Generalized Affine Models

Σχετικά έγγραφα
Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Other Test Constructions: Likelihood Ratio & Bayes Tests

2 Composition. Invertible Mappings

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

5.4 The Poisson Distribution.

Homework 3 Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

4.6 Autoregressive Moving Average Model ARMA(1,1)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.


ST5224: Advanced Statistical Theory II

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Solution Series 9. i=1 x i and i=1 x i.

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Section 8.3 Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Second Order Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.3 Forecasting ARMA processes

Matrices and Determinants

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Additional Results for the Pareto/NBD Model

5. Choice under Uncertainty

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

An Inventory of Continuous Distributions

Math221: HW# 1 solutions

Bayesian modeling of inseparable space-time variation in disease risk

Approximation of distance between locations on earth given by latitude and longitude

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University


Fundamentals of Probability: A First Course. Anirban DasGupta

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Supplementary Appendix

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MOTORCAR INSURANCE I

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6. MAXIMUM LIKELIHOOD ESTIMATION

Statistical Inference I Locally most powerful tests

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Introduction to the ML Estimation of ARMA processes

w o = R 1 p. (1) R = p =. = 1

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Probability and Random Processes (Part II)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Durbin-Levinson recursive method

Biostatistics for Health Sciences Review Sheet

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Lecture 34 Bootstrap confidence intervals

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Forced Pendulum Numerical approach

Notes on the Open Economy

Example Sheet 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Exercises to Statistics of Material Fatigue No. 5

Part III - Pricing A Down-And-Out Call Option

Monetary Policy Design in the Basic New Keynesian Model

Mean-Variance Analysis

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007


Second Order RLC Filters

Appendix S1 1. ( z) α βc. dβ β δ β

EE512: Error Control Coding

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

IR Futures Effective Asset Class ก Efficient Frontier

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Summary of the model specified

Section 7.6 Double and Half Angle Formulas

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Solutions to Exercise Sheet 5

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

ΘΕΩΡΙΑ ΟΜΟΛΟΓΙΩΝ. ΤΙΜΟΛΟΓΗΣΗ,ΔΙΑΧΕΙΡΗΣΗ, ΕΙΔΙΚΑ ΘΕΜΑΤΑ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

The Simply Typed Lambda Calculus

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Lecture 21: Properties and robustness of LSE

Lecture 7: Overdispersion in Poisson regression

If we restrict the domain of y = sin x to [ π 2, π 2

C.S. 430 Assignment 6, Sample Solutions

Asymptotic distribution of MLE

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Trigonometric Formula Sheet

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Sticky Leverage. Joao Gomes, Urban Jermann & Lukas Schmid. Wharton School, Duke & UCLA

The Pohozaev identity for the fractional Laplacian

Financial Risk Management

Every set of first-order formulas is equivalent to an independent set

Concrete Mathematics Exercises from 30 September 2016

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Transcript:

Generalized Affine Models Bruno Feunou Université de Montréal and CREST Nour Meddahi Imperial College London 0

Affine Models in Finance Ornstein-Uhlenbeck process (Vasicek (1977)): dx t = κ(x t θ)dt + σdw t Feller (or square-root or CIR) process (Cox, Ingersoll and Ross (1985)): dx t = κ(θ x t )dt + σ x t dw t Closed form formulas for bond yields: ( t+h )] B(t, h) = E t [exp x u du = exp(a(h)x t + b(h)) t log B(t, h) y t,h = = ã(h)x t + h b(h) Mathematical argument (Duffie and Kan (1996)) Laplace Transform: E t [exp(ux t+h )] = exp(ω(h) + α(h)x t ) Cumulant function: log(e t [exp(ux t+h )]) = ω(h) + α(h)x t Multivariate models: Duffie and Kan (1996) Volatility models: Heston (1993) and Duffie, Pan and Singleton (2000) 1

Discrete Time models L t (u) log[e[exp(ux t+1 ) x τ, τ t]] = exp(ω(u) + α(u)x t ) ψ t (u) log[e[exp(ux t+1 ) x τ, τ t]] = ω(u) + α(u)x t Closed form formulas for bond yields (affine forms). Closed form for option prices under stochastic volatility models. Macroeconomic and Finance models: x t is multivariate (inflation, GDP growth, short term interest rate): Piazzesi (2003). Mathematical argument: log E t [exp(u 1 x t+1 + u 2 x t+2 +... + u n x t+n )] = A(u 1, u 2,..., u n )x t + B(u 1, u 2,..., u n ) Characteristic function Laplace Transform. 2

