MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

v w = v = pr w v = v cos(v,w) = v w

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Ανώτερα Μαθηματικά ΙI

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

2 SFI

High order interpolation function for surface contact problem

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

p din,j = p tot,j p stat = ρ 2 v2 j,

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Chitaridou, Kyriaki. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

.. μ,. ˆ. É,.. ³ ²ÓÖ μ, ƒ.. ± 1,.. Š ±μ ± 2,.. Œ É μë μ,.. ± Ëμ μ,. Œ. μ μ 2, ƒ.. Ê ±μ,.. ÊÉ 2, ˆ. ƒ. ³ 1,.. ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

þÿº ¹½É½¹º ¹º±¹Î¼±Ä± ÃÄ ½ þÿ ÅÁÉÀ±Êº ˆ½ÉÃ

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Transcript:

45 8 Vol.45 No.8 29 Ê 8 Ì 949 955 µ ACTA METAURGICA SINICA Aug. 29 pp.949 955 ß Ø Ç ÐÍ ÐÜ Ê Ì» ɱà ÚÒ (Ò Ï À³Ö Ë, 114) º Ueshima Æ ÒÜ È,» Í µ δ/γ Ö ± Ó, Þ Ï Ü 1 /s Í È Ø Ë ÕÖ, Þ Ó Æ ÏÅÕÖÆ ÓÀ ÂÚË ÕÖ θ B ÁÐ ², Ð²É ³Ì P, S ²ØË ÕÖÐ C ² ², P, S ² Î Å ÁÜ ¹ Ç Â. µ Å, ± Ó, ¹, Ë ÕÖ, Ð Đ ½ TG777  A 412 1961(29)8 949 7 MICROSEGREGATION OF SOUTE EEMENTS IN SOIDIFYING MUSHY ZONE OF STEE AND ITS EFFECT ON ONGITUDINA SURFACE CRACKS OF CONTINUOUS CASTING STRAND CAI Zhaozhen, ZHU Miaoyong School of Materials and Metallurgy, Northeastern University, Shenyang 114 Correspondent: ZHU Miaoyong, professor, Tel: (24)83672217, E-mail: myzhu@mail.neu.edu.cn Supported by Program for New century Excellent Talents in University (No. NCET 4 285) Manuscript received 29 1 15, in revised form 29 5 5 ABSTRACT The solidification of molten steel in continuous casting mold is a complicated nonequilibrium process with high cooling rate of 1 1 /s. At such a cooling rate, the segregation of the solute elements such as C, Si, Mn, P and S in brittle temperature range ( θ B ) will vary with their initial contents and influence on the thermal strain significantly which could greatly increase the incidence ourface defects otrand. In this paper, a microsegregation model oolute elements in mushy zone with δ/γ transformation during solidification was established based on the regular hexagon transverse cross section of dendrite shape proposed by Ueshima by finite difference method under the non-equilibrium solidification condition at 1 /s of cooling rate and the brittle temperature range θ B was determined. The distribution characteristics oolute elements and the effect of their segregations on θ B and thermal strain were investigated. The results show that both P and S are the most serious segregation elements in final stage oolidification and affect on θ B significantly together with carbon content in molten steel. The mechanism that increasing contents of P and S may increase the probability of longitudinal surface crack for continuous casting strand was presented by calculating the change law of thermal strain with carbon content under different of P and S contents. KEY WORDS continuous casting, microsegregation, longitudinal surface cracks, brittle temperature range, thermal strain «Ûß «¼ г, * Å Í Đ¹Ô É Ã NCET 4 285 µ : 29 1 15, µ : 29 5 5 Ô : ¾, Å, 1982 Ë, ± º Ý [1]. Ü «º ¾Ü, É Î Ö, ÐÇ ÑÝ ÇÀ ÝÓÅß Ô, Î Ð ÓÝ À, ÉÝ µà

