Lecture 21: Scattering and FGR

Σχετικά έγγραφα
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Spherical Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Homework 3 Solutions

Section 8.3 Trigonometric Equations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

6.4 Superposition of Linear Plane Progressive Waves

derivation of the Laplacian from rectangular to spherical coordinates

Variational Wavefunction for the Helium Atom

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

4.4 Superposition of Linear Plane Progressive Waves

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Areas and Lengths in Polar Coordinates

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Derivation of Optical-Bloch Equations

Notes on the Open Economy

Math221: HW# 1 solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Capacitors - Capacitance, Charge and Potential Difference

Areas and Lengths in Polar Coordinates

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Example Sheet 3 Solutions

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

[1] P Q. Fig. 3.1

Uniform Convergence of Fourier Series Michael Taylor

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Other Test Constructions: Likelihood Ratio & Bayes Tests

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Trigonometric Formula Sheet

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

10.7 Performance of Second-Order System (Unit Step Response)

Answer sheet: Third Midterm for Math 2339

Solutions - Chapter 4

CRASH COURSE IN PRECALCULUS

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Homework 8 Model Solution Section

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order Partial Differential Equations

Orbital angular momentum and the spherical harmonics

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Matrices and Determinants

What happens when two or more waves overlap in a certain region of space at the same time?

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Lecture 26: Circular domains

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Andreas Peters Regensburg Universtity

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Durbin-Levinson recursive method

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2


Partial Differential Equations in Biology The boundary element method. March 26, 2013

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Chapter 3: Ordinal Numbers

Solutions to Exercise Sheet 5

Forced Pendulum Numerical approach

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 7.6 Double and Half Angle Formulas

Partial Trace and Partial Transpose

for fracture orientation and fracture density on physical model data

Boundary-Layer Flow over a Flat Plate Approximate Method

From the finite to the transfinite: Λµ-terms and streams

Second Order RLC Filters

Srednicki Chapter 55

Geodesic Equations for the Wormhole Metric

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Ανάκτηση Πληροφορίας

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Reminders: linear functions

ECE 468: Digital Image Processing. Lecture 8

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CYTA Cloud Server Set Up Instructions

Transcript:

ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

Review: characteristic times τ ( p), (, ) == S p p p( t = 0) (τ, single particle lifetime) τ m ( p) = S( p, ) ( p0 ) cosα, t = 0 t τ τ E ( p) (, ) = S p p E E, 0 α p z t τ m τ t τ E > τ m τ

outline ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary (Reference: Chapter, Lundstrom) 3

FGR p US (,) rt π S( p, ) = Hpp δ ( E E E) E = E0 + E E = 0 for a static U S E =± ω for an oscillating U S (See Sec..7 of Lundstrom for a derivation of FGR) 4

FGR ψ i ( r ) p p US (,) rt π S p, p H, p E E E ( ) = δ ( ) ψ f ( r ) + *, p= ψ f S i H U r ψ dr matrix element (note the order of the subscripts) ) Identifiy the scattering potential ) Specify the wavefunction (e.g. D, D, 3D) 5

scattering of Bloch electrons ipr ψ i = e u r k p US (,) rt ψ f i r = e u r k π S p, H, p E E E ( ) = δ ( ) + *, p= ψ f S i H U r ψ dr + i r ip r H, p= I k, k e U S( r ) e dr I k, k u ( r ) u ( r ) dr = I k, k parabolic bands * unit cell k k 6

overlap integrals B.K. Ridley, Quantum Processes in Semiconductors, 4 th Ed., pp. 8-86, Cambridge, 997 B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers, pp. 60-63, Cambridge, 997 D.K. Ferry, Semiconductors, pp. 4, 46-464, Macmillan, 99 7

scattering of plane waves i ipr ψ = e p US (,) rt i r ψ f = e π S p, H, p E E E ( ) = δ ( ) + *, p= ψ f S i H U r ψ dr + i r ipr H, p= e U S( r ) e dr 8

FGR: assumptions p US (,) r t p ) Weak scattering ) Infrequent scattering: E t Need a long time between scattering events so that the energy is shaoprpy defined ( collisional broadening ). 9

outline ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary (Reference: Chapter, Lundstrom) 0

FGR: static scattering potential i ipr ψ = e p π S p, p H, p E E E ( ) = δ ( ) US ( r ) i r ψ f = e p = p + q + i r ipr S H, p= e U r e dr + i( p) r, p= S = S H U r e d ru q H, = U ( q) p p S short range: neutral impurity long range: charged impurity q = p = k k The matrix element is the Fourier transform of the scattering potential.

FGR: delta-function example i ipr ψ = e p US (,) rt U r Cδ S i r ψ f = e = ( 0) π S p, p H, p E E E ( ) = δ ( ) + i r ipr H, p= e Cδ (0) e dr = π C C S p p E E K E E (, ) = δ ( ) = δ ( ) short range potential

