STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Σχετικά έγγραφα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï


PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ZnO SnO 2 Ta 2 O 5 ZnO JOURNAL OF THE CHINESE CERAMIC SOCIETY h α-fe/bafe 12 O 19

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

2 SFI

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Delta Inconel 718 δ» ¼

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

p din,j = p tot,j p stat = ρ 2 v2 j,

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ZnO-Bi 2 O 3 Bi 2 O 3

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Ó³ Ÿ , º 4(181).. 501Ä510

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

S i L L I OUT. i IN =i S. i C. i D + V V OUT

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

v w = v = pr w v = v cos(v,w) = v w

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

ˆŸ ˆ Œ ˆ ˆ œ Š Œ Œ ƒ ˆ ƒ Ÿ ˆ ŒˆŠ Š Œ ˆ ˆ Š Œ ˆŠ 235-V3

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

PACS: Pj, Gg

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ó³ Ÿ , º 4(195).. 935Ä956. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Transcript:

47 3 Vol.47 No.3 2011 3 337 343 ACTA METALLURGICA SINICA Mar. 2011 pp.337 343 ½ ¼ Å Zn 1 x Co x O ²Æ º¹µ (ß Õ Õ, Äß 110819) Á Ë Zn 1 xco xo(x=0.01 0.05, µ Ö) ĐÑ Ý, Á XRD, TEM à SEM à ˱ÁÃ. ±Õ, ¹  º 100 nm Ñ ¾Ä, Zn 1 xco xo Ñ Ö¹ ± Ñ ZnO Ö, ÀË ZnO, Ô «Ø «. Î Ñ, Đ³ ÆÎ. Å, ¼Ý ÆÎ»ÍÑ ÁÔ, O ÆÎ Ù Ñ «, Ä Ñ ÆË ÑÎ., Zn 1 xco xo, ÆÎ ³ O472.5, O482.5 A ¾ 0412 1961(2011)03 0337 07 STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE GAO Qian, SUN Benzhe, QI Yang, QI Lianzhong College of Sciences, Northeastern University, Shenyang 110819 Correspondent: QI Yang, professor, Tel: (024)83683674, E-mail: qiyang@imp.neu.edu.cn Supported by Science Research Program of Liaoning Province (No.200822208) and Shenyang Municipal Science Research Program (No.1091139 9 00) Manuscript received 2010 10 12, in revised form 2010 12 07 ABSTRACT ZnO based diluted magnetic semiconductors (DMSs) have been considered as one of the promising candidates for fabricating DMSs due to their initial prediction in theory of having the Curie temperature greater than room temperature, its high solubility for transition metals, and its superior semiconductor properties. Recently, Co substituted ZnO DMSs were reported frequently to show ferromagnetic properties at room temperature. However, various subsequent studies do not seem to converge on the origin of room temperature ferromagnetism. Among the controversy, Co cluster, Co oxides and substitutions of Co for Zn are typical viewpoints. Meanwhile, it is not completely understood how the fabricating process influence the magnetic properties of Co doped ZnO DMS. For this purpose, relationships among Co doping concentration, sintered temperature, microstructure and magnetic properties of ZnO need to be invesigated particularly. In this paper, Zn 1 x Co x O (x=0.01, 0.02, 0.03, 0.04 and 0.05, atomic fraction) nanocrystal powders were prepared by sol gel technique. The crystal structure, lattice parameters, morphology and composition were characterized and analyzed by XRD, TEM, SEM and EDS, respectively. The magnetic properties were examined at room temperature using a vibrating sample magnetometer (VSM). It can be found that all the samples are composed of the particles with hexagonal wurtzite structure and the sizes of the particles are about 100 nm. For all synthesized Zn 1 x Co x O samples, the lattice constants are smaller than those of un doping ZnO crystals under the condition of the same sintered temperature. It indicates Co 2+ ions have substituted Zn 2+ sites. All the samples exhibit room temperature ferromagnetic characteristics, and the ferromagnetism * ÊÅÉ ÑÍÈ 200822208 ÃÅ ÑÍÈ 1091139 9 00 Æ : 2010 10 12, : 2010 12 07 Ù Ú«: Ü, Æ, 1963 Æ, ÞË, Æ DOI: 10.3724/SP.J.1037.2010.00541

