E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Σχετικά έγγραφα
MECHANICAL PROPERTIES OF MATERIALS

Strain gauge and rosettes

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Grey Cast Irons. Technical Data

(Mechanical Properties)

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw


Chapter 7 Transformations of Stress and Strain

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

θ p = deg ε n = με ε t = με γ nt = μrad

Figure 1 - Plan of the Location of the Piles and in Situ Tests

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Properties of Nikon i-line Glass Series

Consolidated Drained

5.0 DESIGN CALCULATIONS

ADVANCED STRUCTURAL MECHANICS

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Homework 8 Model Solution Section

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

DuPont Suva 95 Refrigerant

Μηχανικές ιδιότητες συνθέτων υλικών: διάτμηση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

DAMPING CROSS-REFERENCE

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Mechanics of Materials Lab

CONSULTING Engineering Calculation Sheet

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Μάθημα 1 ο ΕΙΣΑΓΩΓΗ - ΣΥΝΘΕΤΑ ΥΛΙΚΑ. Χρήστος Παπακωνσταντίνου

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

w o = R 1 p. (1) R = p =. = 1

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.


TEST REPORT Nο. R Έκθεση Ελέγχου α/α

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Second Order Partial Differential Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

DuPont Suva 95 Refrigerant

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Chapter 2. Stress, Principal Stresses, Strain Energy

Cross sectional area, square inches or square millimeters

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Space-Time Symmetries

Multilayer Ceramic Chip Capacitors

Μηχανικές ιδιότητες συνθέτων υλικών: θλίψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

IV. ANHANG 179. Anhang 178

Injection Molded Plastic Self-lubricating Bearings

Chapter 5 Stress Strain Relation

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Spherical Coordinates

ENSINGER High-temperature plastics. Material standard values.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

«Υαξαθηεξηζκόο ηλώλ άλζξαθνο πςειήο αληνρήο»

Electronic Supplementary Information (ESI)

Διονύσιος Α. ΜΠΟΥΡΝΑΣ 1, Αθανάσιος Χ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ 2, Κωνσταντίνος ΖΥΓΟΥΡΗΣ 3, Φώτιος ΣΤΑΥΡΟΠΟΥΛΟΣ 3

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Metal Oxide Leaded Film Resistor

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Derivation of Optical-Bloch Equations

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

6.4 Superposition of Linear Plane Progressive Waves

Multilayer Ceramic Chip Capacitors

Metal Oxide Leaded Film Resistor

( ) Sine wave travelling to the right side

5.4 The Poisson Distribution.

Aluminum Electrolytic Capacitors

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Aluminum Electrolytic Capacitors (Large Can Type)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Data Sheet High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type) Laminate R-1755V Prepreg R-1650V

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

4.6 Autoregressive Moving Average Model ARMA(1,1)

Graded Refractive-Index

Lecture 8 Plane Strain and Measurement of Strain

INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)

BEHAVIOR OF REINFORCED CONCRETE SHORT RECTANGULAR COLUMNS STRENGTHENED BY STEEL LATTICE FRAMED JACKET

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order RLC Filters

FERRITES FERRITES' NOTES RAW MATERIAL SPECIFICATION (RMS)

D Alembert s Solution to the Wave Equation

CONTENTS. Examples of Ultimate Limit states. 1. SECT.-001, ULTIMATE LIMIT STATE, Tension Structural design Structural Fire design

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

4.4 Superposition of Linear Plane Progressive Waves

Experimental study on seismic deformation index limits of T-shaped RC shear walls


Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Transcript:

A c,a f,a m E c.e f,e m E e E s G f,g m L M x, M y, M xy M H N H N x, N y, N xy P c,p f,p m Q S S ijkl T T V V v V crit W h k t c,t f,t m u 0 v c,v f,v m w c,w f,w m cross-sectional area of composite,fiber and matrix material elastic modulus of composite,fiber and matrix material transverse modulus elastic modulus of longitudinal direction elastic modulus of tranverse direction effective modulus secondary modulus in-plane shear modulus shear modulus longitudinal direction moment per unit length hygroscopic moment hygroscopic force force per unit length load carried by the composite,fiber and matrix material stiffness matrix strength reduction factor compliance tensor transverse direction axis perpendicular to the L and T axes volume fraction volume fraction of void A critical fiber volume fraction weight fraction thickness plate curvature thickness of composite,fiber and matrix material displacement in x direction volume of composite,fiber and matrix material weight of composite,fiber and matrix material

