm 20 V 2nm 30 V. Π (EDX) (QUANTA 200, Bruker AXS). 3.7. ή ί ό (Transmission electron Microscopy, TEM). Ό, - 98 -

,., ( ),.,. EM, Έ. 3.7.3 ί ά ά ύ- ώ - (Diffuse Reflectance UV-Vis Spectroscopy).,. Ό 3.19,. ή 3.19: ή ά ή ά ά ό ό ώ. - 99 -

DRS,.. (.. BaSO4).,. 3.20. ή 3.20: ή ό ά ό έ ά ά ί ή [10]. Ω - 190-900 nm.., 300-800nm,. Ω FTO. ( ) - (UV-VIS Spectrophotometer, Shimadzu MODEL 2600). - 100 -

3.7.4 ί ί (X-ray diffraction, XRD) Π,. - 0.1-100 Å,., ΠX. Π.,, ΠX, ΠX (diffraction pattern).., (l) XRD Scherrer: =. Ό : : 0.9, : Π, :, :. Π ( ) D8 ADVANCE (Bruker AXS Gmbh). - 101 -

3.7.5 ί ί ί ί ί ό ώ ί Π (X-ray Photoelectron Spectroscopy (XPS)). Π. Ό Π.. XPS 1-10 nm., : =., : h : Π : : XPS Π,. (Ultraviolet Photoelectron Spectroscopy (UPS)) XPS. -., µ. UPS UV - 102 -

(ionization cross-section),,. Π ( ) SPECS LHS-10. UPS HeI h = 21.22 ev (model UVS 10/35) Constant Retarding Ratio (CRR) mode CRR = 10. o -12.29 V, UPS. - 103 -

ί [1].,,,, 2009. [2] A. Berni, M. Mennig, H. Schmidt, Sol-Gel Technologies for Glass Producers and Users, Chapter Doctor Blade, pp 89-92, M.A. Aegerter et al. (eds.), Springer Science+Business Media, New York, 2004. [3] N. Asim, S. Ahmadi, M. A. Alghoul, F. Y. Hammadi, K. Saeedfar and K. Sopian, Review Article: Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells, International Journal of Photoenergy, 2014, Article ID: 518156, 21 pages, http://dx.doi.org/10.1155/2014/518156 [4] C. D. Lokhande, Review: Chemical deposition of metal chalcogenide thin films, Mater. Chem. Phys., 1991, 27, 1 43. [5] P. K. Nair, M.T.S. Nair, V. Μ. Ζζχθı ζ, O. L. Arenas, Y. Peña, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sánchez, J. Campos, H. Hu, R. Suárez, M. E. Rincón, Semiconductor thin films by chemical bath deposition for solar energy related applications, Solar Energy Materials and Solar Cells, 1998, 52 (3 4), 313 344. [6]. ά, ί ό ύ ώ ή ή, ή ή, ή ώ,. [7] S. Sfaelou, X. Zhuang, X. Feng and P. Lianos, Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for PhotoFuelCells, RSC Adv., 2015, 5, 27953 27963. [8] G. Hodes, J. Manassen and D. Cahen, Electrocatalytic Electrodes for the Polysulfide Redox System, J. Electrochem. Soc., 1980, 127 (3), 544-549. [9]. ά, έ ή ή ό ή έ έ ό / έ ά, ή ή, ή ώ,. [ ]. ί, ί ή ή, ό ί ί,. - 104 -

[11] B. M. Weckhuysen, R. A. Schoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts, Catalysis Today, 1999, 49, 441-451. - 105 -

έ - 106 -

ά 4 ί ί ή ή έ ά ώ ό ώ - 107 -

ή Ό,.., TiO2.,.,,.. X ό ώ 4.1.1 ό ό ί TiO2 TiO2. Ό,., TiO2 (sol-gel) Degussa P-25. sol-gel TiO2 4.1., 6.5 nm. 4.1. TiO2 20-30 nm. - 108 -

ή 4.1: ό SEM ό ί TiO2 έ ί ό ά ύ ή sol-gel) ή ά TiO2 ό ή Degussa P-25. TiO2 sol-gel TiO2 (TiO2(s-g)) TiO2 (TiO2(P-25)). 4.2 ( ). ( 1) ( 2) FTO 320 nm. TiO2(s-g) ( 3) 300 nm., ( 4) TiO2, 7.5 m.,. - 109 -

ή 4.2: ί SEM ί TiO2 ά ό έ ώ ί FTO. ώ ί ί ή : ί, ώ ί FTO, (3) ί ί ό ά sol-gel (TiO2(sg)), (4) ί ί ό ό ά ή ή Degussa P-25 (TiO2(P-25)). TiO2. 4.3 20-25 nm SEM. - 110 -

ή 4.3: ό EM ί TiO2 έ ί ό ά ύ ή sol-gel) ή ά TiO2 ό ή Degussa P-25. 4.1.2 ό ό ύ ό Ό, TiO2 Silar,. CdS, Silar 3 Cd 2+., Cd(NO3)2, CdSO4 Cd(CH3COO)2. Ό CdS Cd(NO3)2 ((CdSN)), SEM ( 4.4) TiO2 CdSN/TiO2., CdS. - 111 -

ή 4.4: ί SEM ί TiO2 ά έ ώ ί FTO ί TiO2 έ CdSN. (CdS/TiO2), Π SEM. 4.5 TEM HR-TEM. : 4.9±1.2 nm CdSN, 5.7±1.1 nm CdS CdSO4 (CdSS) 7.1±1.5 nm CdS Cd(CH3COO)2 (CdS ). 25. CdS [1]., EDX Π 4.1. CdSN (1.8%) CdS (7.4%). S, Cd Cd 2+ - 112 -

ή 4.5: ό HR-TEM: (a) ί TiO2 ί TiO2 έ CdS Cd 2+ : (b) Cd(NO3)2, (c) CdSO4 ι Βι θ 2. ί 4.1: ό ό ί ύ έ EDX ά ί CdS/TiO2. ό ό % ό έ Cd 2+ O * Ti Cd S Cd(NO3)2 59.3 36.8 1.8 2.1 CdSO4 64.2 27.2 3.0 5.6 Cd(CH3COO)2 57.0 26.2 7.4 9.4 * ό ά ό ά ό ό /Ti ά ί ό ί. - 113 -

S 2- Silar.,,. Έ CdS CdS ph [2]. (pzc), 6.0±0.2 [3].., ph Cd(NO3)2 5.7 Cd(CH3COO)2 6.9 CdSO4 4.0.,, ph. Cd 2+,. Φ. Έ ZnS/CdSe/CdS /TiO2., SEM ( 4.6), TiO2. Ό CdS, 5 nm. - 114 -

ή 4.6: ό SEM ά : A) ί TiO2 (B) ί TiO2 έ CdSN, CdSe ZnS (ZnS/CdSe/CdS /TiO2). 4.1.3 έ ί TiO2 ί ί Π. 4.7 XRD FTO sol-gel Degussa P-25. TiO2 550 C,. TiO2(s-g) TiO2(P-25) 70/30 Degussa P-25. FTO., Scherrer TiO2 TiO2(s-g) 10 nm TiO2(P-25) 28 nm. - 115 -