95 Õ ¹ 45 Å È, ² º Ç [2,3]. Kobayashi [4] Ë ¾ Ôµ.5 /s Ý Ù Æ δ/γ Î ÓÝÇ C, Si, Mn, P, S ÐÇ Î ³, õ Î É Ù Fe C Ï. Ueshima [5] ÓÝ Ø Ð, ﵮ δ/γ Î ÓÝÇ Ð µ. Kim [6]» Ueshima Ã, Ôµ Ý.17 /s, ÓÝ 1 µm É Ù Ð ÔÛ«º ¼Ç º. «º Ê ÑÝ, ÑÝ ÇÀ Î Ý 1 1 /s [7,8], ÈÓÝ 2 µm» Ç [9], ÝÒÍ Î Ý Í, Í ÖÙ ¾¼ Ð Ô Ö Í [1]. ÄÐ, Û «ÑÝ Ý É Ù Ð Ô³ ß ¾.» Ueshima ÃÂÓÝ Ã, ««Ë ÝÉ, ß Ôµ «Ð Ç Ì Ö Ç ÔÁ Ã Û «º ³. 1 ÅÔ 1.1 È ÑÎ Ë ÆÕ 1.1.1 ÅÆ «ÓÝ Ø Ï 1 Ð, ÒÓÝ Ø Î Ù Ù Ð Ø, ØÛ ¼ÓÝ ÄÝÎ ÚÎ ; ÓÝ Ð ÓÝ, ÐÇ Ç Í µ, Ó Å µ ; ÑÝ Ó¼ Ó Ö Ó, ÅÓÝ Ø Ö µ Í, Ø Í Ù ; Î, ± δ, γ, «± Í, Î Ð Â δ/γ Ó ¹ Ó Û Ó Å ÐÏÖ¼ ÐÓÝ Ö Í Ñ [5]. 1.1.2 ÅÆ Ð Û, Ù «ßÛ ( Ï 1d ), ÐÇ x Ä. Í, «Æ δ/γ C, Si, Mn, P, S Ñ ÐÇ Î Â µ. ÐÇ Ç Fick Ñ Þ, / Ó Ð³ Ñ ¼ ÐÇ Ó Å Ö¾ Í Ñ, Þ [5]. Ç Ö¾ K δ/, K γ/ ¼ K φ/ à ־ D δ ¼ D r 1. Ë «ÓÝ Â Ý ¼ C ³. ÓÝ E Bealy ¼ Thomas ÈÓÝ [11] Ê : λ = Kv m wc n (1), λ ÓÝ, µm; K, m ¾, 278.748 ¼.26278; v Ý, /s; C ³ (г «¾); n ÙÙÙ C ³,.15, n=.316225+2.325,.15 1., n=.189-.491666. ÄÐ «Ü¼ [7], Ù Ý 1 /s. Ó ¹ÓÉ : Î Ð Ç ÐÇ ÏÖ Ð Ö θ, δ/γ Ó Å ÐÇ ÏÖ Ð Ö θ Ar4 ÓÝ Ð Ö, Û Ó ß ¹. θ ¼ θ Ar4 Ê ¼ (2) [12] ¼ (3) [5] : 1 Å Í µ  ¾Î Fig.1 Schematic diagrams oolidification of continuous casting process and model schematic diagram of continuous casting process schematic diagram showing the morphology of dendrites (c) transverse cross sections of dendrites (d) part of transverse cross sections of dendrite to be analyzed

