297 DNA PCR 100191 DNA PCR population doublings PDs 2BS DNA DNA PCR 1 μg DNA 4 ~ 5 μg DNA 150 bp PCR 300 ~ 400 bp 2 PDs 2BS 5 PDs PCR 10% DNA 2. 5% P < 0. 001 DNA PCR DNA R342. 3 doi 10. 3969 /j. issn. 1671-167X. 2013. 02. 026 A 1671-167X 2013 02-0297-06 Comparison of Southern blotting and Real-time PCR in measuring telomere shortening GAO Ling-yun LI Guo-dong TONG Tan-jun Research Center on Aging Department of Biochemistry and Molecular Biology School of Basic Medical Sciences Peking University Beijing 100191 China ABSTRACT Objective To analyze and compare the performances of two telomere measurement methods digoxigenin-labeled Southern blot and Real-time PCR in cellular senescence research. Methods Genomic DNA extracted from normal human fibroblasts 2BS of different population doublings PDs was used as test samples. The Southern blot and Real-time PCR methods for telomere measurements were optimized. The specificity and sensitivity of digoxigenin detection system were analyzed by dot blot. The two methods were respectively used to measure parallel samples to analyze and compare their resolution and accuracy. Results Digoxigenin-labeled Southern blot system could detect less than 1 μg of human genomic DNA but the optimal sample size was around 4-5 μg when measuring telomeres. The resolution of the Southern blot method was around 150 bp while the Real-time PCR method 300-400 bp. The former could distinguish the difference of 2 PDs for 2BS cells while the latter could not distinguish the difference of less than 5 PDs. The measurement error of the repeated measurements for the Real-time PCR method was more than 10% which was bigger than that of the Southern blot method 2. 5% P < 0. 001. Conclusion Digoxigenin-labeled Southern blot system is fully applicable to telomere measurement. The performance of the Southern blot method is better than that of the Real-time PCR method while the latter is convenient and high-throughput. In the study of cellular senescence the appropriate method should be selected according to specific experiment. KEY WORDS Telomere Blotting Southern Real-time polymerase chain reaction Digoxigenin Aging 20 30 ~ 40 Muller 1 McClintock 2 Drosophila melanogaster Zea mays DNA 2012CB911203 30973146 Supported by the National Basic Research Programs of China 2012CB911203 and the National Natural Science Foundation of China 30973146 Corresponding author s e-mail ttj@ bjmu. edu. cn 2013-3-28 9 36 03 http / /www. cnki. net /kcms /detail /11. 4691. R. 20130328. 0936. 018. html
298 mmol /L Tris ph 8. 0 DNA 3 3 4-5 D 260 /D 280 1. 8 2. 0-20 11 6-7 DNA 1. 3 Southern blot 4 μg DNA MspⅠ RsaⅠ NEB 20 U 50 μl 37 4 ~ 7 12 h 7 ~ 8 g /L Cawthon 8 2002 PCR 1 V /cm 10 ~ 12 h Real-time PCR DNA marker for Genomi DNA Fermentasin 9 0. 2 mol /L 1. 5 mol /L NaCl 0. 5 mol /L NaOH 45 min 1 mol /L Tris HCl ph 7. 4 1. 5 mol /L NaCl 45 min 1 DNA PCR DNA marker EB DNA 36 h 80 2 ~ 4 h 1. 4 6 SSC 2 min population doublings PDs 7 ~ 8 ml 5 SSC 50% 2BS 1 g /L 0. 2 g /L SDS 10 g / L 42 30 min DIG-5'-end labeled- TTAGGG 4 Invitrogen 7 ~ 8 ml 35 μg /L DNA 42 2 ~ 6 h 1 2 SSC 1 g /L 1 SDS 15 min 2 2 0. 1 SSC 1. 1 1g /L SDS 15 min 2 2BS 15 ~ 25 0. 1 mol /L 0. 15 mol /L NaCl ph 7. 5 10 2BS 55 ~ 60 0. 3% Tween 20 1 ~ 5 min PDs 65 ~ 70 PDs PD30 100 ml 100 g /L PD31 ~ 54 PD55 30 min 20 ml 1 10 4 Anti- 10% DMEM DIG-AP Roche 30 min 100 ml Gibco 37 5% 15 min 2 20 ml CO 2 1 2 1 4 0. 1 mol /L NaCl 0. 1 mol /L Tris ph 9. 5 1. 2 DNA 80% PBS 2 2 10 6 1 ml DNAzol Invitrogen 0. 5 ml 3 min DNA 1 ml CDP-Star Roche USA 5 min ImageQuant TM RT ECL TM GE Healthcare Telometric 1. 2 12 75% 1. 5 8 13-14 PCR 2 TE 1 mmol /L EDTA 10 DNA 17. 5 mg /L 95 10 min