Affine Models ψ t (u) log[e[exp(ux t+1 ) x τ, τ t]] ψ t (u) = ω(u) + α(u)x t. GARCH equation: It suggests r t = h t 1 u t, u t i.i.d. N (0, 1), h t = ω + αr 2 t + βh t 1, Generalized affine models. ψ t (u) = ω(u) + α(u)x t + β(u)ψ t 1 (u), 3

ARMA(1,1) with i.i.d. innovations: Hence, x t = a + bx t 1 + ε t cε t 1, ε t i.i.d., b < 1, c < 1, ψ t (u) = (ua + (1 c)ψ ε (u)) + u(b c)x t + cψ t 1 (u). 4

Advantages 1) Affine models are Markovian. Non-Markovian affine extensions: x t is multivariate and some components are latent (Macro-Finance literature). Multi-lag affine models (Monfort and Pegoraro (2007)): ψ t (u) = ω(u) + α 1 (u)x t + α 2 (u)x t 1 +... + α p (u)x t p ω(u) and α(u) are driven by a Markov chain (Bansal, Tauchen and Zhou (2004), Dai, Singleton, and Yang (2006)). 2) Persistence (like GARCH models): alpha takes care of the short time dependence while β takes care of the long time dependence. 3) Time-varying conditional distribution and time-varying higher order moments (Hansen (1994)). 5

Existence of Cumulant Functions ψ t (u) = ω(u) + α(u)x t + β(u)ψ t 1 (u) The sum of two cumulant functions is a cumulant function A positive number times a cumulant function of an infinitely divisible distribution is a cumulant function The sum of two cumulant functions of infinitely divisible distributions is a cumulant function of an infinitely divisible distribution Case of simple examples. ψ t (u) = ω(u) + α(u)x t + βψ t 1 (u), β 0 We provide in the paper an example where β( ) is a function. 6

Cumulant Structure We denote the conditional cumulant of x t+1 of order n by κ n,t, which is given by and κ n,t = ψ (n) t (0), κ n,t (κ 1,t, κ 2,t,..., κ n,t ). κ n,t = ω (n) (0) + α (n) (0)x t + n 1 j=0 n j κ n,t = ω n + α n x t + β n κ n,t 1 β (j) (0)κ n j,t 1 where ω n = ω (1) (0) ω (2) (0) : : ω (n) (0), α n = α (1) (0) α (2) (0) : : α (n) (0), 7

and β n = ( 2 1 β (0) 0 0... 0 ) β (1) (0) β (0) 0... 0 : : :... : : : :... : ( n n 1) β (n 1) ( (0) n n 2) β (n 2) ( (0)... n ) 1 β (1) (0) β (0) Consequently, the vector κ n,t is a VAR(1). Special case: β( ) is constant: κ n,t = ω (n) (0) + α (n) (0)x t + βκ n,t 1 8

Moment Structure There is a mapping between the cumulants and the moments: Denote the conditional moments by m n,t, i.e., m n,t = E t [x n t+1], one has m 1,t = κ 1,t m 2,t = κ 2,t + κ 2 1,t m 3,t = κ 3,t + 3κ 2,t κ 1,t + κ 3 1,t m 4,t = κ 4,t + 4κ 3,t κ 1,t + 3κ 2 2,t + 6κ 2,t κ 2 1,t + κ 4 1,t m 5,t = κ 5,t + 5κ 4,t κ 1,t + 10κ 3,t κ 2,t + 10κ 3,t κ 2 1,t + 15κ 2 2,tκ 1,t + 10κ 2,t κ 3 1,t + κ 5 1,t m 6,t = κ 6,t + 6κ 5,t κ 1,t + 15κ 4,t κ 2,t + 15κ 4,t κ 2 1,t + 10κ 2 3,t + 60κ 3,t κ 2,t κ 1,t + 20κ 3,t κ 3 1,t + 15κ 3 2,t + 45κ 2 2,tκ 2 1,t + 15κ 2,t κ 4 1,t + κ 6 1,t. 9