8 ½ : ÆÌ ĐÕ ßÅ ÒÁ Ù 951 ² 1 Æ Õ½» Õ½ [3,5] Table 1 Equilibrium distribution coefficients and diffusion coefficients oolute elements Solute element K δ/ K γ/ K δ/γ D δ, 1 4 µm 2 /s D γ, 1 4 µm 2 /s C.19.34 1.79.127exp( 81379/RT).761exp( 143511/RT) Si.77.52.68 8.exp( 248948/RT).3exp( 251458/RT) Mn.76.78 1.3.76exp( 22443/RT).55exp( 249366/RT) Note: R=8.314 P.23.13.57 2.9exp( 2312/RT).1exp( 182841/RT) S.5.35.7 4.56exp( 214639/RT) 2.4exp( 223425/RT) θ = 1536. 78 7.6w Si 4.9w Mn 3.44w P 38w S (2) θ Ar4 = 1392. + 1122 6w Si + 12w Mn 14w P 16w S (3), Ö¾ Û Fe X(X=C, Si, Mn, P, S) ÞÇ Ï, w X X Ç Ð³ ¾. ¼ Ð Ð, «C++ à Ù. 1 Ð, 1.1.3 ÅÆ 2 µ ÉÊ ±. µ Ñ Ðß, ÚÊ µ * ± Ý.5 /s É Ù Ð Ô Fe C Ï, Ï 2. Ï, Ö, δ γ Ö, δ γ Ѽ Ö¼ Ö Ô Å C ³.1% Ê Â, Û ÓÝ ÂÝ Ð γ Ð Ð Ú γ ¼Ú Ð Ö; Kobayashi [4] «É ÙÛ Ø ¾.» Â, ÉÊ Ñ Â ¾ ½ ¹. Ë Â Fe C ÏÛ Ö, Ý, Â Î É ÙÓ Í: Ý ß Ö Ç, Òß «Û C ³ ß ¹ ( Ê É Ù.75.41%); ÐÇ Ô, ÝÓ À ÐÇ µ À, ÚÎ Ö Û Î É ² 2 Æ Table 2 Chemical composition oolute elements (mass fraction) Sample Si Mn P S Ref. *.1 2..2.5 [4] A.32 1.6.1.15 [13] B. 1... [14] C.34 1.52.12.15 [13] A1.14.36.16.7 A2/B1.14.36.16.13 [15] A3.14.36.16.39 [6] A4.14.36.16.78 [6] B2.14.36.8.13 B3.14.36.32.13 B4.14.36.64.13 152 144 14 132 + +.1Si-2.Mn-.2P-.5S Nonequilibrium binary Fe-C phase diagram Equilibrium binary Fe-C phase diagram Experimental data [4] 128..1.2.3.4.5 2 * º Fe C ÎÁ Fe C Î Fig.2 Comparison between non equilibrium pseuao binary Fe C phase diagram oample * carbon steel and equilibrium binary Fe C phase diagram 26 7. 1.2 Ö ºÎ Ù ÆÕ ½ÑÖ Ö ZST(zero strength temperature) ¼½ Ö ZDT(zero ductility temperature) Ë ² ³ ± ȱ ² ¾, ZST  ZDT Ö Ç, Đ ÑÑÖ, Ð È, Ý ½ À Ý º. Ë Þ Ö Ñ Ì Ö. Û Ë «, Ì Ö Ö ε th ¼ ± [6] ε th = θ θ ref α dθ + ε δ γ (4), θ ref «Ö; α Ö¾; ε δ γ δ γ. θ Ö Æ ε th,θ ÂÖ Ö ε th,θ = 3 ρθref ρ θ 1 (5), ρ θref ¼ ρ θ «Ö θ Ö ÆÛ Ö. ρ θ ÅÙ [16] Ê : ρ θ = f α ρ α,θ + f δ ρ δ,θ + f γ ρ γ,θ + f ρ,θ (6), f α, f δ f γ ¼ f θ Ö α δ γ ¼

