ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
|
|
- Ωρίων Λαγός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
2 ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾
3 Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò Ö ÑôÒ ÔÓÙ ÔÖÓ Òô Ö Þ Ø Ø Ò Ó Ù ôò Ý ÛÒ ÔÓÙ Ù Ñ Û Ü Ø ÓÙ¹ ÔÖ Ñ Ð ÔØÓÑ Ö º Ã Ø ÖÕ Ò Ð Ó ÙÒ Ø Ô Ö ÔØô ÔÓÙ Ñ Ò Ñ Ò ØÓ Ò ÔÓ ÓÒØ Ô ØÓÒ Ô Ö ØÛ ÔÒ ÑÔÓÖÓ Ò Ñ Ø ÒØ ØÓ Õ Ü Ñ Ò ØÓÙ ÔÖÓ ÔØÓÒØ Ý Ñ Þ º ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø µ ÈÖ Ó Ù ôò Ý ÛÒ y 1 + y 2 ÖÓ Ö ØÓÙÑ ÒÓÙ y 1 y 2 Ó ÖÓ Ñ ØÓ Ë Ó Ö ØÓÙÑ ÒÓÙ Ã ÈÒ º ÈÒ ÖÓ ¾ Ù ôò Ý ÛÒ ¾»¾¾
4 ØÓÒ Ô Ö Ô ÒÛ ÔÒ Ø Ø Ø ØÓ Ñ Ò Ý ¹ Ô ÖÓ ÙÑÔ Ö Ö Ø Û ØÓ Ü Ñ ÒÓ ØÓÙ Ù Ö Ø Ó Ø Ò Ø ÖÓ Þ Ñ Ò Ý Ò ÔÓØ Ð ¹ ÔÓØ Ð Ñ Ø Ò Ò ÓÖ Ø µ Òô ØÓ Ý Ó ØÓÙ Ö ØÓÙÑ ÒÓÙ Ñ Û ØÓ Ü Ñ ÒÓ Ø Ø Ü ANDº Ã Ø ÙÒ ¹ ÙÑÔ Ö Ö Ø Ø Ü ÔÓÙ ÙÐÓÔÓ Ø Ò ÖÓ ¾ Ù ôò Ý ÛÒ Ô ÔÓ Ø Ô ØÓ Ô Ö ØÛ Õ Ñ ËÕ Ñ º Ø Ü ÀÑ ÖÓ Ø ÙÑ ÓÐ ØÓÙ Ô Ö Ø Ò ÓÒÓÑ Þ Ø Ñ ÖÓ Ø Half-adderµº»¾¾
5 Ô Ö ÑÓ Ó ØÖ ÔÓ ÒØ Ñ ØÛÔÞ Ø Ô ÖÔØÛ Ø Ö Å Ù ôò Ý ÛÒº Ñ ÓÙÖ Ó Ñ Ø ÖÕ Ò ØÓÒ ÒØ ØÓ ÕÓ ¾ Ð µ ÐÛÒ ØÛÒ ÙÒ ØôÒ Ô Ö ÔØô ÛÒ ØÓÙ ÔÒ ÔÒ Ñ Ø ØÓÒ ÔÒ Ö Ø ÔÖÓ Ò Ø ØÓ Ý ¹ Å ÓÖ Õ Ô Ö ÑÓ ÙÑÔ Ö ÓÖ ÔÛ ØÓ Ý Ó ØÓÙ Ó Ö ÔÓØ Ð Ø Ò ÜÓ Ó Ò Ù Ö Ø µ Òô ÖÓ Ñ ØÓ Ý Ó ØÓÙ Ç ÐÓÑ ÒÓÙ ÔÓØ Ð Ø Ò ÜÓ Ó Ø AND ØÓ ØÓ µ Ö Ó Ù ôò Ý ÛÒ y 1 y 2 ÈÒ º ÈÒ Ö ¾ Ù ôò Ý ÛÒ y 1 y 2 y 1 y 2 Ó ÓÖ Ó Ò ÑÓ ¹Ç ÐÓÑ ÒÓÙ Ç ÙÑÔÐ ÖÛÑ Ø ÓÙ y 1 ØÓ y 2 º»¾¾
6 Õ Ñ Ø Ø Ü Ø Ö ¾ Ù ôò Ý ÛÒ ³ Ø Ð Ø Ñ Ö Ø Half-subtractorµ Ò ÐÓÙ¹ ÔÓÙ ØÓÙ Õ Ñ ØÓ ËÕ Ñ º Ø Ü ÀÑ Ö Ø Ñ Ø Ò ÐÓÙ ÙÑ ÓÐ Ô Ö Ø»¾¾
7 ÖÓ Ó Ù ôò Ý ÛÒ Ð ÔØ Ñ ÒÓ Ø Ý ØÛÒ À Ø Ò Ô ÖÔØÛ Ø ÖÓ ¾ Ù ôò Ö ÑôÒº ÑÓÒ ÛÒ Ð ÐÙÝ Ø Ô Ø Ø Ø Ü Ø Ø Ò Ù ôò Ý ÛÒ ØÛÒ y ÖÓ 1 y 2 ÒØ ØÓ Õ Ý Ø Ó ÔÖÓ Ø ÛÒµ ô ØÓÙ Ý ÓÙ k ØÓÙ Ö ØÓÙÑ ÒÓÙµ ØÛÒ ÔÖÓ ÙÝ Ô ØÓ ÔÖÓ Ó Ñ ÒÓ Ñ Ø Ð º ÔÓÙ Ñ Ó ÓÐÓ Ô Ö Ñ Ò Ð Ñ ÓÙÖ Ó Ñ ØÓÒ Ô¹ À ÐÛÒ ØÛÒ ÙÒ ØôÒ Ô Ö ÔØô ÛÒ ÔÓÙ ÔÓ Ø Ô ØÓÒ Ò µ ÈÖ ØÖ ôò Ù ôò Ý ÛÒ y 1, y 2 k Ô Ö ØÛ ÔÒ Ñ Þ Ñ Ø ÒØ ØÓ Õ ÔÓØ Ð Ñ Ø º ÈÒ ÖÓ Ù ôò Ý ÛÒ ÈÒ y 1 y 2 Ë Ã k»¾¾
8 ÙÒ Õ Ñ ÓÙÖ Ó Ñ Ø Ò Ô Ö ØÛ Ø Ü ØÓÙ Õ Ñ ¹ ËØ ÔÓÙ ÔÓ Ø Ò Ø Ü Ø ÖÓ ØÛÒ Ù ôò ØÓ Ý ÛÒ ÔÓÙ Ð Ø ÈÐ Ö ÖÓ Ø Full Adderµ ËÕ Ñ º Ø Ü ÈÐ Ö ÖÓ Ø Ñ Ø Ò ÐÓÙ ÙÑ ÓÐ Ô Ö Ø»¾¾
9 Ø Ò ÐÓ Ø ÖÓ ÙÔ ÖÕ Ò Ø Ø Ò ÙÐÓ¹ Å Ø Ø Ö ¾ Ù ôò Ö ÑôÒ Ò ÔÓ Ø Ò Ø Ö Ù ôò Ý ¹ ØÓÙÑ Ø Ò ÐÙÝ ØÛÒ Ô Ñ ÒÛÒ Ý ÛÒ ØÛÒ ÑÓÒ ÛÒº ÈÖÓ ÛÒ Ñ ÓÙÖ Ó Ñ ØÓÒ ÔÒ ¾ ÐÛÒ ØÛÒ ÙÒ ØôÒ Ô Ö ÔØô¹ ØÓ ØÓ ÔÒ Ð µ ÔÓÙ Ò ÛÒ Ø ÙÒ Õ Ñ ÓÙÖ Ó Ñ Ø Ò Ô Ö ØÛ Ø Ü ØÓÙ Õ ¹ ÔÓÙ ÙÐÓÔÓ Ø Ò Ö ØÛÒ y Ñ ØÓ 1 y 2 O ÔÓÙ ÓÒÓÑ ¹ µ Ö ØÖ ôò Ù ôò Ý ÛÒ y 1 y 2 O ÈÒ ¾º Ö Ù ôò Ý ÛÒ y ÈÒ 1 y 2 O y 1 y 2 Ç O Þ Ø ÈÐ Ö Ö Ø Full Subtractorµ»¾¾
10 Ø Ó ØÓÙ Ñ ÖÓ Ø ØÓÙ ÔÐ Ö ÖÓ Ø ¹ Å ÓÐÓ ÔÐ ÓÒ Ò Õ Ø ÖÓ Ø Ó Ù ôò ¹ Ò ÔÓÙ Ø Ô Ñ Ò ÙÔÓØ Ø Ó Ù Ó Ö ÑÓ Ö ÑôÒ ØÓ ÔÓÐ Ñ Ó Ò byte Ù ôò Ý ÛÒµº ÕÓÙÒ ËÕ Ñ º ÈÐ Ö Ö Ø Ñ Ø Ò ÐÓÙ ÙÑ ÓÐ Ô Ö Ø µ ÖÓ Ø Ó Ù ôò Ö ÑôÒ»¾¾