338 Ó Ô 47 is their intrinsic attribute, in which the Zn 0.98 Co 0.02 O sample sintered at 500 and 700 has the highest coercivity (H c ) of 334.02 Gs and the highest remanent magnetization ratio (M r /M s ) of 0.1813, respectively, and the Zn 0.96 Co 0.04 O sample sintered at 950 has the maximum magnetic energy product (BH) of 1.7604 10 4 J/kg and saturation magnetization (M s ) of 0.5583 Am 2 /kg. The magnetic behaviors of these samples vary not only with the concentration of Co, but also with the size of crystal grains and the concentration of oxygen vacancies. It can be found that the moderate Co content and the larger size of crystal grains are in favour of increasing room temperature ferromagnetic characteristics. Meanwhile, as far as the same concentration of Co is concerned, the smaller volume of the cell contributes to increase room temperature ferromagnetism. KEY WORDS sol gel technique, Zn 1 x Co x O, room temperature ferromagnetism ZnO Ò¼Î Å Ò [1,2], «ÕÏ Õ Ü ZnO µò [3], Ö Dietl Ô [4] ³ ZnO Ï ¼Î µ Ò Curie, Õ Õ Ü ZnO ¼ÎÒÚ Î ½ [3 18]. Ú [5,6] ²Ö, Co ZnO ¼Î Ü ¼ Ï. Ì Co ZnO Ï ÒÚ [5 13], Ï Ò¼ Í. Ú [7,8] Ý Co ZnO Ò Ï Co Õ Co ÒÐÎ, «Ú [9 13] Co «Å Zn Ò ZnO, Ï Õ ÂÕ. Co Ò Ó Ï ZnO Ú ÒÑ, «ÌÏ, «ÖÝÜ Ò ÐÓ ÜÁ Æ, Æ Ï ¼ÎÒ ÁÒ Å., Ú [8] Co ZnO ¼ÎÒÏ»Þ Ä Õ, ²Ö Æ ¹ ½ Ò Î ¼ÎÏ Ò±. Sayak Ä Anil [14] ¾ Î Ò ¼Î, ² Рϲ ÚÏ, Ð ÊĐ ² ÚÏ ; ««Ð ÊÒ ¼Î ¼Ò Ä Ò ÚĐ, Ï. Ú [15,16] ²Ö, ± Ä Co ZnO ¼ÎÒÏ ÇÇ Ò Ç; ±» ± Co ZnO ¼ÎÒÏ [17,18]. Ï ¼ÎÒÏ, ¼Î ÒÏ ÃÇ, ÐÓÎ Ò, ¼Î ² ÈÉ Ï ¹ ÐÓÒ µ, ¹ ÐÓÈ Ç ÏĐ Ú. ¾«, Ü ÇÌ Đ Ú Ò ÇÌ Ê. Ì ¹ Co ZnO ¼ÎÒÏ, µ¼îò Ï»Þ, ÒÏ, ¹¾ Ð Ð Ì 5 ¹ ÏÒ Zn 1 x Co x O Ò Þ, Ä Ú Ì Co ÒÙ Ä ¼Î Ï Ò Ç. 1»«Å Zn 1 x Co x O(x=0.01, 0.02, 0.03, 0.04, 0.05, ) Â Ò Ã ³ ÉÎ Ì 99.99% Ò Ù Å Ý (Zn(CH 3 CO) 2H 2 O) Ä Û Ù Å Ý (Co(CH 3 CO) 4H 2 O), µý Å 0.8 mol/l ½Ù ÅË. Ö 1.6 mol/l ÒÅ˫ڻÞÐ, Î 60 Ù², È 2 h. Ý Ê Ò Ð Î 48 h Î, ٠б ÊÒ Þ Å Ò Í Ð. ÝÍ ÐÖ Ì 220, À ² Ð, ݲ Ð ÅËĺ Ù À² ÚÛ Þ. ÉÒ Þ ³, ³ 500, 600, 700, 800, 900 Ä 950, Ï 2 h. Ì, ÝĐ S x,t À, x ² É, T ² Ð ( ). Đ Ò ³¾ X ÀÁÜÀ (XRD, CuK α, X pert High Scoreplus) Ä H 600 ÀÜ (TEM) Ù Ä ; Đ Ò Ä JCM 5400 ÔÜ (SEM) Ä (EDS) ²Â; Đ ÒÏ Lake shore Cryotronic 736 ÐĐ Ï Ò (VSM). 2» 2.1 XRD ̽ ZnO Co Ò, Å Ò Ç,  XRD Đ Đ Ì²Â. 1a 2θ=25 70 ÜÀ, S x,500 ÞÒ XRD, S 0,500 ² Ò ZnO ÞÒ ÜÀ. «¼È, Đ Đ, ±² Co Co ÐÎ Ô ÂÒÜÀ. Ì ¹Ã Co ZnO Òµ, 1a Ì º (2θ=31 37 ), 1b Đ. ² Ò ZnO Â, Co ÒĐ ºÜÀ µ ÇÌ, ²Ö Ð. ¼², Ú ÜÒ Co ZnO 2 Ò : Äŵ. Co 2+ Ò (6.5 10 2 nm) Zn 2+ Ò (7.4 10 2 nm), Co «ZnO, Þ Ò ; «Åµ Ð., Ú Ò Co Ç «Åµ ZnO. Ð, ºĐ Ò XRD 1