ή 4.7: ά XRD ί ί ί έ ί ά ό FTO ό ή sol-gel ά ή ά ό Degussa P-25 ά. - 116 -

4.1.4 έ ό ί ά ά ύ- ώ UV-Vis DRS) -. DRS TiO2. Ό CdS/TiO2, CdS, Cd 2+ Silar. [4,5]. - TiO2 CdS 4.8.,, TiO2 CdS. Ό CdS Cd 2+, CdS TiO2. Ά, CdS. DRS., CdSN CdS. CdSS, CdSN CdS. - 117 -

ή 4.8: ά ά ά ύ- ώ έ TiO2 έ TiO2 έ CdS Cd 2+ : Cd(NO3)2, CdSO4 Βι θ 2. DRS TiO2 CdSN ZnS, Silar. Ό 4.9, TiO2 ZnS/TiO2,. ZnS CdSN,., CdSN/TiO2,.,. TiO2. - 118 -

( G), ( g) : ev = nm. Έ, CdS /TiO2 2.51 ev CdS -ZnS, ZnS., ZnS (25%)-CdS (75%) 2.58 ev, - (ZnS (50%)-CdS (50%)) 2.64 ev ZnS (75%)-CdS (25%) 2.67 ev. ή 4.9: ά ά ά ί TiO2 ό ώ ά CdS -ZnS. ύ ύ ά ά Cd Zn ό ύ ά ή ά έ Silar: (1) TiO2, (2) ZnS (100%)/TiO2, (3) ZnS (75%)-CdS (25%)/TiO2, (4) ZnS (50%)-CdS (50%)/TiO2, (5) ZnS (25%)-CdS (75%)/TiO2, (6) CdS (100%)/TiO2 [6]. - 119 -

,, CdS. CdSe, ZnSe CdS /TiO2 4.10. 3 F (R) 2 1 3 4 5 1 2 0 400 450 500 550 600 650 Wavelength (nm) ή 4.10: ά ά ά ί CdSN/TiO2 ό ώ ώ ά CdSe-ZnSe: (1) CdSN/TiO2, (2) 100% ZnSe/ CdSN/TiO2, (3) 50% ZnSe-50% CdSe/CdSN/TiO2, (4) 30% ZnSe-70% CdSe /CdSN/TiO2 (5) 100% CdSe/CdSN/TiO2. - 120 -

ZnSe Eg=2.7 ev, CdS (Eg=2.5 ev )., CdSe, 610 nm. CdSe ZnSe CdS /TiO2, ZnSe, [7]. PbS Sb2S3. TiO2 PbS, ( 4.11), 800 nm PbS. ή 4.11: ά ά ά ί TiO2 έ ά ί ώ ώ (PbS, PbS/CdS, CdS, CdSe ZnSe). - 121 -

TiO2 Sb2S3. Sb2S3 (Eg=1.7 ev ), 4.12 610 nm. ή 4.12: ά ά ά ί TiO2 ί TiO2 έ Sb2S3. 4.1.5 ή έ ί CdS/TiO2 UPS TiO2 CdS Cd 2+, UPS. TiO2 CdS/TiO2 4.13. (IP) ( - 122 -

). 2,. ( Fermi) Fermi. ( ),... Π 4.2. TiO2 7.4 ev CdSN CdSS (6.6 ev 6.7 ev)., CdS (5.7 ev). ή 4.13: ά UPS ί : (a) TiO2 ί TiO2 έ CdS ή ώ ό ώ : (b) CdSN/TiO2, (c) CdSS/TiO2, (d) CdSA/TiO2. - 123 -

ί 4.2: έ ύ ύ I.P. ί έ TiO2 ή ί έ CdS. ά I.P. (ev) TiO2 7.4 CdSN/TiO2 (Cd(NO3)2) 6.7 CdSS/TiO2 (CdSO4) 6.6 CdSA/TiO2 (Cd(CH3COO2)) 5.7 4.2 ό ώ 4.2.1 ό ό ώ (Carbon Cloth, CC).,. SEM 4.14. Ό, 10 m.,,. Έ (Multi-walled carbon nanotubes, MWCNTs). NiO. SEM ( 4.15) MWCNTs,., - 124 -

. NiO. NiO 70 nm. SEM NiO CC. ή 4.14: ό SEM ό : A) Carbon Cloth (CC), (B) ί Pt έ CC CC ά ό ό ό ά ά Pt. - 125 -

ή 4.15: ό SEM ό : A) MWCNTs (B) NiO έ MWCNTs., (GMC-S-X). SEM 4.16. 200 nm m.,. SEM,. - 126 -

ή 4.16: ό a) SEM ό b ύ ά έ έ έ ί. 4.2.2 έ ή ά ώ ΖΜΒ-S-X GMC-S-X (X=700, 800 900 C) -., : 462 m 2 g -1 GMC-S-700, 530 m 2 g -1 GMC-S-800 642 m 2 g -1 GMC-S-900. X=700, 800 900. Π 4.3. - 127 -

ί 4.3: έ ό ύ ά έ έ έ ί. ί ή ά (SBET) /m 2 g -1 Ό ό (Vmicro) /cm 3 g -1 ή ά ό (Smicro) /m 2 g -1 ό ό ό (VTot) /cm 3 g -1 Μέ ά ό (Dav) /nm GMC-S-700 462 0.077 212 0.59 5.10 GMC-S-800 530 0.176 407 0.74 5.59 GMC-S-900 642 0.209 462 0.89 5.57 4.2.3 ή έ XPS GMC-S-X GMC-S-X XPS., 3 ( 4.17 ). S GMC-S700, GMC-S800 GMC- S900 7.11%, 5.02% 4.74%. 164.1 165.3 ev ( 4.17 ). 164.1 ev CΠSnΠC ( n= 1 2) 165.3 ev ΠC=SΠ. 168.8 ev (Π SOnΠ). - 128 -

ή 4.17: ά XPS GMC-S700, GMC-S800 GMC-S900. - 129 -

4.3 ά ά ό ί ί 4.3.1 έ ί ί ύ ή ό ή ύ ά,. glass frit.,.,, [8]. 4.18 TiO2 Pt/CC..,, JSC 1.0 ma/cm 2 VOC 1.2 V ( 1) 1.8 ma/cm 2 1.0 V ( 2). glass frit.,, [7,9]. - 130 -

ή 4.18: ά ύ - ά ί ί ύ ά ό ά ή ά: ά : nc-tio2/fto, ό : Pt/CC, ύ : a. (+5% EtOH). ί EtOH ί ό έ ό. 4.3.2 ί ί ό έ Ό,.,. - TiO2. 4.19.,. - 131 -