Multi-Horizon Forecasting Important formula for the term structure of interest rates and for option pricing: ( h )] log E t [exp u i x t+i = i=1 { } h β (d k ) k 1 Ψ t (d k ) + 1 β (d k) k 1 ω (d k ) 1 β (d k ) k=1 where d k = u k + d h = u h h 1 j=k β (d j+1 ) j k α (d j+1 ) for k h 1 10

Extensions ψ t (u) = ω(u) + α(u)x t + β(u)ψ t 1 (u) = ω(u) + α(u)x t + β(u)[ω(u) + α(u)x t 1 + β(u)ψ t 2 (u)] = ω(u)(1 + β(u)) + α(u)x t + β(u)α(u)x t 1 + β(u) 2 ψ t 2 (u) : = ω(u) 1 β(u) + α(u) ( ) β(u) i x t i i=0 under the assumption u, β(u) < 1. Other models ψ t (u) = µ(u) + α i (u)x t i. i=0 ψ t (u) = ω(u) + p α i (u)x t i + i=0 q β j (u)ψ t j (u). j=1 11

Long Memory ψ t (u) = µ(u) + α i (u)x t i. i=0 Long memory in the level of x t+1 is related to the behavior of α (1) i (0) when i. Long memory in the conditional variance of x t+1 is related to the behavior of α (2) i (0) when i. Long memory in higher cumulants... 12

Term structure of interest rates The paper studies two approaches: 1) Generalized affine under the P-measure + SDF. 2) Generalized affine under the Q-measure. We will focus here on the first approach. 13

One factor: the short term interest rate r t. ψ t (u) P = log[e t [exp(ur t+1 )]] = ω(u) + α(u)r t + β(u)ψ t 1 (u) M t,t+1 = exp(γr t+1 + θ t ). Given the restriction exp( r t ) = E P t [M t,t+1 ], one gets θ t = r t ψ t (γ) and M t,t+1 = exp(γr t+1 r t ψ t (γ)). B(t, h) = E P t [ h ] M t+i 1,t+i, r t,h = i=1 log(b(t, h)). h 14

Analytical forms of the yields: r t,t+h = 1 βp (γ) h 1 β P (γ) ψ P t (γ) h + 1 h ω P (γ) 1 β P (γ) ( h 1 βp (γ) h 1 β P (γ) ) + r t h h k=1 β P (d k ) k 1 ψ P t (d k ) h h k=1 1 β P (d k ) k 1 1 β P (d k ) ω P (d k ) h with d k = u k + h 1 j=k β P (d j+1 ) j k α P (d j+1 ) for k h 1, d h = u h where u 1 = γ α P (γ) 1 βp (γ) h 1 1 β P (γ), u h = γ, and u j = γ 1 α P (γ) 1 βp (γ) h j 1 β P (γ) for 1 < j < h. ( ψ t (γ) = ω(γ) + α(γ)r t + β(γ)ψ t 1 (γ) = ω(γ) 1 β(γ) + α(γ) i=0 β(γ) i r t i ) 15

Option Pricing Models The paper studies two approaches: 1) Generalized affine under the P-measure + SDF. 2) Generalized affine under the Q-measure. Heston and Nandi (2000): r t = µ + ε t = µ + h t 1 z t, z t i.i.d. N (0, 1), h t = ω + α(z t γ h t 1 ) 2 + βh t 1. ψ t (u, v) P log[e P [exp(ur t+1 + vh t+1 ) r τ, τ t]] = ω(u, v) + α(u, v)h t We extend the model to ψ t (u, v) P log[e P [exp(ur t+1 +vh t+1 ) r τ, τ t]] = ω P (u, v)+α P (u, v)h t +β P (u, v)ψ P t 1(u, v) which implies 2 ω P u 2 (0, 0) = 0, 2 α P u 2 (0, 0) = 1, 2 β P (0, 0) = 0 u2 2 ψ t u 2 (0, 0) = V arp t [r t+1 ] = h t. 16