3 ³ ÛÓ : ß ßÆÏ Ð Zn 1 xco xo ÜÐ ÂÍ 339 100 002 101 S 0.04, 500 S 0.03, 500 S 0.02, 500 S 0.01, 500 S 0, 500 201 102 110 103 112 200 100 002 101 S 0.05, 950 S 0.05, 900 S 0.05, 800 S 0.05, 700 S 0.05, 600 201 102 110 103 112 200 30 40 50 60 70 30 40 50 60 70 100 002 S 0.04, 500 S 0.03, 500 S 0.02, 500 S 0.01, 500 S 0, 500 101 100 002 S 0.05, 950 S 0.05, 900 S 0.05, 800 S 0.05, 700 S 0.05, 600 101 31 32 33 34 35 36 37 1 S x,500 (x=0, 0.01, 0.02, 0.03, 0.04, 0.05) Ý Ñ XRD Fig.1 XRD spectra of S x,500 (x=0, 0.01, 0.02, 0.03, 0.04, 0.05) powders 25 2θ 70 31 2θ 37  Ò. 2 Co ÉØ Ò S 0.05,T ÞĐ Ð Ò XRD. 2a Đ, Ð µ 950, S 0.05,950 ¾ Á ZnO, Ø ÂÜÀ È. 2b 2a Ò º (2θ=31 37 ), Ð 500 700 Ï, ÜÀ Ò µ ß Ð Ò µö, Scherrer equation ÒÞ ²Ö Å, É µ; 700 950, µ Ò Î Ö, Å Î. Ï, ÜÀ Ò µ Ð Ð Ò Ç, Ð 500 700, Ì Ö ; 700 950, Ö. ²Ö Co  Ï, ÒÐ ÐÒ. Đ Ò XRD È ZnO Ò ÜÀ, Ø Â. Ä Å ßÐ Ò Î Á 3 Đ. «¼È, ßРȵ, Û Ê ; Å ß Ð Òȵ ÊÛ, «700 800 Ù. Đ Ò Ä Å Ð Co ÄÐ ÒØ Ç. 31 32 33 34 35 36 37 2 S 0.05,T Ý (T=500, 600, 700, 800, 900, 950 ) Ñ XRD Fig.2 XRD spectra of S 0.05,T (T=500, 600, 700, 800, 900, 950 ) powders 25 2θ 70 31 2θ 37 XRD ²Ö Đ Đ «É Ò Co ÐÎ Ò,, µ XRD ÒÙ Ò, à : (1)Co ÐÎ «Ò ; (2)Co ÐÎ «ÉÒ ; (3)Co Ç Ì, ¼ Co., ¾ TEM, SEM Ä EDS. 2.2 TEM, SEM EDS 4 S 0.05,700 ÞĐ Ò ÀÜ ÜÀÌĐ. ÌĐ Ú Å ÜÀÌĐ, µ  ÒÜÀ È. ¹ ZnO ÒÜ ÜÀ, «± TEM Ò XRD ºÆÇ,, «É Ò Co ÐÎ «Ø ÂÒ. 5a S 0.05,700 ÞĐ Ò SEM Ê. «¼ È, Đ Å, Å É» 100 nm.  Scherrer equation ÒÞÒ Å (32 66 nm)  Ç, ¹ ŠŹ Å, ÅÈ Ó ± Í Ç, Í ÆÏ Å ÂË Ò Â. 5b S 0.05,700 ÞĐ Ò EDS. Si Ä C Ð, Đ Ò Co (Zn+Co)=

