The Early Universe Big Bang Cosmology: Einstein Universe Friedmann-Lemaître Universe Einstein-deSitter Universe

Σχετικά έγγραφα
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Matrices and Determinants

D-Wave D-Wave Systems Inc.

6.4 Superposition of Linear Plane Progressive Waves

Cosmological Space-Times

4.4 Superposition of Linear Plane Progressive Waves

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

BandPass (4A) Young Won Lim 1/11/14

Homework 8 Model Solution Section

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fourier Transform. Fourier Transform

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Space-Time Symmetries

Every set of first-order formulas is equivalent to an independent set



Congruence Classes of Invertible Matrices of Order 3 over F 2

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

PRODUCT FICHE. A Supplier name Morris MKV 64325

Tutorial problem set 6,

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Reminders: linear functions

Geodesic Equations for the Wormhole Metric

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Laplace s Equation in Spherical Polar Coördinates

Review Exercises for Chapter 7

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

the total number of electrons passing through the lamp.

Example Sheet 3 Solutions

Strain gauge and rosettes

Για να μιλήσουμε για περισσότερα από ένα πρόσωπα, ζώα ή πράγματα, συνήθως προσθέτουμε το s στο τέλος μίας λέξης. four sisters

Hartree-Fock Theory. Solving electronic structure problem on computers

derivation of the Laplacian from rectangular to spherical coordinates

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

D Alembert s Solution to the Wave Equation

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Parametrized Surfaces

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1. Consider the three dimensional space with the line element. Determine the surface area of the sphere that corresponds to r = R.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Το άτομο του Υδρογόνου

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Math221: HW# 1 solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Areas and Lengths in Polar Coordinates

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 15, Number 2/2014, pp

L F'(-c, 0) F(c, 0) M' D' x + d = 0 x - d = 0

Differential equations

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Second Order Partial Differential Equations

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Note: Please use the actual date you accessed this material in your citation.

S :Silicon Sealed blank:no Silicon Seal 2.54/0.100" 5.05/0.199" Code 3.2/0.126" 5.7/0.224" 3.2/0.126" 7.4/0.291"

6. MAXIMUM LIKELIHOOD ESTIMATION

ω = radians per sec, t = 3 sec

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

ˆ ˆ Œ Ÿ Š Œ ƒˆ Šˆ ˆ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê

CE 530 Molecular Simulation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On the Einstein-Euler Equations

The Simply Typed Lambda Calculus

Rektangulär fläns, Rectangular fin

5.4 The Poisson Distribution.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

3 Frequency Domain Representation of Continuous Signals and Systems

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

(b) flat (continuous) fins on an array of tubes

Inverse trigonometric functions & General Solution of Trigonometric Equations

Introduction: Big-Bang Cosmology

Section 8.3 Trigonometric Equations

Assalamu `alaikum wr. wb.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ

Αγαπητοί συνεργάτες,

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Dark matter from Dark Energy-Baryonic Matter Couplings

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Lecture 12 Modulation and Sampling

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Transcript:

Seminr The Erly Universe Big Bng Cosmology: Einsein Universe Friemnn-Lemîre Universe Einsein-eSier Universe by Oliver Schmi

Ouline The observe universe Meric of he universe Curvure Einsein Equion Cosmologicl moels Einsein Friemnn-Lemîre Einsein-eSier Oulook

The observe universe glies srs per gly M per gly 4 Gpc o he ege of he visible universe

The observe universe glies srs per gly M per gly 4 Gpc o he ege of he visible universe Composiion. Mer. Riion 4. Drk mer ( ) ~ 5. Vcuum energy of unknown ensiy visible riion g cm 4 g ( ) ~ cm

The observe universe glies srs per gly M per gly 4 Gpc o he ege of he visible universe Composiion. Mer. Riion 4. Drk mer ( ) ~ 5. Vcuum energy of unknown ensiy visible riion g cm 4 g ( ) ~ cm The universe is epning! v H

The observe universe The universe is isoropic n homogeneous verge over lrge scles!