α slope of the laminate midplane in the x direction α L, α T coefficient of tharmal expansion in longitudinal and transverse direction α xy apparent coefficient of thermal expansion β L, β T coefficient of moisture in longitudinal and transverse direction β xy apparent coefficient of moisture δ c, δ f, δ m elongation of the composite,fiber and matrix material ɛ c, ɛ f, ɛ m strains experienced by the composite,fiber and matrix material ɛ mb,ɛ cb,ɛ fb, braking strain of composite,fiber and matrix material (ε T ) c, (ε T ) f, (ε T ) m transverse strain of composite,fiber and matrix material ε T thermal strain ε H hygroscopic strain ε M mechanical strain ε 0 midplane strain λ c, λ f, λ m shear strain of composite,fiber and matrix material ν c, ν f, ν m poisson ratio of composite,fiber and matrix material ν LT major Poisson s ratio ν T L minor Poisson s ratio ν L, ν T Poissons ratio on longitudinal and transverse direction ρ c density of the composite material ρ f density of the fiber material ρ m density of the matrix material ρ ct theoretical composite density ρ ce experimentally determined density σ c, σ f, σ m stresss of composite,fiber and material σ cb, σ fb, σ mb breaking stress of composite,fiber and material σ cu longitudinal strength of the composite σ fu ultimate strength of the fiber σ mu ultimate strength of the matrix (σ m ) ε matrix stress at the fiber fracture strain ε f f σ T U composite tranverse strength σ A gross stress σ F fracture stress τ f, τ c, τ m shearing stress of fiber, composite and matrix material dσ dɛ slope of the corresponding stress-strain curve at the given strain c, f, m shear deformation T change in temperature C change in moisture 2

CHAPTER-2 Table 2. Typical Composition of E-glass and s-glass fibers % weight % weight Material E-Glass S-Glass Silicon oxide 54.3 64.20 Aluminum oxide 5.2 24.80 Ferrous oxide - 0.2 Calcium oxide 7.2 0.0 Magnesium oxide 4.7 0.27 Sodium oxide 0.6 0.27 Boron oxide 8.0 0.0 Barium oxide - 0.20 Miscellaneous - 0.03 Table 2.2 Properties of E-glass and S-glass fibers Property,units E-Glass S-Glass Density,g/cm 3 2.54 2.49 Tensile Strength, a Mpa 3448 4585 Elastic modulas, Gpa 72.4 85.5 Range of diameter,µm 3-20 8-3 Coeffecient of thermal expansion, 0 6 / 0 C 5.0 2.9 Table 2.3 Properties of graphite fibers Property,units pitch Rayon PAN Tensile Strength,Mpa 550 2070-2760 2480-300 Tensile modulas, Gpa 380 45-550 200-345 Specific gravity 2.0.7.8 Elongation - 0.6-.2 Coeffecient of thermal expansion Axial (0 6 / 0 C) Axial (0 6 / 0 C) -.6 to -0.9 - -0.7to-0.5 Transverse(0 6 / 0 C) 7.8-7-0 Fiber diameter,µm 0-6.5 7.5 Table 2.4 typical properties of Kevlar fibers