340 Ó Ô 47 0.3252 0.3250 a, nm 0.3248 0.3246 0.3244 0.3242 0.3240 0.5208 0.5206 0.5204 S 0.01, T S 0.02, T S 0.03, T S 0.04, T S 0.05, T 500 600 700 800 900 1000 T, o C c, nm 0.5202 0.5200 4 S 0.05,700 Ý Ñ Û Û É Fig.4 The SAED pattern of S 0.05,700 powder 0.5198 0.5196 500 600 700 800 900 1000 T, o C 70 (c) 60 Grain size, nm 50 40 500 600 700 800 900 1000 T, o C 3 Ö a, c Ã Ä Ñ Fig.3 Relationships of a, c and size of crystal grain (c) with the sintered temperature 1 (18.97+1), Đ ÒÙ x=0.05 ÆÇ. 2.3 VSM  VSM Đ Đ Ì Ï ²Â. 6 Đ Đ ÄÏÎ Ø Ò S 0.01,500 ÞĐ ÒÏ Á. «¼È, Đ Ö ÒÏ Í. Ì Ð ÏÎ Ò Ç, 7»ÈÌ Ð S 0.01,T ÞĐ ÒÏ Á. 7a Ï ¹ 10 4 Gs H 10 4 Gs Ï S 0.01,T ÞĐ ÒÏ Á. «¼È, S 0.01,700 Ò ÄÏÎ M s Ø, ÏÚÑ M s (S 0.01,600 )< M s (S 0.01,500 )< M s (S 0.01,900 )< M s (S 0.01,950 ) < M s (S 0.01,800 )< M s 5 S 0.05,700 Ñ SEM Éà EDS Fig.5 SEM image and EDS result of S 0.05,700 powder (S 0.01,700 ). Ý 7a Ò Ï ¹ 10 3 Gs H 10 3 Gs º, 7b Đ. «, S 0.01,600 Ò M s Ø, Ç H c, ÊÏ M r /M s ÄÏ BH Ø., S 0.01,T ÞĐ Ï Ø ÒĐ S 0.01,600, S 0.01,700. Ì Co Đ Ï Ò Ç, 8»ÈÌ S x,700 ÞĐ ÒÏ Á. 8a

3 ³ ÛÓ : ß ßÆÏ Ð Zn 1 xco xo ÜÐ ÂÍ 341 0.003 0.04 0.02 M, Am 2 /Kg -0.003 0.00-0.02-0.04 S 0.01, 700 S 0.02, 700 S 0.03, 700 S 0.04, 700 S 0.05, 700-2000 0 2000 6 S 0.01,500 Ý ÑÎ À Fig.6 The magnetic hysteresis loop of S 0.01,500 powder at room temperature 0.008 0.004-8000 -4000 0 4000 8000 0.008 0.004-0.004-0.004-0.008 0.002 S 0.01, 500 S 0.01, 600 S 0.01, 700 S 0.01, 800 S 0.01, 900 S 0.01, 950-8000 -4000 0 4000 8000-0.008-800 -400 0 400 800 H, Gs 8 S x,700 (x=0.01, 0.02, 0.03, 0.04, 0.05) Ý ÑÎ À Fig.8 Magnetic hysteresis loops of S x,700 (x=0.01, 0.02, 0.03, 0.04, 0.05) powders at room temperature 10 4 Gs H 10 4 Gs 10 3 Gs H 10 3 Gs 0.001 H c (S 0.04,700 )< H c (S 0.01,700 ) < H c (S 0.02,700 ), «M r /M s Ä BH Ò ÏÚÑ ³ : M r /M s (S 0.05,700 )< -0.001-0.002-800 -400 0 400 800 7 S 0.01,T (T=500, 600, 700, 800, 900, 950 ) Ý ÑÎ À Fig.7 Magnetic hysteresis loops of S 0.01,T (T=500, 600, 700, 800, 900, 950 ) powders at room temperature 10 4 Gs H 10 4 Gs 10 3 Gs H 10 3 Gs Ï ¹ 10 4 Gs H 10 4 Gs Ï S x,700 ÞĐ Đ ÒÏ Á. «, ¼µ, ÄÏ Î ¼. ÄÏÎ µ Ä, ÏÚÑ : M s (S 0.01,700 )< M s (S 0.02,700 )< M s (S 0.03,700 )< M s (S 0.05,700 )< M s (S 0.04,700 ). 8b 8a Ò º, Ï ¹ 10 3 Gs H 10 3 Gs. «¼È, H c Ò ÏÚÑ : H c (S 0.05,700 )< H c (S 0.03,700 )< M r /M s (S 0.04,700 )< M r /M s (S 0.03,700 )< M r /M s (S 0.01,700 )< M r /M s (S 0.02,700 ) BH(S 0.05,700 )< BH(S 0.04,700 )< BH(S 0.03,700 )< BH(S 0.01,700 ) < BH(S 0.02,700 ). 3 ± ¼² XRD Ä TEM Ò Ò²Â, Co Ò ZnO, Ì Ò ZnO Â, Co ÐÎ Ò Â, Ò Í. «EDS ²ÖĐ ½ Ù ÉÂ Ò Co., «Ç¹½Þ Co «¹ Zn Ò Ì., Ú Co Ò Õ, ÉÐ Ù Đ Ù Ò Co ÐÎ., ÀÌ Òµ ( 400 ) Ð, Co 2 O 3 Ä Co Ò Ç ; Ç Ò CoO [19,20] Ä Ò Co ÐÎ [21 24], ±, Co ÐÎ»Þ [19,21], Ï Ò, ص Neel 298 K [22,25],, «Đ Ò Ï Ð Â, «ÂÕ. Co 2+ Đ ¾ÒÜ ÐÓ