952 Õ ¹ 45 Î Å ¾; ρ α,θ, ρ δ,θ, ρ γ,θ ¼ ρ,θ θ Ö α δ γ ¼ Ö. ± Ç Í α, (6) : ρ θ = f α ρ δ,θ + f δ ρ γ,θ + f ρ,θ (7), ρ δ,θ, ρ γ,θ à ρ,θ Ê Ù: ρ δ,θ = 1 (811.47θ)/[(1 )(1+.13 ) 3 ] (8) ρ γ,θ = 1 (816.51θ)/[(1 )(1+.8 ) 3 ] (9) ρ,θ = 71 73 (.8.9 )(θ 155) (1) 2 ¾ 2.1 Ö ºÎ Ϲ Clyne [17], Davies ¼ Shin [18], Kim [6] Ì Ö ³ ½ÑÖ Ö ZST ½ Ö ZDT Ö ß, Ý µ Ö IT(iquid Impenetrable Temperature) Û«Ö Ù, Å ± Æ ¼º, ÖÓÐ Ñ ¾.9 Û Ö. Æ, Ã Æ ¼Þµº ; Ý º, Ê»ÓÝ µ Æ, º ÐÐĽ, Ì. Matsumiya [19] «ÖÓÐÑ ¾.85 Û Ö. ½«Ý (1 /s) É Ù Ð ÔÛ «Î Ã, Ù =.884 Û Ö Ö. Ï 3 Ý 1 /s ÙÊ A, B, C «ÚÎ ( =1.) Û Ö, Û ZDT ¾ [13,14]. ÉÏ Â, ZDT Ê Ù ٠½ ¹. Ç, ¾.88 1. Û Ö ßÑ Ì Ö. 2.2 Ý Þ Ö ºÎ Ë Ï 4 A2 Î Ù ¾ =.884(Û Ö IT) ¼ =.98 (Û 99 Ð ) Ê C, Si, Mn, P, S Ñ ÐÇ Calculated ZDT, o C 152 Sample A Sample B Sample C 144 14 132 128 128 132 14 144 152 Measured ZDT, o C 3 É ZDT Á ZDT Fig.3 Comparison between calculated ZDT (=1.) and measured ZDT [13,14] Ô Â C ³ Ö. w ¼ w ÐÇ Î Ð À ³¼Î Ù.884 Â.98 ³. ÉÏ» Â, S ¼ P Ô, Ò C ³ ÏÛ. C Ç Ô À C ³ Ï Ö, Û Ð Ö ( (2)), Û ZDT, Ç, ² Ô C, S, P «Ç Ì Ö Ôà ³. 2.2.1 C ÉÏ 4 Â, ÐÇ C ³ Ï, Ô Û, ÒÔ± Ü. C ³ w 1 w 2 (ÂÝ Ý C ³), C ³ Ï ÚÎ, ÐÇ δ Ç, ÉÝ µ ÐÇ Ô Ö, Ô Ù. C ³Ì Ï, Î ÂÝ Ý, Si, P, S γ/ Ó Ö¾ K γ/ δ/ Ó Ö¾ K δ/, Ò γ Ö¾ δ ( 1), Ç Ô Ï, Ø C ³ Ï w 3 w 4 (ÂÝ γ C ³) ºÔ Ñ. C Ç δ/γ Ó Ö¾, «γ C Ù δ Ü, γ C ³. C ³ γ/ Ó ÐÞ, µ C Ô, Ý C w /w w /w 1 fs =.884 8 6 4 2 w 1 + w 3 C Si Mn P S 4 3 2 1 w 2 w 4 4 A2 Đ Æ Ï ½ =.884» =.98 Ó C ² Fig.4 Distributions oegregation ratio oolute element in residual liquid at =.884 and =.98 of A2 steel

8 ½ : ÆÌ ĐÕ ßÅ ÒÁ Ù 953 Ô C ³ Ï Ú Ù Ý ÑÔ±, ÒÙ Ö. ÉÏ Â, Mn ² Ô Û ÑÇ, Î δ/, γ/ ¼ δ/γ Ó Å Ö¾Ô Ú 1.,» Ô Û ¼, C ³ Ï Ñ. Ç,» : «, C ß Ñ» Ô, C ³ Û Si ¼ Mn, Û P ¼ S Û. 2.2.2 S S δ/ ¼ γ/ Ó Ö¾ K δ/  K γ/ Û È ÐÇ ¾³Æ, Ý Ô. Î Ø Ù, S ³Ä À, Ô, Ï 4. Ù, S Ô Ï ²À Î, Û A2 Ý, É.884 7.5 Ï µ.98 39.8. Ï 5 ² A1, A2, A3 ¼ A4 1 /s Ý Ù Fe C ÏÊ Ñ. ÉÏ» Â, À S ³ Ï, Ö, ÙÝ ZDT Û. ÉÏ Â, À S ³ Ï Ñ Ö Î ß µ, w 1 (δ Fe C ÒÖ) ¼ w 2 ( Ý C ³) ÂÝ ¹Ý, ÉÀ S ³.7%.1% ¼.2% À S ³.78%.6% ¼.1%, ÒÞ Ø. Ï 6a.14Si.36Mn.16P xs(ð³ ¾) S Û Ô³ (w S, - w S, )  À C ¼ S 152.14Si-.36Mn-.16P-.7S + + 144 14 f w' s =.884 w' 1 2 =1. iquidus temperature 132 Complete solidified temperature Beginning of transformation End of transformation 128 152 144 14 132 +.14Si-.36Mn-.16P-.13S + =1. w' 1 w' 2 =.884 128 152 144 14.14Si-.36Mn-.16P-.39S (c) =.884 132 w' 1 w' 2 =1. 132 =1. w' 1 w' 2 128 128 5 ³Ì S ² Fe C Î Fig.5 Non equilibrium pseuao binary Fe C phase diagrams oteels with different S content 152 144 14.14Si-.36Mn-.16P-.78S (d) =.884 2.5 2. 2. 1.5 w S, -w S, 1.5 1..8.5.6.4..8.7.6.5.2.4.3.2.1.. w S w P, -w P, 1..5.6.5.4..8.3.7.6.5.2.4.3.2.1..1 w P 6 P, S ²Ú Ú Ó² Fig.6 Effects of initial content of P and S on their absolute segregation amount