, (JSC: 0.61 ma/cm 2, VOC: 1.03 V EtOH JSC: 0.14 ma/cm 2, VOC: 0.84 V EtOH). ή 4.19: ά ύ - ά ί ί ό ά ί ί ό ή ά: ά : nc-tio2/fto, ό : Pt/CC, ύ : a. (+5% EtOH). D ί ή ό L ή ό ό. - 132 -

,.,.,. Έ / (Current doubling/multiplication effect) ( ) TiO2 - [10-12].,, - [13]. Ό (VOC),., TiO2,..,. ( ), - ( Ag/AgCl) ( 4.20). Π 4.4. Ό, 10% v/v.,. - 133 -

ή 4.20: ά ύ - ά ί ί ύ ί ή ί ά μ/ gcl) ό ή ό : Ά : nc-tio2/fto, ό : Pt/CC, ύ :. Na ά ά έ ό : % v/v, (2) 0.1% v/v, (3) 0.5% v/v, (4) 2.0% v/v, (5) 5% v/v, (6) 10% v/v, (7) 20% v/v. - 134 -

ί 4.4: ί έ έ ό έ ύ ύ ά ύ ώ ί ί. ό έ ό % v/v) JSC (ma/cm 2 ) VOC (Volts) 0.0 0.29 0.87 0.1 0.61 1.06 0.5 0.75 1.08 2.0 0.86 1.11 5.0 0.93 1.13 10 0.98 1.15 20 1.01 1.14 4.3.4 ί ί ύ ύ,.. Na2SO4, NaOH. Έ [14]., TiO2,. 4.21 (NaOH, LiOH, KOH, NH4OH), 3 ( Ag/AgCl) TiO2 Pt., ( - ) (Na +, Li +, K +, NH4 + ). - 135 -

ή 4.21: ά ύ - ά ύ ί ή ί ά μ/ μβρ ό ή ό : Ά : nc-tio2/fto, ό : ύ Pt, ύ :. ό ί : (1) Li +, (2) Na +, (3) K + (4) NH4 +. ί έ ί έ ά ό Angstroms. -. -1.5-1.0 V vs Ag/AgCl,. Ό,. Ό,., - 136 -

TiO2., Li +, NH4 +. LiOH ( 4.22).. ή 4.22: ά ή ί ό ή ό ύ ώ ί ή ί ά Ag/AgCl: Ά : nc-tio2/fto, ό : ύ Pt, ύ :. Li. - 137 -

,, -. LiOH 4.23., TiO2, ( 4.23a). Ό TiO2 ( 4.23b),,,. Έ, ph. (NaCl, NaClO4, Na2SO4, CH3COONa NaOH) ( 4.24). ph Π 4.5. ph,. NaOH. - 138 -

ή 4.23: ά ύ - ά ό ή ό ύ ώ ί ώ ά nc-tio2/fto ό ύ Pt: (a) ά ώ LiOH ή ύ : (1) 0.05 M, (2) 0.2 M 0.5 M (b) ά ά ί TiO2: (1) 0.35 m, (2) 1.5 m, (3) 5 m (4) 10 m. - 139 -

ί 4.5: ύ ά ί ή ύ έ ί ph ό ό ό TiO2 ί έ ph. Η (C= 0.2 M) ph NaCl 6.1 NaClO4 6.2 Na2SO4 7.1 CH3COONa 8.5 NaOH 13.2 ή 4.24: ά ύ - ά ό ή ό ύ ώ ί ώ ά nc-tio2/fto, ό ύ Pt ά ά ύ Na + ύ : NaCl, (2) NaClO4, (3) Na2SO4, (4) CH3COONa (5) NaOH. έ ύ ά ί ή.. - 140 -

, TiO2. LiOH (0, 0.1, 1.0 5.0 v.% EtOH). 4.25a -., 5% v/v EtOH.,. ( 4.25b),,, [15]. - 141 -

ή 4.25: ά ύ - ά ί ί a) ό ή ό (b) ό ό ύ ώ ί nc-tio2/fto ά, ύ Pt ό,. LiOH ύ ά ά ό : v/v%, (2) 0.1 v/v%, (3) 1 v/v% v/v%. - 142 -

4.4 ί TiO2 έ ί.,. TiO2 [16]. Έ CdS. TiO2, CdS [17,18]. Ό, CdS Silar Cd 2+ (Cd(NO3)2, CdSO4 Cd(CH3COO)2) Silar, [19,20]. CdS/TiO2, CdS, Cd 2+. CdS CdS TiO2,. - ( 4.26), CdSA/TiO2,, CdS /TiO2. - 143 -

A B ή 4.26: A. ά ύ - ά ί ί ή ά: ά : nc-tio2, (2) CdSA/ nc-tio2, (3) CdSS/ nc-tio2, (4) CdSN/ nc-tio2, ό : Pt/CC, ύ : 0.5 M NaOH + 5% v/v EtOH. B. ά ά ά ί TiO2 ί TiO2 έ CdS ώ ά ό ά Cd 2+ (N: nitrate, S: sulfate, A: acetate). - 144 -

,.. 4.27 TiO2 CdS,. UPS. Ό, CdS,.., -0.60 V vs SHE., CdS., HO. +1.19 V vs SHE ( ph=14). CdSN/TiO2 HO CdS /TiO2. CdSS, CdS. VOC,., Π 4.6., CdSN/TiO2., CdSN/TiO2, IPCE IPCE ( 4.28). - 145 -

ή 4.27: έ ώ έ ί nc-tio2 FTO ί CdS/nc-TiO2/FTO έ έ ή ώ ό ά Cd 2+ έ ά ή ύ ό ό ά. ά ά ώ ώ CdS ά ί ή έ ί ό ά DRS. ό VB ή έ IP ί 4.2 ώ. ev ή SHE -0.83 V ph=14 (-0.059x14). ί 4.6: έ ύ ύ, ά ύ ώ ά ή ό έ TiO2 ή ί ή CdS. JSC (ma/cm 2 ) VOC (Volts) F.F. ό % TiO2 0.4 0.90 0.48 0.2 ό ά Cd 2+ Cd(NO3)2 7.5 1.26 0.45 4.3 CdSO4 5.4 1.26 0.45 3.1 Cd(CH3COO)2 4.4 1.24 0.39 2.1-146 -

ή 4.28: ύ ά ά ά CdSN/TiO2 ό ή ί ύ IPCE) έ ά, Pt/CC ό ύ. NaOH+5% EtOH., CdS/TiO2, ( 4.29). CdS /TiO2 10. - 147 -

ή 4.29: ή ό ύ ά ό ό ί ί ή ά: ά : nc-tio2 έ CdS ώ ά ό ά ί : Cd(NO3)2, (2) Cd(SO4)2, (3) Cd(CH3COO)2 ( ό ή: cm 2 ), ό : Pt/CC, ύ :. NaOH + 5% v/v EtOH. CdS/TiO2 CdS-ZnS [21,22]. CdS, CdS. 4.30. ZnS/TiO2 UV. - 148 -