Property,units Kevlar 29 Kevlar 49 diameter,µm 2 2 Density,g/cm 3.44.44 Tensile Strength,Mpa 2760 3620 Tensile modulas, Gpa 62 24 Tesile Elongation,% 3-4 2-8 Coeffecient of thermal expansion (0-00 0 C), m/m/ 0 C In Axial direction -2 0 6-2 0 6 In radial direction 60 0 6 60 0 6 Table 2.5 Properties of Boron fiber (with tungsten,core) Property,units 00 µm 40 µm 200 µm Ultimate Tensile strength,mpa 3450 3450 3450 Modulas,Gpa 400 400 400 Coeffecient of thermal expansion,m/m 0 C 4.9 0 6 4.9 0 6 4.9 0 6 Density,g/Cm 3 2.6 2.47 2.39 Table 2.6 Properties of ceramic fibers Fiber Fiber Fiber Property,units Alumina(fiber FP) SiC(CVD) SiC(pyrolysis) Diameter,µm 20±5 40 0-20 Density,g/Cm 3 3.95 3.3 2.6 Tensile strength,mpa 380 3500 2000 Modulas,Gpa 379 430 80 Table 2.0 Typical properties of cast thermosetting polyesters Density,g/Cm 3.-.4 Tensile strength,mpa 34.5-03.5 Tensile Modulas,Gpa 2-4.4 Thermal expansion,0 6 / 0 C 55-00 Water absorption,% in 24 h 0.5-0.6 Table 2. typical properties of cast epoxy resins(at 23 0 C) Density,g/Cm 3.2-.3 Tensile strength,mpa 55-30 Tensile Modulas,Gpa 2.75-4.0 Thermal expansion,0 6 / 0 C 45-65 Water absorption,% in 24 h 0.08-0.5 Table 2.2 Typical properties of polyimides and phenolics 2

Property,units Phenolics polyimide Density,g/Cm 3.30.46 Tensile strength,mpa 50-55 20 Flexural modulas,gpa - 3.5-4.5 Continuous service temperature, 0 C 50-75 260-425 Coeffecient of thermal expansion,0 6 / 0 C 45-0 90 Water absorption,% in 24 h 0.-0.2 0.3 Table 2.3 Typical properties of thermoelastic resins Property,units PEEK Polyamide-imide Polyetherimide Polysu Density,g/Cm 3.30.38 -.25 Tensile strength,mpa 92 95 05 75 Flexural modulas,gpa 4.0 5.0 3.5 2.8 Continuous service temperature, 0 C 30-70 75-9 Coeffecient of thermal expansion,0 6 / 0 C - 63 56 94-00 Water absorption,% in 24 h 0. 0.3 0.25 0.2 3

swarup α Chapter-3 3..2 Volume and weight fractions v c = v f + v m () V f = v f v c, V m = v m v c (2) and w c = w f + w m (3) w f = w f w c, W m = w m w c (4) ρ c v c = ρ f v f + ρ m v m (5) ρ c = ρ f v f v c + ρ m v m vc ρ c = ρ f V f + ρ m V m (6) ρ c = ( ) ( ) wf ρ f + Wm (7) ρm W f = w f w c = ρ f v f ρ c v c = ρ f ρ c W f = ρ f ρ c V f (8) W m = ρ m ρ c V m V f = ρ c ρ f W f

V m = ρ c ρ m W m (9) n ρ c = ρ i V i (0) i= ρ c = n ( i= ) W i ρ i W i = ρ i ρ c V i () V i = ρc ρ i W i V v = ρ ct ρ ce ρ ct (2) 3.2. Initial Behaviour ɛ f = ɛ m = ɛ c (3) P c = P f + P m (4) P c = σ c A c = σ f A f + σ m A m or σ c = σ f A f A c + σ m A m A c (5) V f = A f A c, V m = A m A c (6) Thus σ c = σ f V f + σ m V m (7) 2

dσ c dɛ = dσ f dɛ V f + dσ m dɛ V m (8) E c = E f V f + E m V m (9) n σ c = σ i V i (20) i= n E c = E i V i (2) i= 3.2.2 behaviour initial Deformation E c = E f V f + ( ) dσm dɛ m 3.2.3 Failure Mechanism and strength ɛ c V m (22) σ cu = σ fu V f + (σ m ) ε f ( V f ) (23) σ cu = σ mu ( V f ) (24) V min = σ mu (σ m ) ε f σ fu + σ mu (σ m ) ε f (25) σ cu = σ fu V f + (σ m ) ε f ( V f ) σ mu (26) V crit = σ mu (σ m ) ε f σ fu (σ m ) ε f (27) 3