342 Ó Ô 47 Ò, «± ; ÏĐ Ú Ò, «É Ò. Đ Ú ÒÐ ¼, ÝĐ ÒÏ È. 7 Ç, S 0.01,T ÞĐ, S 0.01,600 Ò Ï Ø, S 0.01,700 È; ¼² 3a Ä b ¾Ò ²ÒÞ V cell (S 0.01,600 )= 0.047382 nm 3, V cell (S 0.01,700 )=0.047487 nm 3, ³ Ï Ø Ä Ò. Co  ŵ Ò Ü, V cell Ò Î ZnO » Ò»Þ [12] ; Å ¹ [12] Ò, Ð, » Zn (Zn i ) Ä O µ (O v ) Ò Ç Ò Î; S 0.01,600 S 0.01,T ÞĐ V cell Ø, Ƴ Zn i Ø O v Ø, Ø. Zn i Ä O v ¾ ±ÎÒ n. ±Ü Ã Ì Ï ÏĐ Ú ÒÐ, Ì Ò. Þ O v Ì Zn 1 x Co x O ¼Î Ò Ï Đ Ú [10] ÒÒÞ ÂºÆ. «: S 0.01,600 S 0.01,T ÞĐ V cell Ø, O v ص, Đ«Ï Đ Ú Ø ; S 0.01,700 Ò V cell, Ï. ÞĐ ÒÏ ĐÆ. Ç., Å (S grain ) Đ ÒÏ ÇÌ, S grain Ä V cell ÇÌĐ ÒÏ, µ Å Ò ¼Å, V grain /V cell ¼, ¼  ÏÑÒ. 3c Đ, S 0.02,700 Ò S grain S x,700 ÞĐ Ø. Ý Å, ÒÞ È V grain /V cell (S 0.02,700 )= 3178650 ¹, Đ, Đ«S 0.02,700 Ò H c, M r /M s Ä BH S x,700 ÞĐ Ø. V grain /V cell Ò ÏÚÑ : V grain /V cell (S 0.05,700 )< V grain /V cell (S 0.04,700 ) < V grain /V cell (S 0.03,700 )< V grain /V cell (S 0.01,700 )< V grain /V cell (S 0.02,700 ); ÉÌ M s, Ï H c, M r /M s Ä BH Ò ÑÄ ÈÂ, 8b Đ. Đ«, «ÅÖ ÌÐÓÒ Ì Ï. ¾, ÞÒÏ (x) ÆĐ Ï Ò Ü. S 0.02,700 ÞĐ Ò H c, M r /M s Ä BH S x,700 ÞĐ Ø, x Õ, M s (S 0.02,700 ) ¾ M s (S 0.03,T ), M s (S 0.04,T ) Ä M s (S 0.05,T ). Ñ, x Õ, ¼Î ÐÓ Ò, «Ï Ñ; Ö x «ÖĐ ÒÐÓÒ, Đ Ï Ò µ x Ä., x µ, O v Ô, ÏĐ Ò ÃÇ, «Ö O Ò ÏĐ Ò, Î ¼ÎÒÏ. Đ«, Þ Ò O v, ½ ÆÐÓÈ Ç Ï Đ ;, Å µ Ö ÏÑ. Đ«, µ x Þ µ M s., Ì µ x ± ¼ÎÒ Ï ÂÒ, µ O v ± É, ¼ÎÒ Ï ½ ±. 4 (1) Ð Ð Ò Zn 1 x Co x O Ò Þ, XRD Ä TEM Ù Ä Ò Co Co ÒÐÎ, Đ Đ ÁÌ ZnO Ò, Ê º¹ÜÀ Ò. ²Ö Ò Co 2+ «Åµ ¹ Ì Ò Zn 2+. (2) Zn 1 x Co x O Ò ÞĐ Ï, Ï Zn 1 x Co x O Ò ÂÕ. (3) Đ ÒÏ Co, Đ Ò. Ï, O v ÃÔ, Å Ô Â ÏÑÒ. Đ º Ï Ø Ò ³ H c (S 0.02,500 )=334.02 Gs; M r /M s (S 0.02,700 )=0.1813; BH(S 0.04,950 )= 1.7604 10 4 J/kg; M s (S 0.04,950 )=0.5583 Am 2 /kg. [1] Shen W, Wang J, Duan Y, Wang Q, Zeng Y P. J Semicond, 2005; 11: 2069 [2] Wang X D, Song J H, Jung H J. Science, 2007; 316: 102 [3] Jin Z W, Fukumura T, Kawasaki M. Appl Phys Lett, 2001; 78: 3824 [4] Dietl T, Ohno H, Mstukura F, Cibert J, Ferrand D. Science, 2000; 287: 1019 [5] Zheng R K, Liu H, Zhang X X, Roy V A L, Djurišiæ A B. Appl Phys Lett, 2004; 85: 2589 [6] Lawes G, Risbud A S, Ramirez A P, Seshadri R. Phys Rev, 2005; 71B: 045201 [7] Park J H, Kim M G, Jang H M, Sangwoo R, Kim M Y. Appl Phys Lett, 2004; 84: 1338 [8] Yan G Q, Xie K X, Mo Z R, Lu Z L, Zou W Q, Wang S, Yue F J, Wu D, Zhang F M, Du Y W. Acta Phys Sin, 2009; 58: 1237 (Ù ³,»Ò, ß,, Ó ², Â, ¾ µ, ¾ Đ,, Đ. Ö, 2009; 58: 1237) [9] Wang Y, Sun L, Han D D, Liu L F, Kang J F, Liu X Y, Zhang X, Han R Q. Acta Phys Sin, 2006; 55: 6651 ( Ý,,, Æ, ½, ÏÝ,, Þ. Ö, 2006; 55: 6651) [10] Chen J, Jin G J, Ma Y Q. Acta Phys Sin, 2009; 58: 2707 (, Æ º,. Ö, 2009; 58: 2707) [11] Chamber S, Vuthasans T, Farrowr F. App Phys Lett, 2001; 79: 3467 [12] Cheng X W, Li X, Gao Y L, Yu Z, Long X, Liu Y. Acta Phys Sin, 2009; 58: 2018 (, Ã, ¹,, Ø,. Ö, 2009; 58: 2018) [13] Céspedes E, Castro G R, Jiménez Villacorta F, Andrés A,