ή 4.30: ά ύ - ά ί ί ή ά: ά : έ TiO2 έ ί CdS -ZnS έ ί : (1) ZnS(100%)/TiO2, (2) ZnS(90%)-CdS (10%)/TiO2, (3) ZnS(75%)-CdS (25%)/TiO2, (4) ZnS(50%)-CdS (50%)/TiO2, (5) ZnS(25%)-CdS (75%)/TiO2, (6) CdS (100%)/TiO2, ό : Pt/CC, ύ : 0.5 M NaOH + 5% v/v EtOH., CdS (10%)., CdS ZnS (25%) CdS/TiO2. Ό, ZnS/TiO2. VOC, TiO2-149 -

. Ω,. Έ 30 min 4.31. ή. : έ ό ύ ύ ή ύ Cd ό ά ύ ZnS(25%)-CdS (75%)/TiO2 ί ί ή ά: ά : ZnS(25%)-CdS (75%)/TiO2, ό : Pt/CC, ύ : 0.5 NaOH + 5% v/v EtOH. ά ύ ί έ ύ ύ έ ά ό min) ώ ά ύ ά ό min ό ό. - 150 -

Cd 30-70%. JSC ZnS(25%)-CdS (75%)/TiO2. Έ 30 min,. 4.32 75% CdS-25% ZnS 100% CdS. CdS, TiO2. ή 4.32: ά ύ - ά ί ί ή ά: ά : ZnS(25%)-CdS (75%)/TiO2, CdS (100%)/TiO2, ό : Pt/CC, ύ : 0.5 NaOH + 5% v/v EtOH. - 151 -

Έ CdSe, Sb2S3 PbS CdS ZnS., DRS,.,.,. Ό 4.33,,. Ό ( 4.33 ), Fermi., ZnS/CdSe/CdS /TiO2 PbS Sb2S3. - 4.34., CdS ZnS,. ή 4.33: ά ί ά ά : έ ύ ύ έ έ ή. - 152 -

ή 4.34: ά ύ - ά ί ί ώ ά nc-tio2 έ ά ί ώ ώ : (1) PbS/TiO2, (2) Sb2S3/TiO2, (3) Sb2S3/75%CdS- 25%ZnS/TiO2, (4) CdSe/75%CdS-25%ZnS/TiO2 (5) 75%CdS-25%ZnS/ io2, ό Pt/CC ύ 0.5 NaOH + 5% EtOH., ZnSe CdS CdSe 4.35. ZnSe CdSe., CdS,. - 153 -

ή. : ά ύ - ά ί ί ώ ά nc-tio2 έ ά ί ώ ώ : (1) CdS /TiO2, (2) ZnSe/CdS /TiO2, (3) ZnSe(50%)-CdSe(50%)/CdS /TiO2, (4) CdSe/CdS /TiO2. A ό : Pt/CC ύ : 0.5 NaOH + 5% EtOH. - 154 -

4.5 Μ έ ώ ώ, Pt. Έ (MWCNTs). NiO Pt/CC NiO/CC. Ό ZnS(25%)-CdS(75%)/TiO2. 4.36 - Π 4.7 JSC VOC. Ό, CC. CC NiO., CC NiO. Pt/CC. NiO/MWCNTs [23]. - 155 -

ή 4.36: ά ύ - ά ί ί ά : ZnS(25%)-CdS(75%)/TiO2, : (1) CC, (2) NiO/CC, (3) MWCNTs, (4) NiO/MWCNTs (5) Pt/CC, ύ :. NaOH + 5% v/v EtOH. ί 4.7: έ ύ ύ, ά ύ ώ ό έ έ ύ, ά ή ό ί ί ά ZnS(25%)- CdS(75%)/TiO2 ά ί ί. ό JSC (ma/cm 2 ) VOC (Volts) Μέ ύ (mw/cm 2 ) F.F. n (%) CC 2.1 1.0 0.25 0.12 0.3 NiO/CC 3.6 1.2 0.91 0.21 1.2 MWCNTs 4.8 1.2 1.90 0.33 2.4 NiO/MWCNTs 4.9 1.3 2.55 0.40 3.3 Pt/CC 4.7 1.2 2.76 0.49 3.7-156 -

(CC, Pt/CC, MWCNTs),,, Ag/AgCl ( 4.37)., MWCNTs CC Pt/CC.. ή 4.37: ά ή ί ώ ό ί CC, Pt/CC MWCNTs, έ ύ ό ό έ ό Ag/AgCl ό ά. ύ ή. aoh ύ ά ή mv/s ό ώ. - 157 -

Έ (GMC-S-X). Pt/CC, 4.38.,. 0 0.1 V.,., onset 1.5 2.0 V 0 V. onset Pt/CC. Pt/CC GMC-S-X. GMC- S-X, GMC-S700. GMC-S700, TiO2 CdS /TiO2., Pt/CC. 4.39 : ( ) TiO2 NaOH ( EtOH), ( ) TiO2 NaOH EtOH (C) CdS /TiO2 NaOH EtOH., GMC-S700 Pt/CC. Ό,. Ω,, onset. - 158 -

ή 4.38: ά ή ί TiO2 ά ά ί ί : (1) Pt/CC, (2) GMC-S800, (3) GMC-S900 GMC-S700 ύ ώ o ί ή ί ό ό ά. ύ : 0.5 M NaOH. ή ί ύ ό ύ ά ώ ή ί έ ή ύ ά. - 159 -

, onset.,. ή 4.39: ά ή ί ώ ώ ό Οω/ΒΒ ΖΜΒ-S7 /ΒΒ έ ώ : ά : TiO2, ύ :. NaOH ί EtOH, ά : TiO2, ύ :. NaOH + 5% v/v EtOH C ά : CdS /TiO2, ύ :. NaOH + 5% v/v EtOH. - 160 -

, 2. Π 4.8 4.40. Pt/CC, 1 ma CdS 25 ma. GMC-S700/CC, Pt/CC 0.3 V., GMC-S700/CC Pt/CC [24]. ί 4.8: έ ύ ύ ά ύ ώ ύ ώ ή ά ή 4.40. Pt/CC GMC-S700/CC Isc (ma) Voc (Volts) Isc (ma) Voc (Volts) 1 1.0 1.0 1.0 0.7 2 3.1 1.2 3.6 0.9 3 24.0 1.2 22.7 1.0-161 -

ή 4.40: ά ύ - ά ί ί ώ ό Pt/CC GMC-S700/CC ή ά: ά : TiO2, ύ :. NaOH ί EtOH, ά : TiO2, ύ :. NaOH + 5% v/v EtOH ά : CdS/TiO2, ύ :. NaOH + 5% v/v EtOH. ό ή ό ί ή ό ώ 10 cm 2 (3 cm x 3.3 cm). - 162 -