3.3. constant-stress Model σ f = σ m = σ c (28) δ c = δ f + δ m (29) δ c = ɛ c t c δ f = ɛ f t f (30) δ m = ɛ m t m Substituting eq.(3.30) in eq(3.29) ɛ c t c = ɛ f t f + ɛ m t m (3) ɛ c = ɛ f t f t c + ɛ m t m t c = ɛ f V f + ɛ m V m (32) σ c E c = σ f E f V f + σ m E m V m (33) E c = V f E f + V m E m (34) E c = n (V i /E i ) i= 3.3.3 Helpin-Tsai Equation for Transverse Modulas (35) E m = + ξηv f ηv f (36) where η = (E f/e m ) (E f /E m ) + ξ (37) 4

In which ξ is a measure of reinforcement and depends o the fiber geomtry ξ = 2 a b (38) a/b is the rectangular cross section aspect ratio 3.3.4.2 prediction of tranverse strength σ T U = σ mu S σ T U =composite tranverse strength (39) σ mu =matrix ultimate strength SCF = stressconcentrationf actor = V f [ (E m /E f )] (4V f /π) 2 [ (Em /E f )] (40) SMF = stressmagnificationfactor = (4V f /π) 2 [ (Em /E f )] (4) S = (U max) /2 σ c (42) ( ) /3 ɛ CB = ɛ mb V f (43) 3.4 prediction of shear modulas τ f = τ m = τ c (44) c = f + m (45) c = γ c t c f = γ f t f (46) 5

m = γ m t m γ c t c = γ f t f + γ m t m (47) γ c = γ f t f t c + γ m t m t c = γ f V f + γ m V m (48) τ c = τ f G f V f + τ m G m V m (49) = V f G f + V m G m (50) = G f G m G m V f + G f V m (5) G m = + ξηv f ηv t (52) W here η = (G f/g m ) (G f /G m ) + ξ (53) where is the in-plane shear modulas of the composite and G f and G m is the shear modulas of fiber and matrix. 3.5 prediction of poisson s ratio (ε T ) f = ν f (ε L ) f (ε T ) m = ν m (ε L ) m (54) (ε T ) c = ν c (ε L ) c δ f = t f (ε T ) f = t f ν f (ε L ) f δ m = t m (ε T ) m = t m ν m (ε L ) m (55) 6

δ c = t c (ε T ) c = t c ν c (ε L ) c t c ν LT (ε L ) c = t f ν f (ε L ) f t m ν m (ε L ) m (56) t c ν LT = t f ν f + t m ν m (57) ν LT = ν f V f + ν m V m (58) ν LT = ν LT (59) Table 3. Typical properties of unidirectional-fiber reinforced epoxy resins Fiber type Fiber type Fiber type Property E-Glass Kevlar 49 Graphite(Thornel 300) Fiber volume fraction 46 60-65 63 specific gravity.80.38.6 Tensile strength,0 0 (Mpa) 04 30 725 Tensile modulas,0 0 (Gpa) 39 83 59 Tensile strength,90 0 (Mpa) 36 39 42 Tensile modulas,90 0 (Gpa) 0 5.6 0.9 Compression strength,0 0 (Mpa) 600 286 366 Compression modulas,0 0 (Gpa) 32 73 38 Compression strength,90 0 (Mpa) 38 38 230 Compression modulas,90 0 (Mpa) 8 5.6 In-plane shear strength (Mpa) - 60 95 In-plane shear modulas (Mpa) - 2. 6.4 Longitudinal poisson ratio(ν LT ) 0.25 0.34 0.38 Interlaminar shear strength (Mpa) 3 69 3 Longitudinal coeff,of th.exp(0 6 / 0 C) 5.4-2.3-4.0 a 0.045 Transverse coeff,of th.exp(0 6 / 0 C) 36 35 b 20.2 a 79 0 C to + 00 0 C b 95 0 C to + 20 0 C Table 3.2 7

Composite property Fiber Matrix Interface Tensile property Longitudinal modulas S W N Longitudinal strength S W N Transverse modulas W S N Transverse strength W S S Compression property Longitudinal modulas S W N Longitudinal strength S S N Transverse modulas W S N Transverse strength W S N Shear properties In-plane shear modulas W S N In-plane shear strength W S S Interlaminar shear strength N S S a S =strong influence; w=weal influence; N=negligible influence 8