11 Ø ÒÛ Ø Ó Ð Ö ÑÓ Ø ÖÓ ÙÑÔ Ö Ð Ñ Ò Ã Ø ÔÖôØÓ Ñ Ñ Ø Ò ÖÓ ØÛÒ ¾ Ý ÛÒ ØÛÒ ÑÓÒ ÛÒ Ò ¾ Ö ÑôÒµ Ø ÙÒ Õ ÓÕ ÖÓ ØÖ ôò Ý ¹ ØÛÒ ¾ ØÛÒ ÒØ ØÓ ÕÛÒ Ý ÛÒ ØÛÒ ¾ Ö ÑôÒ ØÓ ØÖØÓ ÛÒ Ý Ó ØÓÙ Ö ØÓÙÑ ÒÓÙ Ô ØÓ ÔÖÓ Ó Ñ ÒÓ Ñ ÔÓÙ ØÓ Ø Ò ÒØÛ ÙÔ ÖÕ Ö ØÓ Ñ ÒÓ Ø Ò Ò Ù¹ Ò ³ Ø ÐÓ Ô Ò Ó Õ Ñ ØÓÙ ÖÓ Ø Ô Ö Õ Ô ÖÕ º Ñ ÖÓ Ø Ø Ý ØÛÒ ÑÓÒ ÛÒ Ò Ö ÑôÒ Ò ÖÓ ØôÒ Ø ÙÔ ÐÓ Ô Ý ØÓÒ Ö Ñ Ø Ò ÔÐ ÖÛÒ Ô ÖÔØÛ µ ÓÔ Ø Õ Ø Ò ÐÓÙ ÑÓÖ ØÓÙ ÔÖÓ Ñ Ò Õ Ñ ØÓ»¾¾
12 º ÖÓ Ø ¾ bytes ØÛÒ a ËÕ Ñ 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 ØÓ ÔÓØ Ð Ñ Ø ÖÓ ØÛÒ Ù ôò Ö ÑôÒ ÈÖÓ Òô a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 Ò Ò ÒÒ Ý Ó Ö Ñ Ó k 7 σ 7 σ 6 σ 5 σ 4 σ 3 σ 2 σ 1 σ 0.»¾¾
13 ËØÓ ÔÖÓ Ó Ñ ÒÓ Õ Ñ Õ Ö Ò ÓÑÓ ÓÑÓÖ ØÛÒ È Ö Ø Ö ÙÐ ôò ØÓÙ ÖÓ Ø ÑÔÓÖÓ Ñ Ø Ò ØÓÙ ÓÑ ôò Ò ÒÓÙÑ ÕÖ Ò ÔÐ Ö ÖÓ Ø ØÓÒØ Ñ ÖÓ Ø Ñ ØÓÙ Ó Ó Ô ÒØÓØ ØÓ Ñ Ò ÓÔ Ø Ø Ø ØÓ ÐÓ ÐÛÑ Ø Ø Ò Ô ÖÔØÛ Ø Ö ¾ Ù ôò Ö ÑôÒ ÒØ Ò Ò ÐÐÓ ÐÛÑ ÔÓÙ Ø Ð Ø Ò Ö Ó Ù¹ ÕÓÙÑ Ö ÑôÒ ÑÔÓÖÓ Ñ Ò Ü ÓÔÓ ÓÙÑ ØÓÒ ÔÖÓ Ó Ñ ÒÓ ôò Ò Ô Ø ÕÓÙÑ ØÓ Ô ÙÑ Ø ÔÓØ Ð Ñ Ô ØÙ ¹ ÖÓ Ø Ø Ø Ò Õ Ø Ó ÓÒÓÑ ØÓ ØÓ ØÓÙ Ù¹ Õ ÒÓÒØ ÈÖÓ ØÓ ØÓ Ó Ñ Ø Ø Ö Ñ Ø Ñ ØÓº ØÓÙ ÙÑÔÐ ÖôÑ ØÓ Ò Ù Ó Ö ÑÓ Û ÔÖÓ ÕÖ ¾ Ø Ò ØÓÙ Ù Ó Ù Ø Ñ ØÓµº ØÓ ØÓÙ ÖÓ Ø ÔÓØ Ð Ø Ñ ÒÓ Ô ÔÐ Ö ÖÓ Ø º Ø Ü ÔÖÓ Ö ¾ Ù ôò Ö ÑôÒ Øµ Two Adder/Subtractorµ complement ¾»¾¾
14 Ò Ò Ø Ö ÔÖÓ Ð Ô Ø ÙÑÔÐ ÖÛ ÒØ ¹ Ç ØÛÒ Ý ÛÒ ØÓÙ Ö Ø ÓÙ Ô ÒÓÒØ Ô ØÖÓ µ ÒÓÒØ µ Ø Ò ÖÓ ØÓÙ Ñ Ø Ý ØÓÙ Ñ ÛØ ÓÙ Ñ Ø ÓÖ ØÓÙ Ø Ð Ó Ö ØÓÙÑ ÒÓÙ ÔÓÙ Ö Ø Ô Ø Ô ÖÓÙÑ ¾ Ø ØÖ Ý ÓÙ half-bytesµ Ù Ó È Ö Ñ ØÓÒ µ ØÓÒ µ Ø Ò Ö ØÓÙ Ö ÑÓ ØÓ ÙÑÔÐ ÖÛÑ ØÓÙ ÔÓÙ Ò Ó ØÓÒ ÔÖÓ ØÛ Ô ÖÒÛ Ñ ÛØ Ó ØÓÒ Ñ ÛØ Óµ ØÓ ÙÑÔÐ ÖÛÑ ØÓÙ Ö Ø ÓÙµ Ô Ö Ô ÒÛ ÙÐÓÔÓ Ó ÒØ Ô Ø Ò Ô Ö ØÛ Ø Ü ØÓÙ Õ ¹ Ì ¾º Ñ ØÓ Ö ØÓ Ñ ÒÓµ ØÓ ÖÓ Ñ ØÓ Ø Ð ÔÓØ Ð Ñ º Ö ØÓ Ñ ÒÓ Ì Ð Ø Ö Ò ØÓ º ÔÓØ Ð Ñ»¾¾
15 ¾º Ø Ü ÈÖÓ Ö ØÛÒ ËÕ Ñ a 3 a 2 a 1 a 0 ± b 3 b 2 b 1 b 0 (κ) r 3 r 2 r 1 r 0»¾¾
16 Ø Ò Ø Ò ØÓÙ Õ Ñ ØÓ ¾ Ø Ò ÕÖ ÑÓ Ò Ó Ñ ÙÑ Ò ØÓÒ ÔÒ Ð Ø Ô Ð XOR Ø Ò Ñ Ø / ÙÒ Ô Ø Ò Ñ Ó Ó ØÛ Ò Ñ Ò ÔÖôØ Ã Ø Ø Ø XOR ÔÓ Ø Ò ÐÐ Ó Ó Ð Ø º Òô Ö ÑÑ µ Ò Ø Ö Ö ÑÑ µ Ø Ø ÔÓ Ø ÙÑÔÐ ÖôÑ Ø Ø Ø Ò º ÓÙ b Ö Ñ 0 b 1 b 2 b Ò Ñ Ò ØÓ Ñ ÔÖÓ Ö Ò 3 ÔÖ Ò ÔÖ Ü ÔÓÙ Ð ÕôÖ Ø Ø Ð Ø Ò ÔÓÙ ÔÓØ Ð ØÓ Ñ ÔÖÓ Ö µº Ó ÔÒ Ò XOR Ç ØÓ Õ Ñ ¾ Ô Ö Ø ÖÓ Ñ Ø Ó Ö Ñ a Ô Ò ÖÕ Ñ ÒÓ 0 a 1 a 2 a 3 ØÓÙ ÔÐ Ö ÖÓ Ø ÒÓÒ ¹Ô ÒØÓØ ¹ Òô Ó Ø Ö Ñ b Ó 0 b 1 b 2 b 3 Û Õ Ó Ó Ô Ð XOR Ø Û ÔÐÓ Ø ØÓÙ Ñ ØÓ Bº Ò Ö Ó Ò»¾¾
17 ØÓ Ñ ÔÖÓ Ö Ò ¹ Ð Ö ¹ Ò ÔÖ Ü ÔÓÙ Ð ÕôÖ ¹ Ø Ø ØÓÒ ÔÐ Ö ÖÓ Ø Ò Ø ØÓ Ø Ð Ö ØÓ Ñ ÒÓ Ô ÖÕ Òô ØÓÙ ÖÓ ¹ Ç ÓÒØ Ø ÙÑÔÐ ÖôÑ Ø ØÛÒ Ý ÛÒ ØÓÙ ÔÛ Ø Ó Ò Ò Ø Ö º ÌÓ Ø Ð Ö ØÓ Ñ ÒÓ ØÓÒ ÔÖÓ Ð Ô ÖÓ Ø ÔÓÖÖÔØ Ø Ó Õ Ð ÙÔ Ý ÔÐ Ö Ý ÀºÍº ÔÖ Ô Ò Ø Ð ÔÖ Ü ÔÖ ¹ à ÙÑÔÐ ÖÛ ¹ Ø Ò ÙÐÓÔÓ Ø Ö ¹ Ñ Ø ¹ Ø Ò ÙÐÓÔÓ ØÓÙ ÔÓÐÐ ÔÐ ÑÓ Ø ¹ ØÓÔ ÙØ ÒÓÒØ Ø Ò ÑÓÒ Ö Ñ Ø º Ñ Ò Ø Ò Ö µ Ö Ô Ñ ÒÓÙÑ Ø Ò Ô Ö ÐÐ Ð Ø Ð ¹ ÔÖ ØÛÒ ÔÖ Ü ÛÒ ÔÓÙ ÙÐÓÔÓ Ó ÒØ Ó Ð Ü ØÓÙ ØÓÒ ÔÐ Ö ÖÓ Ø Çº Þµ À ÑÓÒ Ö Ñ Ø Arithmetic Unitµ ÙÔÓÐÓ Ø ÔÖ Ñ ÔÓÙ ÔÓ Ø Ô ØÓ Ô Ö ØÛ Õ Ñ ¾º»¾¾
18 Ø Ü Ö Ø Ö Ñ Ø ØÓÔ Ò ÓÐÓ Ò ¹ Ø Ñ Ò Ü Ñ Ø Ø Ô Ö ØÓÒ Ö Ñ Ô Øô ÓÙÑ Òô Ö Ø Ö Ñ Ø Ø Ô ØÓÒ ÔÓÐÐ Ð Þ Ñ ØÓ ¾ ¹ Ó Ò Ô Ø Ô Ö ØÛ Ó Õ Ñ Ø ÔÓÙ Ó Ó ÔÛ ËÕ Ñ ¾º È Ö ÐÐ ÐÓ ÖÓ Ø ÛÖ Ø Ø Ò Ñ ÓÙ byteº»¾¾