ί [1] S. Sfaelou, L. Sygellou, V. Dracopoulos, A. Travlos, P. Lianos, Effect of the Nature of Cadmium Salts on the Effectiveness of CdS SILAR Deposition and Its Consequences on the Performance of Sensitized Solar Cells, Journal of Physical Chemistry C, 2014, 118, 22873-22880. [2] C. Minero, Surface-Modified Photocatalysts, Chapter in Environmental Photochemistry Part III, Volume 35 of the series The Handbook of Environmental Chemistry, 2013, 23-44. [3] T. Preocanin and N. Kallay, Point of Zero Charge and Surface Charge Density of TiO2 in Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration, Croatica Chemica Acta, 2006, 79(1), 95-106. [4] Y. Liu, Z. Li, L. Yu, S. Sun, Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells, Journal of Nanoparticle Research, 2015, 17:132, Doi:10.1007/s11051-015-2940-6 [5] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin and G. Cao, Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction, J. Phys. Chem. C, 2013, 117 (51), 26948 26956. [6] S. Sfaelou, M. Antoniadou, V. Dracopoulos, K. Bourikas, D. I. Kondarides, P. Lianos, Quantum dot sensitized titania as visible-light photocatalyst for solar operation of photoactivated fuel cells, Journal of Advanced Oxidation Technologies, 2014, 17(1), 59-65. [7] M. Antoniadou, S. Sfaelou, P. Lianos, Quantum dot sensitized titania for photo-fuel-cell and for water splitting operation in the presence of sacrificial agents, Chemical Engineering Journal, 2014, 254, 245 251. [8]. Ren and Y. X. Gan, Advances in Photoelectrochemical Fuel Cell Research, Chapter in "Small-Scale Energy Harvesting", book edited by Mickael Lallart, ISBN 978-953-51-0826-9, 2012. [9] Y. Wang, S. Zou and W.-B. Cai, Review: Recent Advances on Electro- Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials, Catalysts, 2015, 5, 1507-1534. - 163 -

[10] P. Lianos, Production of Electricity and Hydrogen by Photocatalytic Degradation of Organic Wastes in a Photoelectrochemical Cell. The concept of the Photofuelcell: A Review of a Re-Emerging Research field, J. Hazard. Mater., 2011, 185, 575 590. [11] E. Kalamaras, P. Lianos, Current Doubling effect revisited: Current multiplication in a PhotoFuelCell, Journal of Electroanalytical Chemistry, 2015, 751(15), 37 42. [12] S. Karuppuchamy, M. Iwasaki, H. Minoura, Electrochemical Properties of Electrosynthesized TiO2 Thin Films, Appl. Surf. Sci., 2006, 253, 2924 2929. [13] R. Michal, S. Sfaelou, P. Lianos, Photocatalysis for Renewable Energy Production Using PhotoFuelCells, Molecules, 2014, 19, 19732 19750. [14] S. Kambe, S. Nakade, T. Kitamura, Y. Wada and S. Yanagida, Influence of the Electrolytes on Electron Transport in Mesoporous TiO2 Electrolyte Systems, J. Phys. Chem. B, 2002, 106 (11), 2967 2972. [15] L.-C. Pop, S. Sfaelou, P. Lianos, Cation adsorption by mesoporous titania photoanodes and its effect on the current-voltage characteristics of photoelectrochemical cells, Electrochimica Acta, 2015, 156, 223 227. [16] P. V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C, 2008, 112 (48), 18737-18753. [17] R. Nakamura, S. Makuta and Y. Tachibana, Electron Injection Dynamics at the SILAR Deposited CdS Quantum Dot/TiO2 Interface, J. Phys. Chem. C, 2015, 119 (35), 20357 20362. [18] M. Antoniadou, D. I. Kondarides, D. D. Dionysiou, and P. Lianos, Quantum Dot Sensitized Titania Applicable as Photoanode in Photoactivated Fuel Cells, J. Phys. Chem. C, 2012, 116, 16901-16909. [19] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction, J. Phys. Chem. C,,,. [20] K. C. Preetha, K. V. Murali, A. J. Ragina, K. Deepa, A. C. Dhanya, T. L. Remadevi, The role of Cationic Precursors in Structural, Morphological and Optical Properties of PbS Thin Films, IOP Conf. Ser.: Mater. Sci. Eng., 2013, 43, 012009, doi:10.1088/1757-899x/43/1/012009. - 164 -

[21] N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes, Electrochim. Acta, 2013, 91, 246 252. [22] M. Antoniadou, V. M. Daskalaki, N. Balis, D. I. Kondarides, C. Kordulis, P. Lianos, Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts, Applied Catalysis B: Environmental, 2011, 107(1 2), 188 196. [23] S. Sfaelou, M. Antoniadou, G. Trakakis, V. Dracopoulos, D. Tasis, J. Parthenios, C. Galiotis, K. Papagelis, P. Lianos, Buckypaper as Pt-free cathode electrode in photoactivated fuel cells, Electrochimica Acta, 2012, 80, 399 404. [24] S. Sfaelou, X. Zhuang, X. Feng, P. Lianos, Sulfur-doped porous carbon nanosheets as high performance electrocatalysts for PhotoFuelCells, RSC Adv., 2015, 5, 27953-27963. - 165 -

ά 5 ί ί ή έ ά ό ό ώ - 166 -

ή,, [1].,, S/Na2S Na2S/Na2SO3., 2, S/Na2S S2 2-., Na2S/Na2SO3. Ω TiO2, (CuS, CoS, Cu2S) ο.. ό ί ό.. ό ί ά ά (DRS)., TiO2 (CdS/TiO2,CdSe/CdS/TiO2, ZnS/CdSe/CdS/TiO2). [2]., - 167 -

400 C. 5.1. CdS Silar Cd(NO3)2. CdS /TiO2,., CdSe/CdS /TiO2. CdSe, [2]. ZnS/CdSe/CdS /TiO2. ή 5.1: ά ά ά ί CdS/TiO2, CdSe/CdS/TiO2 ZnS/CdSe/CdS/TiO2: ί έ, ό έ C ό ό ή ό έ C ί N2. ό ό ά ή ύ ί ί ά. - 168 -

Ό, TiO2 CdS CdS Silar., CdSA/TiO2 PbS. 5.2a CdS/TiO2, CdSA/PbS/TiO2 5.2b. PbS/TiO2 800 nm PbS.,., CdS PbS/TiO2 CdS PbS [3,4]., DRS, (CdS /PbS/TiO2) PbS,.,,. - 169 -

ή 5.2: ά ά ά (a) ί CdS/TiO2 έ ύ ή ώ ό ώ Cd 2+ : (1) Cd(NO3)2, (2) CdSO4, (3) Cd(CH3COO)2 (b) ί : (1) PbS/TiO2, (2) CdSA/PbS/TiO2. - 170 -

5.1.2 ό ί Raman TiO2 (CdS /TiO2, CdSe/CdS /TiO2, ZnS/CdSe/CdS /TiO2), Raman Micro-Raman. Ό Raman, 5.3. Ω TiO2., 143 cm -1. CdSN, CdS 302.5 cm -1. CdSe, CdS. Ό, CdSe CdSxSe1-x CdSN CdSe., ZnS., Micro-Raman 5.4. CdSN/TiO2, CdS,. CdS [5]., Silar,, [6]. CdSe, ZnS [7], 20. - 171 -