Chapter-5 5.2 Hook s Law for orthotropic material σ ij = E ijkl ɛ kl () E ijkl = E ijlk (2) E ijkl = E jikl (3) U = U (ɛ ij ) (4) with the property U ɛ ij = σ ij (5) ɛ kl U ɛ ij = E ijkl ɛ kl (6) ( ) U = E ijkl (7) ɛ ij ɛ ij ( ) U = E klij (8) ɛ kl ɛ ij ( ) U ɛ kl = ( ) U ɛ kl ɛ ij it is clear that (9) E ijkl = E klij (0)

E mnrs = a im a jn a kr a ls E ijkl () where E mnrs is the elasticity tensor in the transformed (x ) axis system, E ijkl is the elasticity tensorin the original (x) axis system x = x ; x 2 = x 2, x 3 = x 3 (2) x x 2 x 3 x a = a 2 = 0 a 3 = 0 x 2 a 2 = 0 a 22 = a 23 = 0 x 3 a 3 = 0 a 32 = 0 a 33 = (3) E = E ijkl a i a j a k a l = E E 2 = E ijkl a i a j a k a l2 = E 2 (4) E 3 = E ijkl a i a j a k a l3 = E 3 E 3, E 2223, E 23, E 223, E 23, E 223, E 333, E 2333, (5) x = x ; x 2 = x 2, x 3 = x 3 (6) x x 2 x 3 x a = a 2 = 0 a 3 = 0 x 2 a 2 = 0 a 22 = a 23 = 0 x 3 a 3 = 0 a 32 = 0 a 33 = (7) E 233, E 323, E 222, E 2 (8) (E ijkl ) = E E 22 E 33 0 0 0 E 22 E 2222 E 2233 0 0 0 E 33 E 2233 E 3333 0 0 0 0 0 0 E 2323 0 0 0 0 0 0 E 33 0 0 0 0 0 0 E 22 (9) 2

σ i = Q ij ɛ j i, j =, 2, 3, 4, 5, 6 (20) σ σ 2 σ 3 τ 23 τ 3 τ 2 = Q Q 2 Q 3 0 0 0 Q 2 Q 22 Q 23 0 0 0 Q 3 Q 23 Q 33 0 0 0 0 0 0 Q 44 0 0 0 0 0 0 Q 55 0 0 0 0 0 0 Q 66 ɛ ɛ 2 ɛ 3 γ 23 γ 3 γ 2 (2) σ σ 2 τ 2 = Q Q 2 0 Q 2 Q 22 0 0 0 Q 33 ɛ ɛ 2 γ 2 (22) ɛ ij = S ijkl σ kl (23) ɛ ɛ 2 γ 2 = S S 2 0 S 2 S 22 0 0 0 S 33 σ σ 2 τ 2 (24) Q = S 22 S S 22 S2 2 Q 22 = S S S 22 S2 2 S 2 Q 2 = S S 22 S2 2 (25) Q 66 = S 66 5.3 Stress strain relation and enginnering constants 5.3. Specially orthotropic lamina ε L = σ L (26) ε T = ν LT ε L = ν LT σ L (27) 3

γ LT = 0 (28) ε T = σ T (29) ε L = ν T L ε T = ν LT σ T (30) γ LT = 0 (3) ε L = 0 (32) ε T = 0 (33) γ LT = γ τ LT (34) ε L = σ L ν T L σ T ε T = σ T ν LT σ L (35) γ LT = τ LT 5.3.2 Relations betwwen Engineering constant and elements of stiffness σ L = Q ɛ L + Q 2 ɛ T σ T = 0 = Q 2 ɛ L + Q 22 ɛ T (36) ɛ L = Q 22 σ Q Q 22 Q 2 L (37) 2 4

Q 2 ɛ T = σ Q Q 22 Q 2 L (38) 2 = σ L ɛ L = Q Q 22 Q 2 2 Q 22 (39) ν LT = ɛ T ɛ T = Q 2 Q 22 (40) = σ T ɛ T = Q Q 22 Q 2 2 Q (4) ν T L = ɛ L ɛ T = Q 2 Q 22 (42) = τ LT γ LT = Q 66 (43) Q = ν LT ν T L Q 22 = ν LT ν T L (44) Q 2 = ν LT ν LT ν T L = ν T L ν LT ν T L Q 66 = ν LT = ν T L or ν LT = ν T L (45) S = S 22 = 5

