ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. β) Πόσο είναι το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση

Σχετικά έγγραφα
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

6α) Ο δίσκος ισορροπεί με τη βοήθεια ενός νήματος παράλληλου στο κεκλιμένο επίπεδο. Αν το

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΟΡΟΣΗΜΟ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. σχήμα 1, β. σχήμα 2, γ.

Ισορροπία στερεού Ποιες είναι οι δυνάμεις που ασκούνται; Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων )

ΦΥΣΙΚΗ Β'Λ προετ. Γ'Λ

3.2. Ισορροπία στερεού.

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Στερεό (Μέχρι Ροπή Αδράνειας) Γ ΛΥΚΕΙΟΥ. Α)Σε κάθε μια από τις ερωτήσεις (1-4) να σημειώσετε στο τετράδιό σας τη σωστή απάντηση.

ΦΥΣΙΚΗ Β'Λ προετ. Γ'Λ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler)

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

3.3. Δυναμική στερεού.

Διαγώνισμα Μηχανική Στερεού Σώματος

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

α.- β. γ. δ. Μονάδες 5

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.

ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση

Δυναμική στερεού. Ομάδα Δ

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2

Κρούσεις. Ομάδα Δ. Κρούσεις Μια κρούση και οι τριβές Κρούση σφαίρας με άλλη ακίνητη.

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.

ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1

ΘΕΜΑ Γ, Δ. γ. 0,3 m δ. 112,5 rad] 3. Η ράβδος του σχήματος περιστρέφεται με σταθερή γωνιακή

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

3.1. Κινηματική στερεού.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

5 Ποιό από τα παραπάνω είναι το σωστό; Να δικαιολογήσετε την απάντησή σας.

2) Βάρος και κυκλική κίνηση. Β) Κυκλική κίνηση

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ

το άκρο Β έχει γραμμική ταχύτητα μέτρου.

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΔΙΑΓΩΝΙΣΜΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κινήσεις στερεών, ροπή αδράνειας, ισορροπία στερεού

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε.

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

0. Ασκήσεις επανάληψης.

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

ΣΤΕΡΕΟ. 1. Στο σχήμα φαίνεται πως μεταβάλλεται η γωνιακή ταχύτητα ενός δίσκου που εκτελεί στροφική κίνηση γύρω από σταθερό άξονα περιστροφής.

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2

ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ (1) Στεφάνου Μ. Φυσικός

Προσοχή : Να διαβάσετε τις οδηγίες στην τελευταία σελίδα! Θέµα 1ο

ΘΕΜΑΤΑ ΑΠΟ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΕΝΟΤΗΤΑ 2: ΡΟΠΗ ΔΥΝΑΜΗΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Γ. γ) η στατική τριβή στον δίσκο καθώς και το μέτρο της δύναμης που ασκεί το κεκλιμένο επίπεδο στο δίσκο.

Επαναληπτικό Διαγώνισμα Ι Φυσικής Γ Λυκείου

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

Θέµα 1 ο Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις ακόλουθες ηµιτελείς προτάσεις, Α 1 -Α 4

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

Transcript:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Ισορροπία στερεού σώματος) Ομογενής ράβδος ΑΒ μήκους L=4m και βάρους w=100n ισορροπεί οριζόντια στηριζόμενη σε κατακόρυφο τοίχο με άρθρωση και στο σημείο της Λ σε υποστήριγμα (ΜΛ=L/4) Η ράβδος ισορροπεί οριζόντια. α) Να βρεθεί η δύναμη Ν που δέχεται η ράβδος από το υποστήριγμα. β) Πόσο είναι το μέτρο της δύναμης που δέχεται η ράβδος από την άρθρωση γ) Μετακινούμε το υποστήριγμα και το τοποθετούμε στο Ζ, το οποίο είναι το μέσο του ΑΜ. Πόση είναι πλέον η δύναμη που ασκεί το υποστήριγμα στη ράβδο; Άσκηση. (Ισορροπία στερεού σώματος) Η ράβδος ΑΒ του διπλανού σχήματος είναι ομογενής, έχει μήκος l και βάρος w=100ν και ισορροπεί οριζόντια. α) Να υπολογισθεί η τάση του νήματος. β) Στο σημείο Α η ράβδος εφάπτεται στον τοίχο. Αν η τριβή που δέχεται η ράβδος είναι μέγιστη δυνατή ώστε να ισορροπεί, να βρεθεί ο συντελεστής στατικής τριβής μεταξύ ράβδου και τοίχου. Άσκηση 3. (Ισορροπία στερεού σώματος) Η ομογενής ράβδος του σχήματος έχει βάρος w 1 =10N και μήκος l=4m. Το ένα της άκρο αρθρώνεται σε κατακόρυφο τοίχο και το άλλο της άκρο κρέμεται από κατακόρυφο σχοινί με