954 Õ ¹ 45 ³ ÖÏ. ÉÏ Â, Û ÍÀ C ³, À S ³.4%, À S ³Û S Û Ô ³, Ý.4%. ², À S ³.4%, ³ À S Û Ö, ÚÎ, S, Ñ Ö µ S À, S Û Ô³. 2.2.3 P P  S ±² ½ ÔÇ. S Ç, γ/ ¼ δ/ Ó Ö¾ K δ/  K γ/, Ý Ô Ö. ÉÏ 4» Â, P Ô Ô±Â S Û Í, C ³ Ï ß γ, P Ô Ñ C ³Đ Ç C ³ ÏÝÌ Ï. ÇÝ ²É ² P γ Ç Ö¾ S Ç ± ¾³Æ, P À γ ¾, P Ô S. ØÛ C ³ Ï ÓÝ ÚÎ, C ³ Ï Î Ý P ³ Ï Գ Ï, P Ô ºÔ Ñ. Ï 6b.14Si.36Mn xp.13s P Û Ô³ÂÀ P ¼ C ³ Ö Ï.» Â, À P ³.64%, P À ³Û Û Ô³. ², «P ³Ù Î Ð Ö P Ô ÚÕ ; P Ç Ö¾ Ü. 2.3 Ý Ë ¼³Ä À ÛÓ Ï 7 A1, A2, A3, A4 ¼ B1, B2, B3, B4 Í P ¼ S À ³ÙÌ Ö θ B (=IT- ZDT)  C ³ ÖÏ. Ï» Â, P, S À ³ Ï, Ï µ Î Á ÝÓÅ P, S Ô³, À µ ZDT, θ B Ï; À C ³ Ï, Ï µ P, S ÐÇ Ô, θ B Ù Ï. Ì Ö Ñ, (4) θ ref ¼ θ Ù IT ¼ ZDT, Ê : ε th = IT ZDT α dθ + ε δ γ (11)» Â, ε th θ B ÏÝ Ï. Ç, «, Ï C, P, S À ³ À Î Ð Ï, ÉÝ Ï «ÂÝ º È. A1, A2, A3, A4 ¼ B1, B2, B3, B4 Í P, S À ³ÙÌ Ö Ç ε th ÂÀ C ³ Ö Ï 8. ÉÏ Â, P, S ³ Ï, Ì Ö Ï, Ò C ³ Ý, Î ÂÝ Ý ÂÝ Ù. Ù ¼ÂÝ Ý P, S ³ Ý Û : P ³.8% Ï.64%, Ù B, o C B, o C 1 8 6 4 2 x.8.16.32.64.13si-.36mn-xp-.13s 125 x.13si-.36mn-.16p-xs.7.13 1.39.78 75 5 25 7 P» S ²Ú θ B Fig.7 Effects of initial content of P and S on θ B th, 1-3 th, 1-3 -1-2 -3-4 W P.8.16.32.64-5 -1-2 -3-4 W S.7.13.39.78-5 8 P  S ²ÚË ÕÖÆÐ Fig.8 Effects of P and S contents on thermal strain ε th in brittle temperature range 2.96 1 3 3.98 1 3, ϵ 34.5%; S ³.7% Ï.78%, Ù 2.95 1 3 4.76 1 3, ϵ 61.4%; ÙÂÝ Ý