S 2 = ν LT = ν T L (46) S 66 = 5.3.3 Restriction on Elastic constants G = E 2 ( + ν) (47) = = ν LT = ν LT (48) G T T = 2(+ν T T ),,,,, G T T > 0 (49) ( ν LT ν T L ), ( ν LT ν T L ), ( ν T T ν T T ) > 0 (50) ν LT ν T L ν LT ν T L 2ν T T ν T T ν T L > 0 (5) ν LT < ( ) /2, ν T L < ( ) /2 ν LT < ( EL ) /2 ( ) /2, ν T L < ET (52) ( ) /2 ( ) /2 E ν T T < T, ν E T T < ET T 5.3.4 Stress-strain relation for genarally orthotropic lamina σ L σ T τ LT = [T ] σ x σ y τ xy (53) 6

and ɛ L ɛ T 2 τ LT = [T ] ɛ x ɛ y 2 τ xy (54) where the transformation matrix [T] is given by [T ] = cos 2 θ sin 2 θ 2 cos θ sin θ sin 2 θ cos 2 θ 2 cos θ sin θ cos θ sin θ cos θ sin θ cos 2 θ sin 2 θ (55) σ x σ y τ xy = [T ] σ L σ T τ LT (56) [T ] = cos 2 θ sin 2 θ 2 cos θ sin θ sin 2 θ cos 2 θ 2 cos θ sin θ cos θ sin θ cos θ sin θ cos 2 θ sin 2 θ (57) σ L σ T τ LT = Q Q 2 0 Q 2 Q 22 0 0 0 2Q 66 ɛ L ɛ T 2 γ LT (58) σ x σ y τ xy = [T ] σ x σ y τ xy = Q Q 2 0 Q 2 Q 22 0 0 0 2Q 66 Q Q2 Q6 Q 2 Q22 Q26 Q 6 Q26 Q66 [T ] ɛ x ɛ y γ xy ɛ x ɛ y 2 τ xy (59) (60) Q = Q cos 4 θ + Q 22 sin 4 θ + 2 (Q 2 + 2Q 66 ) sin 2 θ cos 2 θ Q 22 = Q sin 4 θ + Q 22 cos 4 θ + 2 (Q 2 + 2Q 66 ) sin 2 θ cos 2 θ Q 2 = (Q + Q 22 4Q 66 ) sin 2 θ cos 2 θ + Q 2 ( cos 4 θ + sin 4 θ ) Q 66 = (Q + Q 22 2Q 2 2Q 66 ) sin 2 θ cos 2 θ + Q 66 ( sin 4 θ + cos 4 θ ) 7

Q 6 = (Q Q 2 2Q 66 ) cos 3 θ sin θ (Q 22 Q 2 2Q 66 ) cos θ sin 3 θ Q 26 = (Q Q 2 2Q 66 ) cos θ sin 3 θ (Q 22 Q 2 2Q 66 ) cos 3 θ sin θ (6) ɛ x ɛ y γ xy = S S2 S6 S 2 S22 S26 S 6 S26 S66 σ x σ y τ xy (62) S = S cos 4 θ + S 22 sin 4 θ + (2S 2 + S 66 ) sin 2 θ cos 2 θ S 22 = s sin 4 θ + S 22 cos 4 θ + (2S 2 + S 66 ) sin 2 θ cos 2 θ S 2 = (S + S 22 S 66 ) cos 2 θ sin 2 θ + S 2 ( cos 4 θ + sin 4 θ ) S 66 = 2 (2S + 2S 22 4S 2 S 66 ) cos 2 θ sin 2 θ + S 66 ( cos 4 θ + sin 4 θ ) S 6 = (2S 2S 2 S 66 ) cos 3 θ sin θ (2S 22 2S 2 S 66 ) cos θ sin 3 θ S 26 = (2S 2S 2 S 66 ) cos θ sin 3 θ (2S 22 2S 2 S 66 ) cos 3 θ sin θ (63) 5.3.5 Transformation of Engineering constant σ L = σ x cos 2 θ σ T = σ x sin 2 θ (64) τ LT = σ x sin θ cos θ the strain in the L and T directions ( are given by ) Eq. (5.35) ɛ L = σ L σ ν T LT = σ cos 2 θ sin x ν 2 θ T L ɛ L = σ ( T σ L sin 2 θ cos 2 ) θ ν LT = σ x ν LT (65) γ LT = τ LT σx sin θ cos θ = ɛ x = ɛ L cos 2 θ + ɛ T sin 2 θ γ LT sin θ cos θ ɛ y = ɛ L sin 2 θ + ɛ T cos 2 θ + γ LT sin θ cos θ (66) ( γ xy = 2(ɛ L ɛ T ) sin θ cos θ + γ LT cos 2 θ sin 2 θ ) Substituting of Equ.(5.65) in (5.66) gives the strains 8

