2013 Aymeric Bethencourt et al., licensee Versita Sp. z o. o.

Σχετικά έγγραφα
Generating Set of the Complete Semigroups of Binary Relations

The challenges of non-stable predicates

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Probabilistic Approach to Robust Optimization

A Lambda Model Characterizing Computational Behaviours of Terms

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Numerical Analysis FMN011

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Other Test Constructions: Likelihood Ratio & Bayes Tests

Adaptive grouping difference variation wolf pack algorithm

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Section 8.3 Trigonometric Equations

ST5224: Advanced Statistical Theory II

6.3 Forecasting ARMA processes

Example Sheet 3 Solutions

Statistical Inference I Locally most powerful tests

D Alembert s Solution to the Wave Equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Spherical Coordinates

Homomorphism in Intuitionistic Fuzzy Automata

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solution Series 9. i=1 x i and i=1 x i.

Real time mobile robot control with a multiresolution map representation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Second Order RLC Filters

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Uniform Convergence of Fourier Series Michael Taylor

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homomorphism of Intuitionistic Fuzzy Groups

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Homework 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Probability and Random Processes (Part II)

Test Data Management in Practice

Lecture 2. Soundness and completeness of propositional logic

Homework 8 Model Solution Section

Reminders: linear functions

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

About these lecture notes. Simply Typed λ-calculus. Types

CORDIC Background (4A)

Quick algorithm f or computing core attribute

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Exercises to Statistics of Material Fatigue No. 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

F-TF Sum and Difference angle

MathCity.org Merging man and maths

Concrete Mathematics Exercises from 30 September 2016

5.4 The Poisson Distribution.

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Quadratic Expressions

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Section 8.2 Graphs of Polar Equations

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Ψηφιακή Επεξεργασία Εικόνας

CORDIC Background (2A)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5. Choice under Uncertainty

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Research on real-time inverse kinematics algorithms for 6R robots

Durbin-Levinson recursive method

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Empirical best prediction under area-level Poisson mixed models

Variational Wavefunction for the Helium Atom

Areas and Lengths in Polar Coordinates

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Transcript:

1 1 2013 Aymeric Bethencourt et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author. Autonomous Underwater Vehicles E-mail: Aymeric.Bethencourt@ensta-bretagne.fr E-mail: Luc.Jaulin@ensta-bretagne.fr Kalman Filter Extended Kalman Filter Sequential Monte Carlo R R n tubes 233

i ẋ i = f(x i, u i ) + n x y i = g(x i ) (evolution equation) (observation equation) (1) x i i u i y i f g n x y i Formulation intertemporal relation ping p = (a, b, i, j) a R b R i {1,..., m} j {1,..., m} b > a (a, b) t p (k) k th t τ = h i (t) t τ i h i i {1,..., m} t R k {1,..., k max } (i) ẋ i (t) = f (x i (t), u i (t)) + n x (t) (ii) g ( x i(k) (a (k)), x j(k) (b (k)), a (k), b (k) ) = 0 (iii) ã (k) = h i(k) (a (k)) (iv) b (k) = h j(k) (b (k)) (v) ḣ i (t) = 1 + n h (t) (2) b(k) a(k) a(k) b(k) Simultaneous Localization and Mapping k t = a(k) t = b(k) c (b(k) a(k)) c a(k) b(k) h i n x (t) g : R n R n R R g (x 1, x 2, a, b) = x 1 x 2 c (b a) (3) c (x i(k) (a (k)) x j(k) (b (k))) 2 c (b(k) a(k)) = +(y i(k) (a (k)) y j(k) (b (k))) 2 (4) ã (k) i (k) k th b (k) j (k) k th n h (t) k ã (k), b (k), i (k), j (k). Z z Z z Z z x h lattice (E, ) x y join x y supremum meet x y 234