ZnS. ή 5.3: ά Raman ί TiO2 ά ά ί ή ώ ώ. - 172 -

ή 5.4: ά Micro-Raman ί TiO2 ά ά ί ή ώ ώ, ύ ό ό.. ό ώ 5.2.1 ό ό ώ (CuS, CoS) FTO Cu2S. CoS FTO.,. 5.5. Ό CuS/FTO, SEM 5.5. - 173 -

CoS. ή 5.5: ό SEM ό ί CoS/FTO ( ά ό CuS/FTO ά ό. ί ί m nm ί. - 174 -

Cu2S,. [8,9]. Ό SEM Cu2S ( 5.6),., Π. EDX ( 5.7) S/Cu ½. - 175 -

ή 5.6: ό SEM ( ό Cu2S ό ύ ί ί (a) m (b) 200 nm. ή 5.7: ά EDX ό ό ί ό ό S/Cu ί έ ί 36/65. - 176 -

5.2.2 ό Cu2S ί ί Cu2S,, XRD. 5.8 Cu Cu2S S. intensity (a.u.) Cu Cu 2 S Cu 40 45 50 55 60 degree ή 5.8: ά XRD Cu2S ό ή ί ύ ί. 5.3 ί ό έ ύ ΒιΣ έ ΒιΣ/ΤξO2 Ό, CdS TiO2 Silar, Cd 2+ (Cd(NO3)2, CdSO4 Cd(CH3COO)2). 5.9 Π 5.1, - 177 -

. Ό, TiO2. CdS,. Έ, CdS. ( 5.10).,.,. [10]. ή 5.9: ά ύ - ά ί ί ή ά: ά : nc-tio2, (2) CdSN/ nc-tio2, (3) CdSS/ nc- TiO2, (4) CdSA/ nc-tio2, ό : Cu2S, ύ : 1.0 M Na2S/1.0 M S. - 178 -

ί. : έ ύ ύ, ά ύ ώ, ά ή ό ό ώ ύ ή 5.9. JSC (ma/cm 2 ) VOC (Volts) F.F. ό % TiO2 0.2 0.22 0.42 0.02 ό ά Cd 2+ Cd(NO3)2 5.4 0.55 0.47 1.4 CdSO4 5.9 0.56 0.54 1.8 Cd(CH3COO)2 6.6 0.58 0.58 2.2 ή 5.10: έ ώ έ ί nc-tio2 FTO ί CdS/nc-TiO2/FTO έ έ ή ώ ό ά Cd 2+ έ ά ή ύ, ό ύ ύ ό ά. - 179 -

-, (IPCE%) CdSA/TiO2. DRS 5.11.,. ή 5.11: ύ ά ά ά CdS /TiO2 ό ή ί ύ IPCE ύ έ ά, Cu2S ό ό ύ. - 180 -

5.4 Μ έ ώ ώ ώ έ TiO2.. έ ZnS/CdSe/CdS/TiO2 ά ά ί TiO2 [11].,,,. Έ, (.. CdSe, PbS, ZnSe). Έ, CdS, CdSe ZnS [12]. TiO2 (CdS/TiO2,CdSe/CdS/TiO2, ZnS/CdSe/CdS/TiO2) - 5.12., 5.11 Π 5.2. TiO2,, UV. Έ, ZnS/CdSe/CdS/TiO2, ZnS, (2 Silar). (0.53Π0.59 V),, TiO2. - 181 -

TiO2, (0.38 V) Φ [13]. ή 5.12: ά ύ - ά ί ή ά: ά : ΤξO2/FTO, (2) CdS/TiO2/FTO, (3) CdSe/CdS/TiO2/ΕΤO ZσΣ/ΒιΣκ/ΒιΣ/ΤξO2/ΕΤO, ό : Cu2S/ ί, ύ : 1 M Na2S/1 M S. ά ά έ ό ύ ά ά -1). - 182 -

ί 5.2: έ ύ ύ, ά ύ ώ, ά ή ό ό ώ ύ ή 5.11. JSC VOC ό ά (ma/cm 2 ) (Volts) F.F. (%) TiO2/FTO 0.9 0.38 0.32 0.1 CdS/TiO2/FTO 8.0 0.53 0.44 1.9 CdSe/CdS/TiO2/FTO 11.7 0.54 0.43 2.7 ZnS/CdSe/CdS/TiO2/FTO 12.9 0.59 0.37 2.8 ZnS/CdSe/CdS/TiO2 IPCE. 5.13, IPCE. - 183 -

ή 5.13: ύ ά ά ά ί ZnS/CdSe/CdS/TiO2 ό ή ί ύ IPCE) ύ έ ά, Cu2S ό ό ύ., ( 5.14). Raman. TiO2. (ZnS/CdSe/CdS/TiO2)., ZnS,, CdS/TiO2. Ό, ZnS - 184 -

(CdS CdSe)., Η Θ /, [7]. 12 4 J sc (ma cm -2 ) 10 8 6 4 3 2 2 0 0 50 100 150 200 1 Time (min) ή 5.14: ί ό ό ή ύ ύ ύ ή ά: ά : TiO2/FTO, (2) CdS/TiO2/FTO, (3) CdSe/CdS/TiO2/ΕΤO ZnS/CdSe/CdS/TiO2/ΕΤO, ό : Cu2S/ ί, ύ : 1 M Na2S/1 M S. - 185 -

5.4.2 ί έ ό ώ Ό, [3]., TiO2,. - 5.15. CdS/TiO2,,.,.., CdSe/CdS/TiO2 ZnS/CdSe/CdS/TiO2., CdSe/CdS/TiO2, 300 C 400 C. Ό,, [2]., CdSxSe1 x Raman VOC. ZnS/CdSe/CdS/TiO2. 100 C. [14]. - 186 -

ή 5.15: ά ύ - ά ί ή ά: ά : a) CdS/TiO2, (b) CdSe/CdS/TiO2 (c) ZnS/CdSe/CdS/TiO2 έ ί ί ώ ί : (1) 100 C, (2) 200 C, (3) 300 C, (4) 400 C, ό : Cu2S/ ί, ύ : 1 M Na2S/1 M S., ( 5.16). CdS/TiO2, -,., Φ 100 C.,., - 187 -

., ZnS [14]. ή 5.16: ύ ύ ύ ά ό ό ά ή ά: ά : a) CdS/TiO2, (b) CdSe/CdS/TiO2 c) ZnS/CdSe/CdS/TiO2 ί : (1) έ ί έ, (2) 400 C έ έ, C έ ά, ό : Cu2S/ ί, ύ : M Na2S/1 M S. - 188 -

CdS PbS. Ό, PbS 850 nm,., PbS,., CdS PbS TiO2. CdS PbS /, CdSA [3,15,16]. 5.17 - (PbS/TiO2 CdS /TiO2) PbS CdS. PbS/TiO2,. CdS TiO2 PbS/TiO2. CdS /TiO2 5 Silar CdS. CdS /PbS/TiO2 15 ma/cm 2.,, 5.18. - 189 -