SDF: M t,t+1 = exp(γr t+1 + λh t+1 + θ t ). The price at t of a European call option with pay off (S t+h X) + at t + h is given by where and C 1,t = ) exp (ψ Q t,t+h (1) + 2 C 2,t = 1 2 + + C t = exp( rh)s t C 1,t exp( rh)xc 2,t + 0 [ 1 2πu Im exp 1 πu Im ( iu ln [ ( ))] exp (Ψ Qt,t+h (1 + iu) iu ln du XSt ( ) )] X + Ψ Qt,t+h (iu) du [ ] Ψ Q t,t+h (u) = Ψ 1 β (γ, λ)h ω (γ, λ) 1 β (γ, λ)h t (γ, λ) h 1 β (γ, λ) 1 β (γ, λ) 1 β (γ, λ) { } h + β (d k ) k 1 Ψ t (d k ) + 1 β (d k) k 1 α (d k ) 1 β (d k ) k=1 S t 17

with d k = (u + u k, v k ) + d h = (u + u h, v h ) h 1 j=k β (d j+1 ) j k (0, α (d j+1 )) for k h 1 and u h = γ, v h = λ u j = γ α (γ, λ) v j = λ α (γ, λ) 1 β (γ, λ)h j 1 β (γ, λ) 1 β (γ, λ)h j 1 β (γ, λ) for 1 j < h for 1 j < h 18

Non-linear mean with MA(1) structure: x t = f(x t 1 ) + ε t cε t 1, ε t i.i.d., c < 1. ψ t (u) = (1 c)ψ ε (u) + u(f(x t ) cx t ) + cψ t 1 (u) = ω(u) + α(u, x t ) + β(u)ψ t 1 (u) i.e., α(u, x t ) non linear function of x t No term structure of interest rates and options prices formulas. 19

Affine models: ψ t (u) log[e[exp(ux t+1 ) x τ, τ t]] ψ t (u) = ω(u) + α(u)x t. L t (u) E[exp(ux t+1 ) x τ, τ t] L t (u) = exp(ω(u) + α(u)x t ) L t (u) = γ(u) + exp(ω(u) + α(u)x t ) + β(u)l t 1 (u). Sufficient conditions for the existence of Laplace transforms. We have term structure of interest rates and options prices formulas. 20

Summary of Models Generalized affine models: Generalized non-affine models: ψ t (u) = ω(u) + α(u)x t + β(u)ψ t 1 (u) Generalized Laplace models: ψ t (u) = ω(u) + α(u, x t ) + β(u)ψ t 1 (u) L t (u) = γ(u) + exp(ω(u) + α(u)x t ) + β(u)l t 1 (u). 21

Estimation MLE. QMLE. Method of Moments. Characteristic function (Singleton (2001), Carrasco and Florens (2005)). 22

Application Affine and generalized affine models allow to compute the term structure of Value-at-Risk (Duffie and Pan (2001)) and the expected shortfall. We use daily realized volatility. Discrete time model for (r t+1, RV t+1 ) ψ t (v, u) = log[e t [exp(vr t+1 + yrv t+1 )] = ω(v, u) + α(v, u)rv t + βψ t 1 (v, u), We characterize the conditional cumulant function of r t+1,t+h = 1 p r t+1. h Term structure of Value-at-Risk i=1 23

Specification of the model: Motivation from continuous time: d log p u = (a + bσu)du 2 + σ u dw u When no leverage effect, daily log-return r t+1 = log(p t+1 ) log(p t ) has the following distribution: r t σ(p τ, σ s, τ t, s t + 1) N (a + biv t+1, IV t+1 ), which suggests the following model: r t+1 σ(r τ, RV τ, RV t+1, τ t) N (a + brv t+1, c + drv t+1 ). 24

Specification of RV t+1 given r τ, RV τ, τ t: Two possible affine Affine models (given that RV t is a positive variable): ψ t (u) = log E t [exp(urv t+1 )] = ω(u) + α(u)rv t. Inverse Gaussian : ω(u) = ν(1 1 2uµ), α(u) = ρ µ (exp(1 1 2uµ) 1) Gamma : ω(u) = ν log(1 uµ), α(u) = ρu 1 uµ When extend our analysis to the generalized affine case, i.e., ψ t (u) = log E t [exp(urv t+1 )] = ω(u) + α(u)rv t + βψ t 1 (u), 25