R n x y i {1,..., n}, x i y i. x y = (x 1 y 1,..., x n y n ) and x y = (x 1 y 1,..., x n y n ) x i y i = min (x i, y i ) x i y i = max (x i, y i ). E complete A E A A A E E E R R = R {, } = E = E (E 1, 1 ) (E 2, 2 ) (E, ) (a 1, a 2 ) E 1 E 2 (a 1, a 2 ) (b 1, b 2 ) ((a 1 1 b 1 ) and (a 2 2 b 2 )). interval [x] x x [x] = [x, x] = {x R, x x x} This representation has several advantages: It allows us to represent random variables with imprecise probability density functions, deal with uncertainties in a reliable way and last but foremost, it is possible to contract the interval around all feasible values given a set of constraints ( i.e. equations or inequalities). closed interval interval [x] E E [x] = {x E [x] x [x]}. E E E IE E [x] E [x] = [ [x], [x]] E. = [, ] R ; R = [, ] R ; [0, 1] R [0, ] R R {2, 3, 4, 5} = [2, 5] N N {4, 6, 8, 10} = [4, 10] 2N 2N intersection [x] [y] [x] [y] = { [max{x, y}, min{ x, ȳ}] if max{x, y} min{ x, ȳ} otherwise [1, 3] [2, 5] = [2, 3] union [x] [y] [x] [y] = [min{x, y}, max{ x, ȳ}] [1, 3] [5, 7] = [1, 7] We can apply arithmetic operators and functions to intervals to obtain all feasible values of the variable. For example, consider a real α [x] α[x] = { [αx, α x] [α x, αx ] if α 0 if α 0 [x] [y] {+,,, /} [x] [y] x y x [x] y [y] [x] [y] = [{x y R x [x], y [y]}] [x] + [y] = + y, x ȳ] [x [x] [y] = ȳ, x y] [x [x] [y] = [min{x y,x ȳ, xy, xȳ}, max{x y,x ȳ, xy, xȳ}] [1/ȳ, 1/y] 1/[y] = [1/ȳ, [ ], 1/ȳ] ], [ [x]/[y] = [x] (1/[y]) if [y] = [0, 0] if 0 / [y] if y = 0 and ȳ > 0 if y < 0 and ȳ = 0 if y < 0 and ȳ > 0 [ 1, 3] + [2, 7] = [1, 10] [ 1, 3] [2, 7] = [ 8, 1] [ 1, 3].[2, 7] = [ 7, 21] [ 1, 3]/[2, 7] = [ 1/2, 3/2] f([x]) f f([x]) = {f(x) x [x]} f f([x]) [f]([x]) = [{f(x) x [x]}] [x] [exp]([x]) = [exp x, exp x] [cos]([ π, π]) = [ 1, 1] [cos( π), cos(π)] = [ 1, 1] n x x i R, i {1,..., n f } n f f j (x 1, x 2,..., x nx ) = 0, j {1,..., n f } (5) 235 nauthent cated 86.72.182.150

f j x i X i [x i ] x = (x 1, x 2,..., x nx ) T x [x] = [x 1 ].[x 2 ]...[x nx ] f f j f(x) = 0 constraint satisfaction problem I I : (f(x) = 0, x [x]) S I S = {x [x] f(x) = 0} I [x] [x ] S [x ] [x] I [x] S I contractor constraint satisfaction problems I : (f(x) = 0, x [x]) f j (x 1, x 2,..., x nx ) = 0 f j +,,, /, sin, cos, exp,...etc d = (x i x j ) 2 + (y i y j ) 2 (6) i 1 = x j i 2 = x i + i 1 i 3 = i 2 2 i 4 = y j (7) i 5 = y i + i 4 i 6 = i 2 5 i 7 = i 3 + i 6 d = i 7 i k ] ; [ I d = i 7 d = i 7 i 7 = d 2 [d] = [d] [i 7 ] [i 7 ] = [i 7 ] [d 2 ] et s consider the constraint i 7 = i 3 + i 6 initial intervals [i 3 ] = [, 2], [i 6 ] = [, 3] and [i 7 ] = [4, ]. We can easily contract these intervals without removing any feasible value: i 7 = i 3 + i 6 i 7 [4, ] ([, 2] + [, 3]) = [4, ] [, 5] = [4, 5] i 3 = i 7 i 6 i 3 [, 2] ([4, ] [, 3]) = [, 2] [1, ] = [1, 2] i 6 = i 7 i 3 z [, 3] ([4, ] + [, 2]) = [, 3] [2, ] = [2, 3] We obtain much smaller intervals for [i 3 ] = [1, 2], [i 6 ] = [2, 3] and [i 7 ] = [4, 5]. tubes Tube F n R R n x y t R, x(t) y(t). tube [x] ( [x, x + ] F n x, x + t x (t) x + (t) F n IF n. x F n [x] t, x (t) [x] (t) x F 1 [x] x 236