DNA PCR 299 10 min 730 g 4 PD29 2BS Invitrogen TE ph 8. 0 9 000 bp HBG1 GCTTCTGACACAACTGTGTTCACTAGC 4 μmol /L HBG2 CACCAACTTCATCCACGTTCACC 4 μmol /L 20 μl 35 ng DNA3 T S 95 10 min 95 15 s 54 2 min 22 95 15 s 58 1 min 30 ABI 7300 Sequence Detection System Applied Biosystems Foster City T /S 10 μl 80 2 ~ 3 h DNA 20 min 0. 01 μg 0. 025 μg 1C smear 3 ~ 4 μg 1C 3 4 μg 8 303 ± 40 bp 2 μg 8 222 ± 234 bp 1 μg 8 386 ± 107 bp 0. 5 μg 8 506 ± 121 bp 4 μg 0. 49% 2. 2 DNA CA USA Ct CtT 2BS CtS 3 ΔCt T / DNA S T /S = 2 ΔCt T / S 3 8 085 ± 21 bp T /S 150 bp 1. 5% 2A 2B 1 2B 5 PD31 ~ 35 T /S cumulative population doublings CPD 31. 00 32. 05 33. 05 34. 10 10 tel 1 GGTTTTTGAGGGT- GAGGGTGAGGGTGAGGGTGAGGGT 2. 7 μmol /L tel 2 TCCCGACTATCCCTATCCCTATCCCTATCCCTATC CCTA 9 μmol /L β-globin 1. 6 35. 08 8 125 bp 8 001 bp 7 765 bp SPSS 16. 0 7 748 bp 7 466 bp 2 ± P < 0. 05 PD36 ~ 45 2BS 2 1C 2 2. 1 2. 5% 5% 1A 2. 3 PCR 3 PD31 PD36 PD41 6. 6 μmol /L DIG-labeled TTAGGG 4 3 PCR 3 10 μl 76 bp 42 6 h 8 blank negative smear 2 10 7 5 min 3A 3B 3C ΔCt 7. 85 10 min 1 10 7 8. 73 89. 92% T /S DIG- 230. 72 424. 61 TTAGGG 4 1B 54. 33%
300 PCR 16. 57 5. 06% 17. 53% 6. 12% T /S ΔCt 9. 57% T /S PD31 PD36 F = 0. 97 P = 0. 38 DNA PD36 PD41 F = 2. 02 P = 0. 23 3 3 PD31 PD41 F = 9 T /S T /S 33. 34 P = 0. 004 9 PD31 ~ 45 2BS 10. 60% 15 3 T /S 3 54 3 351. 94 ± 17. 81 318. 67 ± 55. 85 270. 84 ± T /S
DNA PCR 301 14. 13% ± 9. 17% PCR 3 CPD 5 6 6 T /S 3 1 1A 12. 40% ± 6. 48% 2 A analysis of telomere amplification products in a representative measurement with electrophoresis while setting a control without templates and controls without primers B results of ΔCt values C results of corresponding T /S ratios. Figure 3 3 PCR Performance of Real-time PCR in telomere measurement 24 bp 1A 5 000 bp 1 μg TTAGGG 4 4. 9 10-15 mol / / 1 10 7 6. 6 10-18 mol 1 /700 DIG- TTAGGG 4 0. 001 4 μg DNA 1B 1C 4 ~ 5 μg 12 15 DNA 16-17 EcoRⅠ MspⅠ RsaⅠ 3 EcoRⅠ 3. 5 kb MspⅠ RsaⅠ DNA PCR 150 bp 2 2BS PCR P < 0. 05 2. 5% PCR Cawthon 8 2002 9 DNA PCR
302 DNA 300 ~ 400 bp Cawthon 8 T /S 500 bp DNA 10% 2. 5% P < 0. 001 assessment J. J Cell Mol Med 2005 9 4 977-989. 7 Aubert G Hills M Lansdorp PM. Telomere length measurementcaveats and a critical assessment of the available technologies and tools J. Mutat Res 2012 730 1-2 59-67. 8 Cawthon RM. Telomere measurement by quantitative PCR J. Nucleic Acids Res 2002 30 10 e47. 9 Horn T Robertson BC Gemmell NJ. The use of telomere length in ecology and evolutionary biology J. Heredity 2010 105 6 497-506. 10 Li N Li Q Cao X et al. The tumor suppressor p33ing1b upregulates p16ink4a expression and induces cellular senescence. FEBS Lett 2011 585 19 3106-3112. 11 Chen H Rangasamy M Tan SY et al. Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS One 2010 5 8 e11963. 12 Grant JD Broccoli D Muquit M et al. Telometric a tool provi- reproducible measurements of telomeric DNA from constant field agarose gels J. Biotechniques 2001 31 6 DNA J PCR J ding simplified 1314-1316. PCR 13 Cawthon RM. DNA 1 Muller HJ. The remaking of chromosomes J. The Collecting Net 1938 13 181-195. 2 McClintock B. The stability of broken ends of chromosomes in zea mays J. Genetics 1941 26 2 234-282. 3 Collado M Blasco MA Serrano M. Cellular senescence in cancer and aging J. Cell 2007 130 2 223-233. 4 Codd V Mangino M van der Harst P et al. Common variants near TERC are associated with mean telomere length J. Nat Genet 2010 42 3 197-199. 5 Heaphy CM Meeker AK. The potential utility of telomere-related markers for cancer diagnosis J. J Cell Mol Med 2011 15 6 1227-1238. 6 Lin KW Yan J. The telomere length dynamic and methods of its Telomere length measurement by a novel monochrome multiplex quantitative PCR method J. Nucleic Acids Res 2009 37 3 e21. 14 Zee RY Michaud SE Germer S et al. Association of shorter mean telomere length with risk of incident myocardial infarction a prospective nested case-control approach J. Clin Chim Acta 2009 403 1-2 139-141. 15 Gardner JP Li S Srinivasan SR et al. Rise in insulin resistance is associated with escalated telomere attrition J. Circulation 2005 111 17 2171-2177. 16 de Lange T Shiue L Myers RM et al. Structure and variability of human chromosome ends J. Mol Cell Biol 1990 10 2 518-527. 17 de Lange T. Telomere dynamics and genome instability in human cancer M / /Blackburn EM Greider CW. Telomeres. New York Cold Spring Harhor Lahoratory Press 1995 265-293. 2012-05-07 2013 1 23 30 1731