αποτέλεσμα να ισορροπεί οριζόντια. α) Να βρεθεί η τάση του νήματος. β) Να βρεθεί η δύναμη που δέχεται η ράβδος από την άρθρωση. Tη χρονική στιγμή t=0, από το άκρο Α ξεκινάει να κυλίεται χωρίς να ολισθαίνει πάνω στη ράβδο ένας κύλινδρος βάρους w =10N με επιτάχυνση α cm =1m/s. Ζητείται: γ) Η τάση του νήματος τη χρονική στιγμή t= 3 sec. δ) Η γωνιακή ταχύτητα και η θέση του κυλίνδρου, όταν η τάση του νήματος γίνει Τ=10Ν. (Δίνεται η ακτίνα του κυλίνδρου R=0,1m). (Θέμα Δ) Άσκηση 4. (Ισορροπία στερεού σώματος) Μια οριζόντια γέφυρα έχει μήκος L= 8m και βάρος w=40.000 Ν. Η γέφυρα στηρίζεται σε δυο υποστηρίγματα στα άκρα της Α και Β. Ένα όχημα βάρους w 1 =10.000Ν κινείται στη γέφυρα με υ=1 m/sec. Θεωρούμε ως αρχική χρονική στιγμή t=0 τη στιγμή που το όχημα φθάνει στο άκρο Α της γέφυρας. α) Να βρεθεί η δύναμη που δέχεται η γέφυρα από το υποστήριγμα Α τη χρονική στιγμή t=0. β) Ποιά η θέση του αυτοκινήτου ώστε η ράβδος να δέχεται ίσες δυνάμεις από τα υποστηρίγματα; γ) Να γίνει το διάγραμμα της δύναμης που δέχεται η ράβδος από το υποστήριγμα Α σε συνάρτηση με τον χρόνο. (Θέμα Δ)

Άσκηση 5. (Ισορροπία στερεού σώματος) Στα άκρα Α και Β της ομογενούς ράβδου μήκους L=1m έχουμε κρεμάσει σώματα με μάζες m 1 =3kg και m =1kg. Δίνεται g=10m/s. α) Αν η ράβδος είναι αβαρής, πού πρέπει να τοποθετήσουμε το υποστήριγμα έτσι ώστε το σύστημα των τριών σωμάτων να ισορροπεί; β) Αν η ράβδος έχει βάρος w=60 N, πού πρέπει να τοποθετήσουμε το υποστήριγμα ώστε το σύστημα να ισορροπεί; γ) Αφαιρούμε το m 1 και από τη ράβδο κρέμεται μόνο το m. Πού πρέπει να τοποθετήσουμε το υποστήριγμα για να ισορροπεί η ράβδος; Πόση είναι η δύναμη που ασκεί το υποστήριγμα στην ράβδο; Άσκηση 6. (Ισορροπία στερεού σώματος) Μια ομογενής σανίδα ΚΛ μήκους L=10m και βάρους W=100Ν τοποθετείται πάνω σε μια επιφάνεια ώστε το τμήμα ΔΛ μήκους L=4m να προεξέχει της επιφάνειας. Ένας άνθρωπος w 1 =800N ξεκινάει από το άκρο Κ και κινείται πάνω στη σανίδα με κατεύθυνση προς το Λ. α) Μέχρι ποιά απόσταση x από το σημείο Δ μπορεί να περπατήσει ώστε να μην ανατραπεί η σανίδα; β) Πόσο είναι η μέτρο της αντίδρασης Ν εκείνη την στιγμή;