[ ( ɛ x = σ cos 4 θ x + sin4 θ + 4 2ν LT ) sin 2 2θ ] [ νlt ɛ y = σ x ( + 2ν LT + ) ] sin 2 2θ 4 γ xy = σ x sin 2θ [ ν LT + 2 cos 2 θ ( + 2ν LT + )] (67) since E x = σ x ɛx = cos4 θ + sin4 θ + ( 2ν ) LT sin 2 2θ (68) E x 4 = sin4 θ + cos4 θ + ( 2ν ) LT sin 2 2θ (69) E y 4 ν xy = ɛ y ɛ x ν xy = ν LT ( + 2ν LT + ) sin 2 2θ (70) E x 4 similarly ν xy E y = ν LT ( + 2ν LT + ) sin 2 2θ (7) 4 γ xy = m x σ x (72) [ m x = sin 2θ ν LT + E ( L cos 2 θ + 2ν LT + E )] L 2 (73) γ xy = m y σ y (74) [ m y = sin 2θ ν LT + E ( L sin 2 θ + 2ν LT + E )] L 2 (75) 9

σ L = σ T = 2τ xy sin θ cos θ τ LT = ( cos 2 θ sin 2 θ ) τ xy (76) ɛ L = 2τ xy sin θ cos θ ( ) + 2ν T L ( ɛ L = 2τ xy sin θ cos θ + ν ) LT ν LT = τ ( xy cos 2 θ sin 2 θ ) [ γ xy = τ xy + 2ν LT + ( + 2ν LT + ) ] cos 2 2θ (77) (78) Now the defination of shear modulas G xy will give = + 2ν LT + ( + 2ν LT + ) cos 2 2θ (79) G xy ɛ x = m x τ xy ɛ y = m y τ xy (80) ɛ x = σ x E x ν yx σ y E y m x τ xy ɛ y = σ y E y ν xy σ x E x m y τ xy (8) γ xy = τ xy G xy m x σ x m y σ y > 2 ( + ν LT ) (82) < 2 [ / + ν LT ] (83) 5.4 Strengths of an orthotropic lamina 0

5.4. Maximum stress theory σ L < σ LU σ T < σ T U (84) τ LT < τ LT U σ L < σ LU σ T < σ T U (85) σ L = σ x cos 2 θ σ T = σ x sin 2 θ (86) τ LT = σ x sin θ cos θ the maximum stress theory is applied to a typical glass-epoxy composite with the following normalized material properties σ T U τ σ LU = 0.025, LT U σ LU = 0.05 σ LU σ σ LU =, T U σ LU = 0.25 ν LT = 0.25, ν T L =0.08 5.4.2 Maximum strain theory ɛ L < ɛ LU ɛ T < ɛ T U (87) γ LT < γ LT U ɛ L < ɛ LU ɛ T < ɛ T U (88) ɛ LU = σ LU ɛ T U = σ T U (89) γ LT U = γ LT U

ɛ L = ( cos 2 θ ν LT sin 2 θ ) σ x ɛ T = ( sin 2 θ ν T L cos 2 θ ) σ x (90) γ LT = (sin θ cos θ) σ x 5.4.3 Maximum work theory ( ) σl 2 ( ) ( ) σl σt σ LU σ LU σ LU + ( ) σt 2 ( τlt + σ T U τ LT U ) 2 < (9) cos 4 θ σ 2 LU cos2 θ sin 2 θ σ 2 LU + sin4 θ σ 2 T U + cos2 θ sin 2 θ σ 2 LT U < σ 2 x (92) 2