8 ½ : ÆÌ ĐÕ ßÅ ÒÁ Ù 955 C ³ ¹. ÐÇ Ô, À Î Ð Å È ÝÓÅ ÀÝÄ Ù, ÝÓÅß º, ߺ. Ç, P, S ³ Ï Ù Ï, Ï «Î Ð ºÈ. Saeki [15] A2/B1 «º Ú¾ÂÝ Ù Ý ÂÊ ÙÛ, Ù Ì Ö «º ÂÝÈ. 3 Á (1) «, C ß Ñ» Ô, C ³ Û Si, Mn Ô, Û P, S Û ; P, S ½ Ô, Ò Ô Ï ²À Î Á ; Ï P, S ³, δ Fe C ÒÖ, Ý Û C ³. (2) Ý ßÌ Ö ÂÝ Ù, Ï P, S ³ Ì Ö Ã Ù, «Âݺ È Ï, «. Ï P, S ³ ÂÝ ÙÛ C ³. [1] Konishi J, Militzer M, Brimacombe J K, Samarasekera I V. Metall Mater Trans, 22; 33B: 413 [2] Thomas B G, Brimacombe J K, Samarasekera I V. Trans Iron Steel Soc AIME, 1986; 7: 21 [3] Kim K, Han H N, Yeo T, ee Y, Oh K H and ee D N. Ironmaking Steelmaking, 1997; 24: 249 [4] Kobayashi S, Nagamichi T, Gunji K. Trans Iron Steel Inst Jpn, 1988; 28: 543 [5] Ueshima Y, Mizoguchi S, Matsumiya T, Kajioka H. Metall Mater Trans, 1986; 17B: 845 [6] Kim K, Yeo T, Oh K H, ee D N. ISIJ Int, 1996; 36: 284 [7] Suzuki M, Yamaoka Y. Mater Trans, 23; 44: 836 [8] Muojekwu C A, Samarasekera I V, Brimacombe J K. Metall Mater Trans, 1995; 26B: 361 [9] Zhu Z Y, Wang X H, Wang W J, Zhang J M. In: The Chinese Society for Metals ed., Proceedings of Asia Steel International Conference, Beijing: Metallurgical Industry Press, 2: 358 [1] Suni J. PhD thesis, of Carnegie Mellon University, New York, 1991 [11] E Bealy M, Thomas B G. Metall Mater Trans, 1996; 27B: 689 [12] Kawawa T. Tekko Binran (Handbook for Steel), Tokyo: ISIJ, 1981, 1: 25 [13] Schmidtmann E, Rakoski F. Archiv Eisenhuttenwesen, 1983; 54: 357 [14] Shin G, Kajitani T. Suzuki T, Umeda T. Tetsu Hagané, 1992; 78: 587 (,, ¾Â, Ç. Ê, 1992; 78: 587) [15] Saeki T, Ooguchi S, Mizoguchi S, Yamamoto T, Mrsumi H, Tsuneoka, A. Tetsu Hagané, 1982; 68: 1173 ( ²,, ÆÅ, ÆÂ º, Å,. Ê, 1982; 68: 1173) [16] I C S, Thomas B G. Metall Mater Trans, 24; 35B: 1151 [17] Clyne T W, Wolf M, Kurz W. Metall Mater Trans, 1982; 13B: 259 [18] Davies G J, Shin Y. K. Solidification Technology in the Foundry and Cast House, ondon: the Metal Society, 1979: 517 [19] Matsumiya T, Saeki T, Tanaka J, Ariyoshi T. Tetsu Hagané, 1982; 68: 1782 (, ², ÇĐÆ,. Ê, 1982; 68: 1782)