3 ³ ÛÓ : ß ßÆÏ Ð Zn 1 xco xo ÜÐ ÂÍ 343 Prieto C. Phys Condens Matter, 2008; 20: 095207 [14] Sayak G, Anil K P S. J Magn Magn Mater, 2008; 320: L93 [15] Hsu H S, Huang C A. Appl Phys Lett, 2006; 88: 242507 [16] Kittilstved K R. Phys Rev Lett, 2006; 97: 037203 [17] Sati P. Superlattices Microstruct, 2007; 42: 191 [18] Dietl T, Andrearczyk T, Lipińska A. Phys Rev, 2007; 76B: 155312 [19] Redman M J, Steward E G. Nature, 1962; 193: 867 [20] Nam K M, Shim J H, Han D W, Kwon H S, Kang Y M, Li Y, Song H, Seo W S, Park J T. Chem Mater, 2010; 22: 4446 [21] Herbert T K. J Ind Eng Chem, 1914; 6: 115 [22] Ghosh M, Sampathkumaran E V, Rao C N R. Chem Mater, 2005; 17: 2348 [23] Casas Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M. Chem Mater, 2009; 21: 1939 [24] Zhang G Y, Xiu X Q, Zhang R, Tao Z K, Cui X G, Zhang J C, Xie Z L, Xu X N, Zheng Y D. J Semicond, 2008; 29: 1156 ( ß, Ë,, Ë, Ð, Õ, Æ,, Å. Æ Ö, 2008; 29: 1156) [25] Jauch W, Reehuis M, Bleif H J, Kubanek F, Pattison P. Phys Rev, 2001; 64B: 052102