The Cosmologicl Principle The hypersurfces wih consn cosmic snr ime re mimlly symmeric subspces of he whole of spce-ime. No only he meric g μν, bu ll cosmic ensors such s T μν, re form-invrin wih respec o isomeries of hese subspces. Form invrince of g µν uner rnsformion: ( ) g ( ) g ( ) µ ν µ ν Killing equion: D ε D ν µ µ εν ε µ µ ( ) µ Miml number of symmeries Miml number of Killing Vecors ε ( )

Meric Minkowski Meric: (~95) s c r r Θ r sin Θ Φ Specil Reliviy

Meric Minkowski Meric: (~95) s c r r Θ r sin Θ Φ Specil Reliviy GM GM c Schwrzschil Meric: (96) s r r Θ r sin ΘΦ c r c r Meric ousie non-roing sr

Meric Minkowski Meric: (~95) s c r r Θ r sin Θ Φ Specil Reliviy GM GM c Schwrzschil Meric: (96) s r r Θ r sin ΘΦ c r c r Meric ousie non-roing sr r Roberson-Wlker Meric: s c ( ) r ( Θ sin ΘΦ ) (95/6) kr Meric following he cosmologicl principle

Roberson-Wlker Meric ( ) ( ) ( ) ( ) Θ sin r r kr g β ( ) ( ) Φ Θ Θ sin r kr r c s

Roberson-Wlker Meric ( ) ( ) Φ Θ Θ sin r kr r c s ( ) ( ) ( ) ( ) Θ sin r r kr g β k k k Fl universe Open universe Close universe

Roberson-Wlker Meric Proper isnce: prop r ( ) ( ) ( ) r kr sin r sinh ( r ) ( r ) ( ) coor k k k Cosmologicl Re Shif: Two ligh pulses emie e n e δ e, observe n δ wih consn coorine isn coor. e r ( ) r kr δ τ ( ) ( ) δ λ z r kr ( ) δ δ e e e λ λ λ ( ) ( ) λ e ( e ) ( ) δ δ e e r ( ) r kr

Curve spceimes In Generl Reliviy grviion is no force bu propery of spceime geomery.

Curve spceimes In Generl Reliviy grviion is no force bu propery of spceime geomery. Fl spceime Geoesic equion Curve spceime τ τ Γ βγ τ β γ τ Chrisoffel symbols: Γ βγ g δ g β γ g γ β g βγ

Curve spceimes ( ) Γ τ τ τ γ β βγ ( ) τ δ ( ) ( ) ( ) ( ) Γ τ δ τ δ δ τ δ γ γ β β βγ

Curve spceimes ˆ ˆ ˆ ˆˆ ˆ β τβτ δ τ δ R Geoesic eviion: ( ) Γ τ τ τ γ β βγ ( ) τ δ ( ) ( ) ( ) ( ) Γ τ δ τ δ δ τ δ γ γ β β βγ

Curve spceimes τ Γ βγ τ β γ τ ( ) β β γ γ ( δ ) ( ) ( δ ) ( δ ) τ Γ βγ δ τ τ δ( τ ) Geoesic eviion: δ τ ˆ R ˆ τβτ ˆˆ ˆ δ βˆ Riemnn curvure: Ricci curvure: R Γ Γ β δ β γ ε ε β γ δ Γ γ δ γ εγ β δ Γδ εγ β γ γ R β R γ

Source of curvure Energy-momenum-sress ensor: T energy ensiy β momen um ensiy energy sress ensor flu T β is symmeric!

Source of curvure Energy-momenum-sress ensor: T energy ensiy β momen um ensiy energy sress ensor flu T β is symmeric! Energy-momenum-sress ensor of perfec flui: (he conucion, viscosiy, ec. re negligible) T β p p p

Einsein Equion Einsein curvure ensor: Ricci curvure sclr: 8πG T c G β 4 G β R β R R g g β β β R R β

Einsein Equion Einsein curvure ensor: Ricci curvure sclr: 8πG T c G β 4 G β R β R R g g β β β R R β Solving he Einsein equion for homogeneous isoropic cosmologicl moel of cosmologicl perfec flui yiels o G [ k ] 8π G rr GΘ GΦ ( k ) 8πp