19 Ð ØÓÙÖ Ø Ö Ñ Ø ÑÓÒ Ô Ø Ø Ò Ô ÖÓÙ¹ Ì ÐÓ Ò Ô ÐÓ ÓÑ ÒÛÒ multiplexerµ ÔÓÙ Ò Ñ Ø ¹ Ø Ò ÓÔÓ Ø Ð ÓÙÒ ÔÓÐÐ Ö ÑÑ ÓÑ ÒÛÒ ÙØ Ü Ø ÐÐ ÐÓ Ñ Õ Ò Ñ ØÛÒ Ö ÑÑôÒ Ô ÐÓ control line- Ñ Ô ØÖ Ô Ø Ò ÜÓ Ó Ñ Ñ ÒÓ Ö ÑÑ Ð Ó Ô ÐÓ sµ Ò Ó ßØÖÓÕÓÒ ÑÓ Ø Ö Ñ Ø ÑÓÒ Óеº ÓÑ ÒÛÒ iµ Ü Å Ø Ø Ô Right Shiftingµ iiµ Ö Ø Ö Å Ø Ø Ô Left Shiftingµ»¾¾
20 Ô Ö ØÛ Õ Ñ ¾¾ ÔÓ Ø Ò Ð Ø Ø Ó ÔÒ ÌÓ ÔÓÙ ÙÔ ÖÕ Ô Ö Ö Ø Ò ÜÓ Ó ÔÓÙ ÔÓ Ø Ð ØÓÙÖ Ø Ø ØÛÒ Ö ÑÑôÒ Ô ÐÓ x y Ð Ô Õ Ñ ¾¾µº ËÕ Ñ ¾¾º Ô ÐÓ ÓÑ ÒÛÒ Multi-Plexerµ Ô ÐÓ ôò»¾¾
21 Ø ÔÖÓ Ó Ñ Ò Ò ÑÔÓÖÓ Ñ Ò ô ÓÙÑ Ø Å Ø ÓÑ Ø ÑÓÒ Ö Ñ Ø AU1 ØÓÙ Õ Ñ ØÓ ¾ ËÕ Ñ ¾ º ÅÓÒ Ö Ñ Ø ¾»¾¾
22 Ò ÒØÖ Ø ØÓ Õ Ó Ò Ó Ô Ö ÐÐ ÐÓ ÖÓ Ø ÔÓÙ Òô Ó Ó Ó Ó ØÓÙ Ù Ø ÒØ ÓÖ Èº ºµ Ñ Ø Ñ Ø Ð ÕÓÙ X Y Z ØÛÒ Ó Ô Ü Ö ÔÓÙ ÙÔ ÖÕÓÙÒ ÔÓÙ Ð ÔÓ ÓÒØ Ô ØÓÒ ÔÒ multiplexers Ð Ô ÔÒ µ Ø ÑÓÒ Ó ÔÓÙ ÓÐÓÙ Ð ØÓÙÖ º ÈÒ Ð ØÓÙÖ Ø AU1 ÈÒ Ð ÕÓÙ ÓÑ Ò ÔÓØ Ð Ñ Ø Ë Ñ Ø Í K É pi ÈÖ Ñ ØÓÔÓ Ó Ñ Ò K po ÈÖ Ü R = A + B R = A + B + 1 R = A B 1 R = A B R = 2A + B R = 2A + B + 1 R = 2A B 1 R = 2A B R = 1 / 2 A + B R = 1 / 2 A + B + 1 R = 1 / 2 A B 1 R = 1 / 2 A B R = B R = B + 1 R = B 1 R = B ¾»¾¾
23 ØÓÒ ÔÒ Ò Ø Ü µ ÓÖ Ø Ô Ô Ü Ö ÓÑ ÒÛÒ K Ô Ö ÔØô PI ÙÒ Ø Ò Ò Ñ ÓÙÖ Ó Ò Ñ ÒØ ØÓ Õ ÔÓØ Ð Ñ Ø ÔÓÙ Ñ ÒÞÓÒØ Ò Ø Ð ßÔÖ Ñ ØÓÔÓ Ó Ñ Ò ÔÖ Ü Ð Ô Ö Ò ÙØôÒ ØÛÒ Ø Ò AU1 Ò Ò Ø Ò ÔÖ Ñ ØÓÔÓ ÓØ ÔÓØ Ö ôò ÐÐÓº ¾¾»¾¾
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÌÅÀÅ Ä ÉÇÍ Controlµ Ã Ì ÉÏÊÀÌ Ë Registersµ º Bussesµ ÃÍÃÄÇÁ ÅÀÉ ÆÀË Machine Cyclesµ Á ÍÄÇÁ ØÑ Ñ Ð ÕÓÙ
Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º
È Ö Õ Ñ Ò Á ³ Ò ÖÜ Ñ Ñ ØÓ ÁÁ ÖÕ Ñ Ñ Ø ½ Å Ñ ½ ½º½ Û º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º º º º º º º
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
º º½ Destination-Sequenced Distance-Vector (DSDV) º º º º. º º Temporally Ordered Routing Algorithm (TORA) º º º
È Ò Ô Ø Ñ Ó È ØÖôÒ ÈÓÐÙØ ÕÒ ËÕÓÐ ÌÑ Ñ Å Õ Ò ôò ÀÐ ØÖÓÒ ôò ÍÔÓÐÓ ØôÒ ÈÐ ÖÓ ÓÖ ÔÐÛÑ Ø Ö Ð Ö ÑÓ Ô Ó ÒÛÒ Ad-hoc Ã Ò Ø ØÙ È Ò ôø à ÒÓ Å ¾½¾ Ô Ð ÔÛÒ ÉÖ ØÓ ÖÓÐ È ØÖ ÁÓ Ð Ó ¾¼¼ c Copyright È Ò ôø à ÒÓ ÁÓ Ð Ó ¾¼¼
a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.
Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
S i L L I OUT. i IN =i S. i C. i D + V V OUT
Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº
ÇÐÓ Ð ÖÛ º½ Å ØÖ Ñ ËÙÒ ÖØ È Ö Ø Ö º½ µ Å ÙÒ ÖØ f : X Y Ñ Ø Ü Ñ ÒôÒ ÙÒ ÐÛÒ Ô ½ Ñ Ô Ò f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. À Ô Ò ÙØ Ø Ö ÙÑÔÐ ÖôÑ Ø Ù Ö Ø Òô Ù Ö Ø ØÓÑ º µ Ò B P(Y ) Ò σ¹ Ð Ö Ó Ó Ò
Προσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9
Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Σχηματισμός και αντίληψη εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 2 ËÕÑØ Ñ ÒØÐÝ ÒÛÒ 2.1 ËÕÑØ Ñ ÒÛÒ