Table 2: Joint Estimation Panel A: R-RV- DM/USD: inverse gaussian 30 min 5 min Affine G-Affine Affine G-Affine par Est STD Est STD Est STD Est STD β 0.6111 0.0396 0.5449 0.041 ρ 0.3255 0.0203 0.1754 0.0179 0.3444 0.0193 0.2150 0.019 µ 0.2341 0.0114 0.1834 0.0087 0.1642 0.0071 0.1328 0.005 ν 1.2565 0.0398 0.5045 0.0545 2.0818 0.0647 0.9380 0.096 a 0.0063 0.0139 0.0063 0.0140 0.0064 0.0180 0.0064 0.018 c -0.0214 0.0448-0.0214 0.0449-0.0180 0.0433-0.0180 0.043 b 1.74E-08 5.709E-06 1.44E-08 6.024E-06 4.98E-08 1.093E-05 1.54E-08 5.777 d 0.9282 0.0290 0.9282 0.0290 0.7551 0.0236 0.7551 0.023 LIK -1600.0932-1547.4719-1838.6743-1790.0531 BIC 0.8069 0.7850 0.9234 0.9034 26

Panel B:R-RV- DM/USD: gamma 30 min 5 min Affine G-Affine Affine G-Affine par Est STD Est STD Est STD Est STD β 0.6172 0.0381 0.5696 0.0383 ρ 0.3043 0.0211 0.1744 0.0174 0.3599 0.0203 0.2206 0.0190 µ 0.2033 0.0075 0.1668 0.0065 0.1503 0.0054 0.1239 0.0046 ν 1.5165 0.0447 0.5542 0.0610 2.2383 0.0698 0.8907 0.0935 a 0.0063 0.0139 0.0063 0.0139 0.0064 0.0180 0.0064 0.0179 c -0.0214 0.0447-0.0214 0.0448-0.0180 0.0433-0.0180 0.0432 b 7.0E-09 2.701E-06 3.36E-08 7.974E-06 1.75E-08 7.241E-06 5.9E-09 3.153E d 0.9282 0.0290 0.9282 0.0290 0.7551 0.0236 0.7551 0.0236 LIK -1782.7432-1726.3807-1975.3616-1915.0602 BIC 0.8961 0.8723 0.9901 0.9644 27

Our approach outperforms the Heston and Nandi (2000) model (based on daily data).

Figure 1 Term structure of Value-at-Risk generated by Affine inverse gaussian 2.5 Term structure of Value at Risk / SQRT (Maturity): Affine VaR / SQRT(Maturity) 2 1.5 Low Median High 1 10 20 30 40 50 60 70 80 90 100 Maturity Figure 2 Term structure of Value-at-Risk generated by G-Affine inverse gaussian Term structure of Value at Risk / SQRT(Maturity) : G Affine 1.8 VaR / SQRT(Maturity) 1.6 1.4 1.2 Low Median High 1 0.8 10 20 30 40 50 60 70 80 90 100 Maturity in days 7

Figure 3 Term structure of Value-at-Risk: low volatility 1.06 Term structure of Value at Risk / SQRT(Maturity) : Low Variance 1.04 1.02 VaR / SQRT(Maturity) 1 0.98 0.96 0.94 0.92 G Affine Affine 0.9 0.88 0.86 10 20 30 40 50 60 70 80 90 100 Maturity in days Figure 4 Term structure of Value-at-Risk: median volatility Term structure of Value at Risk / SQRT(Maturity) : Median Variance 1.6 VaR / SQRT(Maturity) 1.5 1.4 1.3 1.2 G Affine Affine 1.1 10 20 30 40 50 60 70 80 90 100 Maturity in days 8

Figure 5 Term structure of Value-at-Risk: high volatility 2.1 Term structure of Value at Risk / SQRT(Maturity) : High Variance 2 1.9 VaR / SQRT(Maturity) 1.8 1.7 1.6 1.5 1.4 G Affine Affine 1.3 1.2 1.1 10 20 30 40 50 60 70 80 90 100 Maturity in days 9