ή 5.17: ά ύ - ά ί ή ά: ά : PbS/TiO2 (2 ύ Silar), (2) CdS /TiO2 (5 ύ Silar), (3) CdS /PbS/TiO2, ό : Cu2S/ ί, ύ : M Na2S/1 M S. ή 5.18: ά ί (a ί PbS ά TiO2 b ά ό CdS /PbS/TiO2. ή ί ί ph 13.0 (-0.77 vs SHE). - 190 -

, CdSA PbS 5.19. PbS/TiO2 80% CdSA 25%. ή 5.19: ύ ό ύ ά ό ό ά ή ά: ά cm 2 ): (1) PbS/TiO2, (2) CdS /PbS/TiO2, ό : Cu2S/ ί, ύ : M Na2S/1 M S. - 191 -

. Μ έ ώ ώ, Cu2S., CoS/FTO CuS/FTO,.,. Cu2S, Cu2S. Π 5.3 (RS) / (RCT) 5.20 Nyquist Cu2S.,,., RCT 1153 Cu2S 2.3. Cu2S. Ό CoS/FTO CuS/FTO, RS RCT Cu2S/. - 192 -

ί 5.3: έ ή έ ή ά ί ί. ό Rs (Ohm) Rct (Ohm) ί 4.8 1153 Cu2S/ ί 5.3 2.3 CoS/FTO [17] 18 48 CuS/FTO [17] 19 6 RS: ω ή α ί α η RCT: α ί α η α ά ί η ά α η ί /η ύ η ή 5.20: ά ί ή έ ό ί ύ ό ύ ί ή ή (2) ό ή ί ό Cu2S ό ύ. έ ά ί έ έ έ ί. - 193 -

/ Cu2S/.., (+1.5 V -1.5 V) Pt. 5.21 (0.01 Na2S/0.01 S 1.0 Na2S/1.0 S). Ό, -0.41 V -0.94 V. Cu2S.,. -0.65 V ( ) Cu2S. - 194 -

ή 5.21: ά ή ί ί ώ ό ί Cu2S/ ί, ό έ ύ Pt έ ό Ag/AgCl ό ά. ύ ή ά ί ή :. Νζ2Σ/. Σ (2). Νζ2Σ/. Σ., ZnS/CdSe/CdS/TiO2. 5.22, Π 5.4... CuS/FTO (3.5%).,, Cu2S. - 195 -

ή 5.22: ά ύ - ά ί ή ά: ά : ZnS/CdSe/CdS/TiO2, ό : (1) CuS/FTO, (2)CoS/FTO (3) Cu2S/ ί, ύ : 1 M Na2S/1 M S. ί 5.4: έ ύ ύ, ά ύ ώ, ά ή ό ό ώ ύ ή 5.21. ά ό J (ma/cm 2 ) V (Volts) FF (%) ZnS/CdSe/CdS/TiO2 CuS/FTO 17.1 0.56 0.36 3.5 ZnS/CdSe/CdS/TiO2 CoS/FTO 17.4 0.54 0.32 3.0 ZnS/CdSe/CdS/TiO2 Cu2S/brass 13.3 0.51 0.39 2.6-196 -

Na2S/Na2SO3. Ω TiO2, Pt/CC Cu2S/.. 5.23. Ό,. ZnS/CdSe/CdSN/TiO2. Current Density (ma/cm 2 ) 8 6 4 2 0 2A 2B 3B 3A 1A 1B -1,5-1,0-0,5 0,0 0,5 1,0 V (Volts) vs. Ag/AgCl ή 5.23: ά ύ - ά ώ ύ ώ ί ή ί ά Ag/AgCl) ή ά: ά : TiO2, (2) CdSN/TiO2, (3) ZnS/CdSe/CdSN/TiO2, ό : Pt/CC, (B) Cu2S/ ί, ύ : 0.25 M Na2S/0.125 M Na2SO3. - 197 -

, Cu2S/ Pt/CC., [18,19]. Ά, Pt., TiO2. Π 5.5. Ό 0 V 0.5 V. Ό,., 0.5 V. ί 5.5: έ ό ή ό ώ έ ό, ό Cu2S/ ί ύ 0.25 M Na2S/0.125 M Na2SO3. ά ά ό ά (Volts) Μέ ό ή ό ( mol/min) nc-tio2/fto 0 0.001 0.5 0.2 CdS/nc-TiO2/FTO 0 0.05 0.5 0.5 ZnS/CdSe/CdS/nc-TiO2/FTO 0 0.2 0.5 3.2-198 -

ί [1] J. Schneider and D. W. Bahnemann, Undesired Role of Sacrificial Reagents in Photocatalysis, J. Phys. Chem. Lett., 2013, 4 (20), 3479Π 3483. [2] S. Woo Jung, M-A Park, J-H Kim, H. Kim, C-J Choi, S. Hyung Kang, K-S Ahn, Two-step annealed CdS/CdSe co-sensitizers for quantum dotsensitized solar cells, Current Applied Physics 13 (2013) 1532-1536. [3] D. Punnoose, C. S. S. Pavan Kumar, H. Woong Seo, M. Shiratani, A. Eswar Reddy, S. Srinivasa Rao, C. V. Thulasi-Varma, S-K Kim, S-H Chunga and H-J Kim, Reduced recombination with an optimized barrier layer on TiO2 in PbS/CdS core shell quantum dot sensitized solar cells, New J. Chem., 2016, Advance Article, DOI: 10.1039/C5NJ02947C [4] Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao and L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays, Nanoscale Research Letters, 2013, 8:67, DOI: 10.1186/1556-276X-8-67 [5] A.G. Kontos, V. Likodimos, E. Vassalou, I. Kapogianni, Y.S. Raptis, C. Raptis, P.Falaras, Nanostructured titania films sensitized by quantum dot chalcogenides,nanoscale Res. Lett. 2011, 6, 266. [6] R. Ahmed, G. Will, J. Bell, H. Wang, Size-dependent photodegradation of CdSparticles deposited onto TiO2mesoporous films by SILAR method, J. Nanopart.Res., 2012, 14, 1140Π1153. [7] N. Guijarro, J.M. Campina, Q. Shen, T. Toyoda, T. Lana-Villarreal, R. Gómez,Uncovering the role of the ZnS treatment in the performance of quantum dotsensitized solar cells, Phys. Chem. Chem. Phys. 2011, 13, 12024Π12032. [8] S. Gimenez, I. Mora-Sero, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gomez. L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Improving the performance of colloidal quantum-dot-sensitized solar cells, Nanotechnology, 2009, 20, 295204 (6pp). [9] X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda and Q. Meng, A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs), Chem. Commun., 2011,47, 2664-2666. [10] R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared - 199 -