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼ ¾ È Ö Õ Ñ Ò ÈÖ ÐÓ Ó i ½ Ð Ö ÑÓ Ë ÐÑ Ø ½ ½º½ ÔÐÙ ÈÖÓ Ð Ñ ØÛÒ Ð Ö ÑÓ º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ö ÑÓ Ù Ó ô º º º
Δυαδικά Συστήματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Δυαδικά Συστήματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò Ù Ë Ø Ñ ½ ¾ Δυαδικό
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
Z
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò
N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1
Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ ÆÂ Î ÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù ËÙÑ Ö Ó ½ Î Ò Ó Ú Ö ÓÙÐØ ½ ½º½ Ú Ò Ó Þ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Å Ò ÑÓ Ò Ö ÒØ º º º º º º º º º º º º º º º º º
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½
arxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μαθηματική μορφολογία Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 11 ÅÑØ ÑÓÖÓÐÓ 11.1 ÅÓÖÓÐÓ ÔÜÖ ÙôÒ ÒÛÒ À ÑÑØ
Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
ÄÓ Ñ ÒÓ ØÓ Ãô ØÓ Ë Ø Ñ Ø Ì Ñ À Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ½ º Ó Ó Ð Ó Διεύθυνση Πληροφορικής ΔΕΗ Τομέας Συστημάτων Γραφείου ÚºÞÓÙ Ó ºÓѺ Ö ¹Ñ Ð Αθήνα 19 Ιουνίου 2009 Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
ÊÁËÌÇÌ Ä ÁÇ È Æ ÈÁËÌÀÅÁÇ Â ËË ÄÇÆÁÃÀË ËÉÇÄÀ Â ÌÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÍËÁÃÀË Ð ÃÓÙ ÓÙÐÓ ÒÒ Å Ä ÌÀ ÆÌÇÈÁËÅ ÆÏÆ Ì Ä ÆÌÏË ÏÆ Ë ËÍËÌÀÅ Ì ÈÇÄÄÏÆ ÂÅÏÆ Ä ÍÂ ÊÁ Ë
ÊÁËÌÇÌ Ä ÁÇ È Æ ÈÁËÌÀÅÁÇ Â ËË ÄÇÆÁÃÀË ËÉÇÄÀ Â ÌÁÃÏÆ ÈÁËÌÀÅÏÆ ÌÅÀÅ ÍËÁÃÀË Ð ÃÓÙ ÓÙÐÓ ÒÒ Å Ä ÌÀ ÆÌÇÈÁËÅ ÆÏÆ Ì Ä ÆÌÏË ÏÆ Ë ËÍËÌÀÅ Ì ÈÇÄÄÏÆ ÂÅÏÆ Ä ÍÂ ÊÁ Ë ØÓÖ ØÖ Â ÐÓÒ ¾¼¼ ËÁÄÀË ÃÇÍÃÇÍÄÇ Á ÆÆÀË ÍÔ ØÖÓ Ó ØÓÙ
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙÖ Ð Ò Ò Ö Ò Ò Å Ø Ö Ð Ë Ò ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ÆÓÚ Ñ
arxiv:quant-ph/ v1 28 Nov 2002
Ò ÒÚ Ø Ø ÓÒ ØÓ ÉÙ ÒØÙÑ Ñ Ì ÓÖÝ arxiv:quant-ph/0211191v1 28 Nov 2002 Û Ö Ïº È ÓØÖÓÛ ÁÒ Ø ØÙØ Ó Ì ÓÖ Ø Ð È Ý ÍÒ Ú Ö ØÝ Ó Ý ØÓ Ä ÔÓÛ ½ ÈÐ ½ ¾ Ý ØÓ ÈÓÐ Ò ¹Ñ Ð Ô ÐÔ ºÙÛ º ÙºÔÐ Â Ò Ë ÓÛ ÁÒ Ø ØÙØ Ó È Ý ÍÒ Ú Ö
plants d perennials_flowers
ÈÖÓ Ð Ø Ç Ø ÌÀÇÅ Ë ÁÌ Ê Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Â Å Ë Âº ÄÍ Ù Ò ÐÐ ÍÒ Ú Ö ØÝ ÌÀÇÅ Ë ÄÍà ËÁ ÏÁ Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Ò Îº ˺ ËÍ Ê ÀÅ ÆÁ Æ ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò Ì ÓÙ Ø Ö Ö Ñ ÒÝ ÔÔÐ Ø ÓÒ Û Ö Ò Ó Ø ÓÖ ÒØ Ø ÑÓ Ð ÓÓ
Reserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload
ÈÖÐÑÒÖÝ ØÑØ Ó Ì¹Ç«ÏØ ÈÓØÓÖÔ Ó ÓÒ ¹½ ÐÓÑ ØÖ Ø Ø¹Ó«ÅÜÑÙÑ Ø¹Ó«ÛØ ÕÙÐ ¼¼¼ Ð ÑÜÑÙÑ ÔÝÐÓ ½ ¼¼¼ Ð ÓÙÖØ Ý Ó Ø ÓÒ ÓÑÔÒݵº ½ Ï Ì Ç Ï ÙÐ Ï ÔÝÐÓ Ï ÑÔØÝ ¾½ Ï ÔÝÐÓ Ï ÜÔÒÐ Ï ÒÓÒ ÜÔÒÐ ¾¾ 000000000000 111111111111 000000000000
¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ
Ë Öö ½º ÍÚÓ Ó Ò Ú Ò ÓÐÓ ÑÖ ö Ø ÓÖ ÓÑ Ö ÓÚ ½º½º ÍÚÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º ÈÓÖ î Ò ÑÖ ö ÔÖ Ó Ò ÓÚ ÚÓ Ø Ú º º º º º º º º º º º ½º º ÅÓ Ð ÑÖ ö º º º º º º º
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: 2-Δ συνεχή σήματα Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 3 ¾¹ ÙÒÕ ÑØ Å ÙÒÕ Ò ÑÔÓÖ Ò ÔÖ Ø Ô Ò ¾¹ ÙÒÕ Ñ Ð
Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý
9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
The Prime Number Theorem in Function Fields
È Ò Ô Ø Ñ Ó ÃÖ Ø ËÕÓÐ Â Ø ÛÒ & Ì ÕÒÓÐÓ ÛÒ Ô Ø ÑÛÒ ÌÑ Ñ Å Ñ Ø ÛÒ Å Ø ÔØÙÕ Ö ÌÓ Â ÛÖ Ñ ÌÛÒ ÈÖÛØÛÒ Ö ÑÛÒ ËÛÑ Ø ËÙÒ ÖØ ÛÒ ôö Ó Ã Ô Ø Ò ØÓÙ Æ ÓÐ ÓÙ ÔÓÔ ÛÒ Ø Â ÓÙÐÓ Ö Ð ÀÊ ÃÄ ÁÇ Đ ¾¼¼ University of Crete School
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Τμήμα Φυσικής, Εργαστήριο Αστρονομίας
Á ÃÌÇÊÁÃÀ Á ÌÊÁ À ÆÁÉÆ ÍËÀ Ã Á Å Ä ÌÀ Ï Ä Á ÃÏÆ ÍÈÇÄ ÁÅÅ ÌÏÆ ÍÈ ÊÃ ÁÆÇ ÆÏÆ Ë ÈÇÄÄ ÈÄ ÅÀÃÀ ÃÍÅ ÌÇË Ä ÏÆÁ ÃÀ ÁÏ ÆÆ È Æ ÈÁËÌÀÅÁÇ È ÌÊÏÆ ¹ ÌÅÀÅ ÍËÁÃÀË ÂÆÁÃÇ ËÌ ÊÇËÃÇÈ ÁÇ ÂÀÆÏÆ Ë ÔØ Ñ Ö Ó ¾¼½¾ Á ÃÌÇÊÁÃÀ Á ÌÊÁ
Θα εμφανίσει την τιμή 232 αντί της ακριβούς
Ì ÔÓ ÓÑ ÒÛÒ Ö Å Ø ØÖÓÔ ÑôÒ Fahrenheit ÑÓ Celsius Fahrenheit Celsius c = (5/9)(f 32) public class Fahr2Cels { public static void main(string args[]) { int f = 451; // Τι συμβαίνει στους 451F? int c; c =
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
c = a+b AC = AB + BC k res = k 1 +k 2
Ã Ô Ø Ð Á ÒÐ ØÙÒ ï ½ ÅÓ ÐÐ ÚÓÒ Î ØÓÖÖÙÑ Ò ÁÒ Ñ Ö ÅÓØ Ú Ø ÓÒ Ò Ò Òµ È Ö Ö Ô Ò Ò ÐÒ Û Ö Ô Ð ÞÙÖ Ð Ö ¹ Ò ËØÖÙ ØÙÖ Î ØÓÖÖ ÙÑ º Ò Ö ÙÒ Ò Ø Ò ØÞ Ò Û Ö Ð ÒÒØ ÚÓÖ Ù º Ò ÈÖÞ ÖÙÒ Ö ÓÐ Ø ÔØ Ö Û ÒÒ Û Ö ÙÒ ÙÑ Ò Ñ Ø
Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Άλγεβρα Boole, λογικές συναρτήσεις και κυκλώματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 5 ÅØ ÕÑØ Ñ Fourier ¾¹ ÓÐÓÙôÒ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Αποκατάσταση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 12 ÔÓØ Ø ÒÛÒ ÈÓÐÐ ÓÖ Ó Ò Ø Ø ÐÝ Ù ØÒØ ÔÖÑÖÛ
Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale
Faculté des Sciences Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale Promoteur : Annick Sartenaer Directeur : Caroline Sainvitu Mémoire présenté pour l'obtention du
Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος
Προγραμματισμόςσε» ΙωάννηςΓºΤσούλος ¾¼½ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ½º½ Μεταβλητές ½º½º½ Δήλωση Η δήλωσημεταβλητώνμπορεί να γίνει σε οποιοδήποτεσημείοτου κώδικα σε αλλάείναιπροτιμότεροναγίνεταιστηναρχήτουπρογράμματος
x E[x] x xµº λx. E[x] λx. x 2 3x +2
¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ º½ Απλές δομές Ηδομήχρησ ιμοποιείταισ ανσ υλλογήμεταβλητώνδιαφορετικούτύπουπροκειμένου ναπεριγράψεισ υνολικάμιαοντότηταº ΓιαπαράδειγμαηοντότηταΑΝΘΡΩΠΟΣ αποτελείταιαπόταπεδία ½º Ονομα αλφαριθμητικόµ
¾
Ù Ð ÛÑ ØÖ Ë Ñ ô Áº º ÈÐ Ø ÌÑ Ñ Å Ñ Ø ôò È Ò Ô Ø Ñ Ó ÃÖ Ø Ñ ÖÓÙ ¾¼¼ ¾ ÈÖ ÐÓ Ó Ç Ñ ô ÙØ Ö Ø Ò Ø Ó Ø ØÖ ØÓÙ Ó Ø Ø ØÓÙ ÌÑ ¹ Ñ ØÓ Å Ñ Ø ôò ØÓÙ È Ò Ô Ø ÑÓÙ ÃÖ Ø ÔÓÙ Ô Ð Ü Ò ØÓ Ñ Ñ Å¾¼ Ù Ð ÛÑ ØÖ ØÓÙ ÒÓÒ Ó ÈÖÓ
iii vii Abstract xiii iii
È Ò Ô Ø Ñ Ó È ØÖÛÒ ÌÑ Ñ Å Ñ Ø ÛÒ ÇÑÓ Ò Å ØÖ Einstein Ë Ò ÙÑ Ò ÈÓÐÐ ÔÐÓØ Ø Ë Ñ ÛÒ ÁÛ ÒÒ Ãº ÉÖÙ Ó ØÓÖ ØÖ Ô Ð ÔÛÒ Ô ÓÙÖÓ Ã Ø Ò Ö Ö Ò ØÓ ÛÖ Ó È ØÖ ¾¼½¼ ÖôÒ Ø ØÓÙ ÓÒ ÑÓÙ ÃÖØÛÒ Å Ö È Ö Õ Ñ Ò È Ö Õ Ñ Ò ÙÕ Ö Ø
+ m ev 2 e 2. 4πε 0 r.
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÇËÆÇÎ ÅÇÄ ÃÍÄËà ÁÇ Á Áà º½ ÍÚÓ ÅÓÐ ÙÐ Ó Þ Ó Ö ÚÒ Ú Ð ØÒÓ Ø Ó ÒÓÚÒ Ø ÚÒ ÐÓÚ ÓÐÓ Ø ÑÓÚ ØÓ ØÓ¹ ÑÓÚ ÑÓÐ ÙÐ ÓÒÓÚ Ò Ñ ÖÓÑÓÐ Ùк Ç Ö ÚÒ Ú ØÙ ÞÚ ÞÓ
p a (p m ) A (p v ) B p A p B
½ ËØ Ø ÐÙ ½º½ ÍÚÓ ÈÖ ÔÖÓÙÕ Ú Ù Ñ Ò ÐÙ Ð Ó ÐÙ Ù Ò ÐÙ ÑÓ ÑÓ ÔÓ Ð Ø Ò Þ ÔÖ Ñ Ò Ð ¹ ÐÙ Ù Ò Ú ÐÙ Ò Ð ÙÒÙØ Ö ÔÓ Ñ ØÖ Ò Þ ÔÖ Ñ Ò Þ Ò Ó Ö ØÒÓ Þ Õ Ó ÓÒØ Ø Ð Þ Ñ Ò Ø Ò Ö ÐÒ Ð Ð ØÖÓÑ Ò ØÒ Ð µº ÇÚ Ð Ó ÕÒÓ ÞÖ Ú Ù ÔÓ
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ
ÍÆÁÎ ÊËÁ Ë ÆÌÁ Ç ÇÅÈÇËÌ Ä ÍÄÌ ËÁ Ô ÖØ Ñ ÒØÓ È ÖØ ÙÐ Ó Ý ÈÖÓ Ö Ñ Ò ÓÖ ÒØ Ó Ç ØÓ Ð Ê ÓÒ ØÖÙ Ò ËÙ Ó Ò Ð ÜÔ Ö Ñ ÒØÓ À Ë ÓÐ ÓÒ Æ Ð Ó¹Æ Ð Ó Å ÑÓÖ ÔÖ ÒØ Ô Ö ÓÔØ Ö Ð Ö Ó Ä Ò Ó Ò Ò ÔÓÖ Å ÒÙ Ð Ë Ò Þ Ö Å ÖÞÓ ½ ¾
ÔÖÓØ Ô ØÓ ESO (M. Sarazin and F. Roddier, A&A 227, 294-300, 1990) Õ Ò ¹
Seeing-GR Å ØÖôÒØ Ø Ø Ö Õ Ø ØÑ Ö Ø Ò ÐÐ Å Ð Ñ ØÖ 1 Æ ØÓÖ ÒÒ 2 È ÖÞ ËØ Ð Ó 3 ÌÖ ÑÓÙ Ù Ð 4 Ã Ö Ñ Ò Ð 5 ÒØÛÒ ÒÒ 5 ÓÙÐ ÒÒ 5 ÃÓÙÖÓÙÑÔ ØÞ Ãô Ø 5 Ë Ö ÒÒ 5 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg,
Στοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου
ΚΕΦΑΛΑΙΟ 4 ΑΡΧΕΙΑ Στοκεφάλαιοαυτόθαμιλήσουμεγιατααρχείαστηνγλώσσα ºΘαχρησιμοποιηθούνσυναρτήσειςαπότηνκαθιερωμένηβιβλιοθήκηεισόδου»εξόδου ØÓºµκαι γιααυτόγίνεταιμιαπρώτηπαρουσίασηαυτήςτηςβιβλιοθήκηςº º½
Εισαγωγικά. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Εισαγωγικά ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò ½ Οργάνωση Μαθήματος Διαδικαστικά
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.
Î Ð Ù ËØ Å Ò Ì ÑÝ Ù Ø ÓÖ Ó Ô ØÓ Î ÐÒ Ù ¾¼¼ ÌÙÖ ÒÝ ½ Ì ÑÝ ÒÅ Ö ÚÅ º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º ËØ Ø Ø Ò Ô Ö Ñ ÒØ º º º º º º º º º º º º º º º º ½º¾º ÃÐ Ò ÑÓ Ð º º º º º º º º
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
½ È Ê Ç Î Ç Ê ÇÚ ÒÓÚ ÓØ À Ð ÖØÓÚ Ç ÒÓÚ ÓÑ ØÖ Ò Ò ÔÖ Ú ÒÓÚ ÔÖ Ö º ÍÔÖ ÚÓ Ù Ò Ò Ù ÑÓ Ò ÔÖ Ú Ñ Ò ÓÔÙÒ º Í ÓÔÙÒ I Ù ÙÔÐ Ò Ò Þ Ú ÒÓ Ø Ù Ø ÑÙ ÓÑ Ö ÐÒ ÖÓ¹ Ú
½ ËÊÈËà à ÅÁÂ Æ Íà ÃÄ ËÁ ÆÁ Æ Í ÆÁ ËÈÁËÁ ÃÆÂÁ XIV Å Ì Å ÌÁ ÃÁ ÁÆËÌÁÌÍÌ ÃÆÂÁ ½ ÍÖ Ò Ñ Ê ÁÎÇÂ Ã â ÆÁÆ ÍÔÖ ÚÒ Ñ Ø Ñ Ø Ó Ò Ø ØÙØ Ë Æ º ÀÁÄ ÊÌ ÇËÆÇÎ ÇÅ ÌÊÁ ÈÊ Î Ç Ë ÇËÅÇ Æ Å ÃÇ Á ÆÂ êº Ê â ÆÁÆ ÈÖ ÑÐ ÒÓ Ò XI
Montreal - Quebec, Canada.