S p p K E E (, ) = δ ( ) ( p) scattering rate = S p p = K E E (, ) δ ( ) τ δ ( E E) = D 3D ( E) * * m me δ ( E E) = 3 π (for parabolic energy bands) τ ( p) Df ( E) For an incident electron with energy, E, the scattering rate is proportional to the density of final states at energy, E (D, D, 3D) 3

momentum relaxation rate S p p K E E (, ) = δ ( ) τ m ( p) = S p p p p, z, z0 p z α = θ p x τ m ( p) = S p p, (, )( cosα ) p y 4

momentum relaxation = K δ E E τ m ( p), ( )( cosα) α = θ in our coordinate system π π 3 3 0 0 0 ( π ) ( cos ) sin δ E E = dφ θ θdθ d δpe E extra term = π 0 ( cosθ)sinθ dθ π = cos 0 = 0 τ p = p m τ isotropic 5

energy relaxation ipr ψ = e i p US (,) rt S i r ψ f = e U r Cδ = ( 0) S p p K E E (, ) = δ ( ) τ E ( p) = S p p, (, ) E E τ E p = 0 6

static potential summary ipr ψ = e i p US (,) rt S i r ψ f = e U r Cδ = ( 0) τ ( p) D E τ p = p m (isotropic) τ τ E p = 0 (elastic) 7

outline ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary (Reference: Chapter, Lundstrom) 8

example: oscillating potential i ipr ψ = e p E US (,) rt E i r ψ f = e ae, U β ± i( r t) U rt e β = ω S (, ) π S p, p H, p E E E ( ) = δ ( ) E =±ω + ae, + U i r β ± iβ r ipr a, e i( p ± β ) r H, p= e e e dr = U β e dr 3/ H U ae,, p= β δ, p± β 9

momentum conservation i ipr ψ = e p E US (,) rt E i r ψ f = e ae, U β ± i( r t) U rt e β = ω S (, ) H U ae,, p= β δ, p± β = p+ β (ABS) = p β (EMS) (momentum conservation) β p p β 0

energy-momentum conservation i ipr ψ = e p E US (,) rt E i r ψ f = e ae, U β ± i( r t) U rt e β = ω S (, ) π S p, p H, p E E E ( ) = δ ( + ) H U = δ β, p, p± β E =±ω ae, π U S p p E E β (, ) = ( ) δ ω δ p, p ± β

energy-momentum conservation i ipr ψ = e p E US (,) rt E i r ψ f = e ae, U β ± i( r t) U rt e β = ω S (, ) ae, π U S p p E E β (, ) = ( ) δ ω δ p, p ± β E = E+ ω = p+ β E = E ω = p β ABS EMS

scattering rate Assume (for now) that for any transition from E i to E f, we can find a vibration that conserves momentum. ae, π U S p p E E β (, ) = δ ( ω) ABS EMS = S p p = K E E ( p) (, ) δ ( ω) τ τ ( p) ( E± ω) Df = K Df E± ( ω) Scattering rate is proportional to the density of final states. 3

momentum relaxation: oscillating potential ae, π U S p p E E β (, ) = ( ) δ ω δ p, p ± β (isotropic) p (, ) z = S p p = τ p p τ p m z 4

energy relaxation: oscillating potential ae, π U S p p E E β (, ) = δ ( ω) τ E E ω ω = S( p, ) = S( p, ) = p E E E τ p < = τ τ τ E ( p) ( p) ( p) E m τ τ τ ( p) > ( p) = ( p) m 5

oscillating potential summary i ipr ψ = e p US (,) rt i r ψ f = e ae, U β ± i( r t) U rt e β = ω S (, ) τ ( p) Df τ p = p m ( E± ω) (isotropic) τ ω = τe p E p (inelastic) τ 6

an aside on phonon scattering small β intravalley scattering ω ω 0 LO LA intervalley scattering ω = υ S β β g f large β 7

phonon scattering τ ( p) ~ D f ( E± ω ) 0 ω ω 0 ω = ω 0 LO LA ω = υ S β τ β ( p) ~ D f ( E± ω) 8

intravalley phonon scattering ω ω 0 τ ( p ) τ ω = ω 0 LO LA (ABS + EMS) D E ~ f LO (EMS) LA LO (ABS) ω = υ S β τ ( p) ~ D f ( E± ω ) 0 β ω 0 E 9

outline ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary 30

constraints on scattering Cf ˆ = S( p, p ) f ( ) f ( p) S( p, p ) f ( p) f ( ) in equilibrium: Cf ˆ 0 = 0 = S( p, p ) f0( ) f0( p) S( p, p ) f0( p) f0( ) S(, p) f0( p) f0( ) = = e S( p, ) f0( ) f0( p) EkT B E(p) E = E( p) E E p 3

constraints on scattering S p p (, ) (, ) S p p = e EkT B E = E( p) E ) elastic scattering: E = 0 S( p, ) = S(, p) ) phonon scattering: E =ω 0 E(p) S S ABS EMS (, p) ( p, ) = e ω 0 kt B ω 0 p 3

constraints on phonon scattering S S ABS EMS (, p) ω0 kt ABS B = e (, ) ( p, ) S p N ω ω0 EMS kt B S p, p e Nω N ω = e ω k T B E(p) ω kbt ω kbt e e Nω = = N ω kbt ω + e (, ) ABS S p p N ω EMS S ( p, ) N ω + p ω 0 33

outline ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary 34

summary ) Characteristic times are derived from the transition rate, S(p,p ) ) S(p,p ) is obtained from Fermi s Golden Rule 3) The scattering rate is proportional to the final DOS 4) Static potentials lead to elastic scattering 5) Time varying potentials lead to inelastic scattering 6) General features of scattering in common semiconductors can now be understood (almost) 35

covalent vs. polar semiconductors covalent E E polar 00 00 x 00 x Γ Γ E 0.03 0.30 E 36

questions ) Fermi s Golden Rule ) Example: static potential 3) Example: oscillating potential 4) Discussion 5) Summary 37