Einsein Equion Einsein curvure ensor: Ricci curvure sclr: 8πG T c G β 4 G β R β R R g g β β β R R β Solving he Einsein equion for homogeneous isoropic cosmologicl moel of cosmologicl perfec flui yiels o G [ k ] 8π G rr GΘ GΦ ( k ) 8πp Snr moel Friemnn equion: k 8π ( p) Equion of se: p p( )

Equion of se p p( ) Gs of pricles of mss m in herml equilibrium wih T<<m: Mer componen wih negligible pressure: us p

Equion of se p p( ) Gs of pricles of mss m in herml equilibrium wih T<<m: Mer componen wih negligible pressure: us p Gs of pricles of mss m in herml equilibrium wih T>>m: Highly relivisic mer componen: riion p

Equion of se p p( ) Gs of pricles of mss m in herml equilibrium wih T<<m: Mer componen wih negligible pressure: us p Gs of pricles of mss m in herml equilibrium wih T>>m: Highly relivisic mer componen: riion Furher possibiliies: p n p p ν p

Einsein moel (97) Sic universe k π ( 8 Λ) 8πG Tβ gβ c Gβ 4 4π Λ Λ p 4π Λ: Cosmologicl consn Λ>: Repulsive force

Einsein moel (97) Sic universe k π ( 8 Λ) 8πG Tβ gβ c Gβ 4 4π Λ Λ p 4π Λ: Cosmologicl consn Λ>: Repulsive force > 4πG Λ > p k ΛE E c c 4πG Close universe wih rius E

Friemnn-Lemîre moel Epning universe: 8πG Tβ gβ c Gβ 4 Λ wih Λ > Λ E

Friemnn-Lemîre moel Epning universe: 8πG Tβ gβ c Gβ 4 Λ wih Λ > Λ E ( ) k k k ( ) ( ) ( ( ) ) cosh Λ 4 Λ π ( ) ( ) for smll () Λ e ( ) for lrge () () () ()

Snr moel ( ) p π 8 k ν p ( ) ( ) ( ) ( ) ν ( ) ( ) ν ( ) ( ) ν π 8 k

Einsein-eSier moel Assumpions: Spilly fl (k) n us omine (ν) universe ( ) ( ) ( ) ( ) ( ) 8 π ( )

Einsein-eSier moel Assumpions: Spilly fl (k) n us omine (ν) universe 8π ( ) ( ) ( ) ( ) ( ) ( ) Assuming no chnge in he equion of se, one fins ime i wih ( i ) BIG BANG ( ) ( ) ( ) 6π

Einsein-eSier moel Assumpions: Spilly fl (k) n us omine (ν) universe 8π ( ) ( ) ( ) ( ) ( ) ( ) Assuming no chnge in he equion of se, one fins ime i wih ( i ) BIG BANG ( ) ( ) ( ) 6π Grviionlly boun universe m ˆ 8π ( ˆ ) ( ) ( ) 4π k k ( ) ( ) ( ) ( ) ( ) ( ) c ( smll) ( lrge) wih c >

Snr moel k Einsein-eSier k- k 4,5 4,5,5 ()/ m,5,5,5,5,5 / m

Which universe n why? cri H 8πG H 8 π G k,9 * 9 g cm > cri cri < cri k k k Close universe Fl universe Open universe

Which universe n why? cri H 8πG H 8 π G k,9 * 9 g cm > cri cri < cri k k k Close universe Fl universe Open universe Observions: H km 7 s Mpc, m cri 5 r 8* cri, 7 v cri

Which universe n why? cri H 8πG H 8 π G k,9 * 9 g cm > cri cri < cri k k k Close universe Fl universe Open universe Observions: H km 7 s Mpc, m cri 5 r 8* cri, 7 v cri

References Jmes B. Hrle, Grviy An inroucion o Einsein s Generl Reliviy Seven Weinberg, Grviion n Cosmology Eckhr Rebhn, Theoreische Physik D.W. Scimi, Moern Cosmology n he Drk Mer Problem E.R. Hrrison, Kosmologie Die Wissenschf vom Universum P.J.E Peebles, Physicl Cosmology Chrles W. Misner, Grviion

Thnk you! Any quesions?