ÂÆÁÃÇ Å ÌËÇ ÁÇ ÈÇÄÍÌ ÉÆ ÁÇ ËÉÇÄÀ ÀÄ ÃÌÊÇÄÇ ÏÆ ÅÀÉ ÆÁÃÏÆ Ã Á ÅÀÉ ÆÁÃÏÆ ÍÈÇÄÇ ÁËÌÏÆ ÌÇÅ Ë ËÀÅ ÌÏÆ Ä ÉÇÍ Ã Á ÊÇÅÈÇÌÁÃÀË ËÙÑ ÓÐ Ø Ò Ò ÔØÙÜ ÈÓÐÙÔÖ ØÓÖ ÖÕ Ø ØÓÒ Ò ÔØÙÜ Ó ÊÓÑÔÓØ Ó Ð ÕÓÙ Ø Ó Ò ÕÙØ Å : ÖÑÓ ØÓÒ
Γραφικάμετηνχρήσ η ÛØ
Γραφικάμετηνχρήση ÛØ ΙωάννηςΓºΤσούλος Νοέμβριος ¾¼ Η Úδιαθέτειένα δικό της σύστημαγραφικών τοοποίομπορεί να είναι κάπωςπεριορισμένοσεσχέσημετο ÉÌήτο ÏÁÆ ¾ ÈÁαλλάδίνειμεταφέρσιμο κώδικακαιμπορείναχρησιμοποιηθείγιατηνκατασκευήπρογραμμάτωνγραφικής
Preisdifferenzierung für Flugtickets
Ë Ñ Ø Ö Ö Ø ÏÄ ÌÀ Ö ÈÖ Ö ÒÞ ÖÙÒ Ö ÐÙ Ø Ø Ù Ò ËØÖ Ò Ö ¹ ÄÓÒ ÓÒ ÙÒ Ö Ò ÙÖØ ¹ Æ Û ÓÖ ÙØÓÖ Ò Ì ÓÑ ÖÙÒÒ Ö À ÙÖ ØÖº ¼ Ö Ñ ÐØ ÓÑ ÖÙÒÒ Öº Ö ØÓÔ Ã Ö ÐÙÑ ÒÛ ½¼ Ç ÖÛ Ð Ö ØÙ ÒØº Ø Þº ØÖ Ù Ö ËØ Ò Ä Ù Ò Ø Ò ÈÖÓ ÓÖ ÖÑ
imagine virtuală plan imagine
Ô ØÓÐÙÐ ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ¾ ÈÁÌÇÄÍÄ ½º ÅÇ ÍÄÍÄ ÄÁ Ê Ê ÇÅ ÌÊÁ Å Ê Á ÙÔÖ Ò ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ½ ½º½ ÁÒØÖÓ Ù Ö ÑÓ Ð ÓÑ ØÖ Ð Ñ Ö º º º º º º º º º º º º º ½º½º½ ÈÖÓ ñ Ô Ö Ô Ø Ú º º º º º º º
ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος
ΟπτικόςΠρογραμματισμός ΙωάννηςΓºΤσούλος ¾¼½ ÔØÖ ½ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Σεαυτήτηνενότηταθαεξεταστούνμερικέςαπότιςβασικέςδομέςπάνωστις οποίεςστηρίζεταιηβιβλιοθήκη É̺Οιδομέςαυτέςπεριλαμβάνουνδυναμικούς πίνακες
[Na + ] [NaCl] + [Na + ]
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÂÙÖ Ö Ò ÊÙ ÓÐ ÈÓ ÓÖÒ Ò Ë ËÚ Ø Ò ¾¼½½»¾¼½¾ ÈÓ Ð Ú Ä ÃÌÊÁ ÆÁ ÁÆ Å Æ ÌÆÁ ÈÇ ÎÁ º½ º½º½ Ð ØÖ ÒÓ ÔÓÐ Ò ØÓ Ð ØÖ Ò Ò Ó Ð ØÖ Ò ÔÓ Ú Ð Ó Ö ÞÐÓö ÑÓ Ò Ó ÒÓÚ Ù ÓØÓÚ ØÚ Ñ Ó Ó ÒÓÚÒ Ð ÓØ Ø
Δυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ø ÓÙØ Û ÓÑ Ø ÔÖÓ Ø ÛÓÙÐ Ò Ú Ö ÓÑÔÐ Ø
ÇÆ ÌÀ Ä ËËÁ Á ÌÁÇÆ Ç ÄÇË Ä Ì ÇÍʹŠÆÁ ÇÄ Ë Ý Ì ÓÑ È ÙÐ Ä Ñ ÖØ ÖØ Ø ÓÒ ËÙ Ñ ØØ ØÓ Ø ÙÐØÝ Ó Ø Ö Ù Ø Ë ÓÓÐ Ó Î Ò Ö ÐØ ÍÒ Ú Ö ØÝ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó Ç ÌÇÊ Ç ÈÀÁÄÇËÇÈÀ Ò Å Ø Ñ Ø Ù Ù
Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º
Þ ÔÓÚ Ø Ø Ö Ø Ò ÈÖ ÙÖ Ò ÐÙÖÙ ÔÖ Ð ½ ¾¼½¼ Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º ÓÒØ ÒØ ½ Å Ò ½ ½º ÄÙÑ Ñ Ø
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Οδιαχωρισμόςτωνσχημάτωνσετρίπλευρα,τετράπλευρακλπ. οφείλεταιστονίδιοτον Ευκλείδη,αφούδεναπαντάταιούτεστονΠλάτωναούτεστονΑριστοτέλη.