Άσκηση 7. (Ισορροπία στερεού σώματος) Ένας μηχανικός βάρους w 1 =800N βρίσκεται πάνω σε μια οριζόντια ομογενή σανίδα ΑΒ, μήκους L=10m και βάρους w=500n. Η σανίδα κρέμεται από δύο κατακόρυφα σχοινιά που είναι δεμένα στα άκρα Α και Β. Όλο το σύστημα ισορροπεί οριζόντιο όπως φαίνεται στο σχήμα. α) Να βρεθούν τα μέτρα των τάσεων Τ 1 και Τ των δύο σχοινιών αν x=8 m. β) Ποιά είναι η μέγιστη και ποιά η ελάχιστη τιμή του μέτρου της τάση Τ 1 ; γ) Για ποιά τιμή της απόστασης x, το μέτρο της τάσης Τ 1 είναι ίσο με το μέτρο της τάσης Τ ; Άσκηση 8. (Ισορροπία στερεού σώματος) Για να ισορροπεί η διπλή τροχαλία του σχήματος θα πρέπει ο λόγος m να είναι ίσος με: α) m = β) m = 1 γ) m = 1 3 Να δικαιολογήσετε την απάντησή σας.

Άσκηση 9. (Ισορροπία στερεού σώματος) Η ράβδος ΑΒ ισορροπεί στηριζόμενη στο υποστήριγμα που διέρχεται από το μέσο της Κ. Σε απόσταση d από το Κ προς τα δεξιά υπάρχει σώμα μάζας m που είναι τοποθετημένο πάνω στη ράβδο. Σε απόσταση d προς τα αριστερά από το Κ υπάρχει ελατήριο το οποίο συγκρατεί την ράβδο σε οριζόντια θέση. 1)Το ελατήριο είναι: α)σε επιμήκυνση. β) στο φυσικό του μήκος. γ)σε συσπείρωση. Ποιά απάντηση είναι σωστή; Να δικαιολογήσετε την απάντησή σας. ) Αν Κ=100 N/m, m=10 kg και g=10 m/s, η παραμόρφωση του ελατηρίου είναι: α) Δl=0,5 m. β) Δl=0. γ) Δl=1 m. Ποιά απάντηση είναι σωστή; Να δικαιολογήσετε την απάντησή σας. Άσκηση 10. (Ισορροπία στερεού σώματος) Στο μέσο Κ της αβαρούς ράβδου ΟΒ μήκους l ασκούμε δύναμη F 1 =50 N η όποια έχει την κατεύθυνση που φαίνεται στο σχήμα. Στο σημείο Ο υπάρχει άρθρωση. Να βρεθεί η δύναμη F που πρέπει να ασκείται στο άκρο Β της ράβδου έτσι ώστε η ράβδος να ισορροπεί οριζόντια.

Άσκηση 11. (Ισορροπία στερεού σώματος) Η ελάχιστη τιμή της οριζόντιας δύναμης F που πρέπει να ασκήσουμε στο υψηλότερο σημείο του τροχού(όπως φαίνεται στο σχήμα) ώστε να καταφέρει να υπερπηδήσει το εμπόδιο που έχει ύψος R h = είναι: α) F= w. β) w F =. 3 γ) F= w. 3 Ποιά απάντηση είναι σωστή; Να δικαιολογήσετε την απάντησή σας. Άσκηση 1. (Ισορροπία στερεού σώματος) Η ράβδος ΑΒ είναι ομογενής, έχει βάρος w και ισορροπεί όπως φαίνεται στο σχήμα. α) Για να ισορροπεί η ράβδος θα πρέπει ο τοίχος και το δάπεδο να είναι λεία. β) Για να ισορροπεί η ράβδος θα πρέπει να είναι λείος ο τοίχος και το δάπεδο να έχει τριβή. γ) Για να ισορροπεί η ράβδος θα πρέπει να είναι λείο το δάπεδο και ο τοίχος να έχει τριβή.

Να χαρακτηριστεί κάθε πρόταση σαν σωστή η λανθασμένη δικαιολογώντας την επιλογή σας. Άσκηση 13. (Ισορροπία στερεού σώματος) Οι δύο ομόκεντροι δίσκοι του διπλανού σχήματος μπορούν να περιστρέφονται γύρω από σταθερό άξονα που διέρχεται από το κέντρο τους. Οι δίσκοι είναι κολλημένοι και μπορούν να περιστρέφονται σαν ένα σώμα. Ασκούμε στους δίσκους τις δυνάμεις F 1 και F που φαίνονται στο σχήμα και τελικά παρατηρούμε ότι το σύστημα περιστρέφεται με σταθερή γωνιακή ταχύτητα. Για τις δυνάμεις F 1 και F ισχύει: α) F 1 =F. β) F =F 1. γ) F 1 =F. Ποια απάντηση είναι σωστή; Να δικαιολογήσετε την απάντησή σας.