by Successive Ionic Layer Adsorption and Reaction. J. Phys. Chem. C 2013, 117, 26948 26956. [11] N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solarcells based on an optimized combination of ZnS, CdS and CdSe with CoS andcus counter electrodes, Electrochim. Acta, 2013, 91, 246Π252. [12] Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells, J. Appl. Phys., 2008, 103, 084304 http://dx.doi.org/10.1063/1.2903059 [13] S. Sfaelou, A. G. Kontos, P. Falaras, P. Lianos, Micro-Raman, photoluminescence and photocurrent studies on thephotostability of quantum dot sensitized photoanodes, Journal of Photochemistry and Photobiology A: Chemistry, 2014, 275, 127Π 133. [14] S. Sfaelou, A. G. Kontos, L. Givalou, P. Falaras, P. Lianos, Study of the stability of quantum dot sensitized solar cells, Catalysis Today, 2014, 230, 221Π226. [15] A. Braga, S. Giménez, I. Concina, A. Vomiero and. Mora-Seró, Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes, J. Phys. Chem. Lett., 2011, 2 (5), 454Π460. [16] V. González-Pedro, C. Sima, G. Marzari, P. P. Boix, S. Giménez, Q. Shen, T. Dittrich and I. Mora-Seró, High performing PbS Quantum Dot Sensitized Solar Cells exceeding 4% efficiency: The role of metal precursor in the electron injection and charge separation, Phys. Chem. Chem. Phys., 2013,15, 13835-13843. [17] N. Balis, V. Dracopoulos, K. Bourikas, P. Lianos, Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes, Electrochimica Acta, 2013, 91, 246Π252. [18] G. Hodes, J. Manassen and D. Cahen, Electrocatalytic Electrodes for the Polysulfide Redox System, J. Electrochem. Soc., 1980, 127 (3), 544-549. [19] I. Mora-Seró, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana- Villareal, R. Gomez and J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the - 200 -

linker molecule and of the counter electrode, Nanotechnology, 2008, 19, 424007 (7pp). - 201 -

ά 6 ί ύ ή ή ό - 202 -

ή,, TiO2. WO3 BiVO4. WO3 n- 2.5-2.7 ev 500 nm., ph [1,2]. Ό BiVO4, ( 2.8 ev), [3,4]. ( WO3) TiO2. Ό, 2 2 (1.23 V vs. NHE ph=0) + 2 (0 V vs. NHE ph=0).,.. - 203 -

6.1 ό ώ ΧO3 ΑξΦO4 WO3 BiVO4. Ό SEM 6.1, WO3. 20 50 nm., BET 25.4 m 2 /g. TiO2 (Degussa P25) 45-50 m 2 /g. ή 6.1: ό SEM ά ί WO3 ή ά. - 204 -

Ό BiVO4,, Triton X-100. 6.2 SEM BiVO4 FTO 0.1 g/ml Triton X-100. 50 nm. ή 6.2: ό SEM ά ί BiVO4 ί ά ή. g/ml Triton X-100 ύ ό ά. Π. WO3, 6.3. FTO WO3 25 nm Scherrer. SEM. - 205 -

ή 6.3: ά ί ί ΧO3 έ ί FTO. XRD BiVO4 Triton X-100. sol-gel BiVO4. 6.4, Π 6.1. BiVO4, Triton X-100 Bi4V2O11. 0.1 g/ml Triton X-100,. - 206 -

ή. : ά XRD ί BiVO4 έ ί ή ώ ώ ύ Triton X-100 ό ά. έ έ ί X ύ ί ή ό ύ ό ύ ό ό Bi4V2O11., - Π 6.1., 3.4 16.5 m 2 /g TiO2 Degussa P-25 (45-50 m 2 /g).. Triton X-100 0.1 g/ml Triton X-100. - 207 -

ί. : ά ά BiVO4 ά ώ έ ώ ύ TritonX-100. έ Μέ SBET ά ά Ό Triton X-100 ί (m 2 /g) ό ό ό (g/ml) (nm) (nm) (nm) (cm 3 /g) 0.025 34.5 3.5 18.5 9.4 0.008 0.05 34.9 9.3 6.8 7.2 0.016 0.10 22.8 12.7 6.0 6.4 0.020 0.25 46.3 13.5 11.8 14.8 0.050 0.50 49.0 16.5 10.5 13.4 0.055,.,, Triton X-100 (0.025 g/ml)., 6.5. UV., WO3 465 nm, BiVO4 505 nm. - 208 -

ή 6.5: ά ά ά ί WO3 BiVO4 έ FTO. 6.2 έ ή ή ύ ό WO3,,.,. 6.6.,., 1.6 V - 209 -

vs Ag/AgCl ( onset 2.0 V vs Ag/AgCl) 3.5 ma/cm 2 6.3 ma/cm 2. ή 6.6: ά ύ - ά ί ί έ ά WO3, ό έ ύ Pt ύ. NaClO4 : ή ό ό ό : ί ό έ ί 5% v/v ό. Ό,, [5]. onset 0.3 V vs Ag/AgCl. onset -0.2 V vs Ag/AgCl, Na + - 210 -

,. NaClO4 LiClO4. Ό ( 6.7), LiClO4, Li + Na +, WO3 [6]. ή 6.7: ά ή ί ύ ώ ί ή Ag/AgCl ό ά ί έ ά WO3, ό έ ύ Pt ύ. NaClO4 ή. LiClO4. ύ ά έ ί ή ό. - 211 -

TiO2, - ( 4.5 mg/cm 2 ). ( 6.8). WO3.., TiO2, onset WO3. WO3 IPCE ( 6.9). ή 6.8: ά ύ - ά ύ ώ ί ή Ag/AgCl ό ά ί ί ή ά: ά :, WO3, TiO2, ό : ύ Pt, ύ :,. NaClO4,. NaClO4 + 5% v/v EtOH. - 212 -

ή 6.9: ά ά ά ύ WO3 έ IPCE%. έ IPCE ή ή ή ά 1.6 V vs Ag/AgCl., WO3. 1.0 V vs Ag/AgCl 1.6 V vs Ag/AgCl. 6.10. FTO. 5% v/v.,., 20 [7]. - 213 -

ή 6.10: ή ή ό mol/min) ή ή ό (mmol) ί έ ά WO3 ό ί FTO ί ί ί ή ά ά ί ύ. ά ό ά ί 1.0 V vs Ag/AgCl ή. V vs Ag/AgCl. - 214 -

BiVO4, (Triton X-100),., Triton X-100: 0.025, 0.05 0.1 g/ml. 6.11. ή 6.11: ά ύ - ά ύ ώ ί ή ί Ag/AgCl ό ά ί ί BiVO4 ά, έ ύ ύ ό. NaHCO3 ύ. ά έ ί ή ό ύ Triton X-100: ή ό, 0.025 g/ml, (3) 0.05 g/ml (4) 0.1 g/ml. Ό ά ά ά RHE έ ό έ ί ά ά ό έ : V(Volts) = 0.2+0.059x(pH), ό 0.2 ί ό Ag/AgCl vs. SHE ί ή ph ύ NaHCO3 ί.. - 215 -