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ ÛÑ ØÖ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ¾ ÒÒÓ ÓÖÞÓÒØ Ô Ö Ö ÓÒØ º Ü ôñ Ø ½ ÃÓ Ò ÒÒÓ ½ Ì Ü ôñ Ø Ó Ó Ò ÒÒÓ Ò Ø Ü ôñ Ø Ø Ô Ô ÓÑ ØÖ º ÈÖÓØ ½ ¾ ÈÖÓØ ¾ ¾ ÈÖÓØ ÈÖÓØ Â Ñ ÐÛ Ø Ô Ô ÓÑ ØÖ ÕÛÖ Ø Ò
Μονοδιάσ τατοιπίνακες
ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ ¾º½ Μονοδιάστατοιπίνακες Οιπίνακεςείναιδομέςδεδομένωνπουδιαθέτουνέναπλήθοςαπόστοιχείατουίδιου τύπουº Γιαπαράδειγμαηβαθμολογίασεέναμάθημααποθηκεύτεταισεπίνακαº Κάθεστοιχείοτουπίνακααντιπροσωπεύειτηνβαθμολογίαενόςσπουδαστήστο
Πρότυπα. ΙωάννηςΓºΤσ ούλος
Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση
Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος
Αρχείαστην ÂÚ ΙωάννηςΓºΤσούλος Νοέμβριος ½½ ½ Ηκατηγορία ÁÒÔÙØËØÖÑ Ηκατηγορία ÁÒÔÙØËØÖÑείναιμιααφηρημένηκατηγορίακαιχρησιμοποιείταιγια τηνανάγνωση δεδομένων στην ÂÚαπόαρχείαεισόδουº Ωςαρχείαεισόδου μπορούμεναθεωρήσουμεαρχείαπουβρίσκονταιστονσκληρόδίσκοτουυπολογιστήήκαισυσκευέςεισόδουόπωςτοπληκτρολόγιοºοισημαντικότερεςμέθοδοι
Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις Τσούλος Ιωάννης, Επίκουρος Καθηγητής Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Βελτίωση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Βελτίωση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 9 ÐØÛ ÒÛÒ À ÒÒÓ Ø ÔÓØØ ØÛÒ ÒÛÒ ÒØ ÔÓÐ ÙÕÒ ÙÔÓÑÒ
½ ÍÚÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ò ÓÔ Ó Ò Ó Ù Ø ÓÖ Ñ Ö ÞÑ ØÖ Ò Ñ ÔÓ Ù Ú ÑÓ Ó Ö ÑÓ ÐÓö ÒÓ Ø Ø ö ÒÙ Ò Ó ÔÖÓ Ð Ñ Ø Ó Ù ÔÖ Ø Ò Ñ ÔÖ Ñ Ò Ñ ö Ð ÑÓ ØÓ ÔÖ ÞÒ ÔÖÓ Ò ÑÓ Ó Ú
Ò Ð Þ Ð ÓÖ Ø Ñ Ô ØÒ Ö Þ ÔÖ Ñ Ø ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Å Ð Ò Ò ÓÚ ¾¼¾½»¼ ¼ º ¼¾º ¾¼¼ º Ë ö Ø ÇÚ Ö ÔÖ Ø ÚÐ Ö Ø ÔÖ Ð Ò Ñ ØÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ó Ñ ÙØÓÖ Ö ÙÔÓÞÒ Ó Ù Ó Ú ÖÙ ÙÖ ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Ò ÔÖÚÓ Ó Ò ÔÓ Ø ÔÐÓÑ
Ë Ö ½ Ç ÒÓÚÒ ÔÓ ÑÓÚ Þ Õ ÚÓ ØÚ ÐÙ ½ ½º½ ÈÖ Ñ Ø ÞÒ Õ Ö ÞÚÓ Ñ Ò ÐÙ º º º º º º º º º º º º º º º º º º º º ½ ½º½º½ ÈÖ Ñ Ø ÔÓ Ð Ñ Ò ÐÙ º º º º º º º º º º
ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Å Ü Ò ÙÐØ Ø Ëº É ÒØÖ Åº Ä Õ º Ó Å À ÆÁà ÄÍÁ Ó Ö ¾¼¼ º Ë Ö ½ Ç ÒÓÚÒ ÔÓ ÑÓÚ Þ Õ ÚÓ ØÚ ÐÙ ½ ½º½ ÈÖ Ñ Ø ÞÒ Õ Ö ÞÚÓ Ñ Ò ÐÙ º º º º º º º º º º º º º º º º º º º º ½ ½º½º½ ÈÖ Ñ Ø ÔÓ Ð Ñ Ò
Απλές εντολές: έκφραση + ;
ÒØÓÐ ÒØÓÐ Ø Java Απλές εντολές: έκφραση + ; έκφραση; Σύνθετες(block)εντολές: nεντολέςμέσασε {,n 0. { εντολή_1 εντολή_2... εντολή_n Οι σύνθετες εντολές είναι συντακτικά ισοδύναμες με τις απλές. Κάποιες
, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ
ÇÄ ÈÇÄ Ì ÀÆÁÉÍ ÆÌÊ Å ÌÀ Å ÌÁÉÍ Ë ÈÈÄÁÉÍ Ë ÍÅÊ ÆÊË ½ ½½¾ È Ä ÁË Í Ê Æ µº Ì Ð ¼½ ¼¼º Ü ¼½ ØØÔ»»ÛÛÛºÑ ÔºÔÓÐÝØ Ò ÕÙ º Ö» Ò Ó ÓÐ ØÓÒ Û Ø Ù ÒØ Ð Ö ÐÓ Ð Þ Ø ÓÒ ÓÖ Ø ÆÓÚ ÓڹΠÐÓÚ ÕÙ Ø ÓÒ Ø ÒÓÒÞ ÖÓ Ò Ö Ý ÒÒ Ã Þ
Á ÆÌÁ Áà ÁÇÆ ËÌÊ ÆÁ ÇÃÌÇÊËà ÁË ÊÌ Á Iº ÙØÓÖ ÁÑ ÔÖ Þ Ñ Ì Ø Ò Ð Ð ØÙÑ Ñ ØÓ ÖÓ Û ÃÖ Ù Ú Ë ßÛ Þ ÔÓ Ð Û Ø ÒØ Ò ÈÖ ÖÓ ÒÓ¹Ñ Ø Ñ Ø ÓÑ ÙÐØ ØÙ ÍÒ Ú
ÍÒ Ú ÖÞ Ø Ø Ù ÃÖ Ù ÚÙ ÈÖ ÖÓ ÒÓ¹Ñ Ø Ñ Ø ÙÐØ Ø Ì Ø Ò Ð Ð Ê ÇÎÁ ÁÂ Â Æ ÂÅ Ï Ã Ê ÃÌ ÊÁËÌÁ Æ ÎÊ ÆÇËÌ ÅÁÆÁÅ ÄÆ Í Æ ÃÁÅ ÃÄ Ë Å Ê ÇÎ Ó ØÓÖ ÖØ ÃÖ Ù Ú ¾¼½¾º Á ÆÌÁ Áà ÁÇÆ ËÌÊ ÆÁ ÇÃÌÇÊËà ÁË ÊÌ Á Iº ÙØÓÖ ÁÑ ÔÖ Þ Ñ
:$3. This is the Internet version of the user's guide. Print only for private use. :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 û :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ7 *60 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$%
0RELOH,QWHUQHW :$3 :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò 0RELOH,QWHUQHW :$3 û 0RELOH,QWHUQHW :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ ù 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL
arxiv: v3 [math.ap] 25 Nov 2009
ÅÁ ÊǹÄÇ Ä Æ Ä ËÁË ÏÁÌÀ ÇÍÊÁ Ê Ä Ë Í ËÈ Ëº È ÊÌ Á ËÌ Î Æ ÈÁÄÁÈÇÎÁ Æ Æ Ì Ç ÆÇÎ Æ ÂÇ ÀÁÅ ÌÇ Ì arxiv:0804.1730v3 [math.ap] 25 Nov 2009 ØÖ غ Ä Ø ω,ω 0 ÔÔÖÓÔÖ Ø Û Ø ÙÒØ ÓÒ Ò q [1, ]º Ï ÒØÖÓ Ù Ø Û Ú ¹ ÖÓÒØ
:$3. This is the Internet version of the user's guide. Print only for private use. %OXHWRRWK GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 :$3 û :$3 :$3 ù %OXHWRRWK ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ñ û" 6RQ\(UL VVRQ 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\ (UL VVRQ0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του