Algorithm C FB (in : box, inout : [x], [ẋ]) // Forward steps 1 [i 1 ] := [x j ] 2 [i 2 ] := [x i ] + [i 1 ] 3 [i 3 ] := [i 2 2 ] 4 [i 4 ] := [ y j ] 5 [i 5 ] := [y i ] + [i 4 ] 6 [i 6 ] := [i 2 5 ] 7 [i 7 ] := [i 3 ] + [i 6 ] 8 [d] := [d] [i 7 ] // Bacward steps 9 [i 7 ] := [i 7 ] [d] 2 10 [i 3 ] := [i 3 ] ([i 7 ] [i 6 ]) 11 [i 6 ] := [i 6 ] ([i 7 ] [i 3 ]) 12 [i 5 ] := [i 5 ] (sqr 1 [i 6 ]) 13 [y i ] := [y i ] ([i 5 ] [i 4 ]) 14 [i 4 ] := [i 4 ] ([i 5 ] [y]) 15 [y j ] := [y j ] [i 4 ] 16 [i 2 ] := [i 2 ] (sqr 1 [i 3 ]) 17 [x i ] := [x i ] ([i 2 ] [i 1 ]) 18 [i 4 ] := [i 4 ] ([i 2 ] [x i ]) 19 [x j ] := [x j ] [i 1 ] [x] ([t]) [x] (t), t [t] x [x], t [t] x (t) [x] ([t]), [x] ([t]) Tube arithmetic F n t F n Integral., t 2 t 2 0 [x] [, t 2 ] t2 [x] (τ) dτ = { t2 } x (τ) dτ such that x [x]. t 2 t2 [ t2 t2 ] [x] (τ) dτ = x (τ) dτ, x + (τ) dτ. x [x] t2 x (τ) dτ t2 [x] (τ) dτ. interval primitive t [x] (τ) dτ 0 t = 0 Tube contractor L(x) L C L [x] [y] [x] [y] [x] R x Interval evaluation of a tube x R R n x F n x ([t]) = {x (t), t [t]}. [x] [x] ([t]) = t [t] [x] (t), ( t, [x](t) ) [y](t) (contraction) L(x) = x [y] (completeness) x [x] C minimal contractor L [y] L Minimal tube contractor L(x 1,..., x p ) x 1,..., x p IF n p x 1 = f 1 (x 2,..., x p ) x 2 = f 2 (x 1, x 3,..., x p )... Proposition 1. x y t [0, [, x(t) y(t) 237

x [x] y [y], C ( ) ( ) [x] [x, x + y + ] = [y] [x y, y + ] Proof. x y a y = x + a a 0 [y] = [y] ([x] + [a]) [y] = [y (x + a ), y + (x + + a + )] [y] = [y (x + 0), y + (x + + )] [y] = [y x, y + ] Proposition 3. t [0, [, x(t) = y(t T ) [a] = [0, [ x = y + a a 0 [x] = [x, x + y + ] Proposition 2. x = y t [0, [, x(t) = y(t) ( ) ( ) [x] [x y, x + y + ] C = = [y] [x y, x + y + ] Proof. x = y x y y [x] = [x] [y] [x] = [x y, x + y + ] C delay ( ) ( ) [x] [x (t) y (t τ), x + (t) y + (t τ)] = [y] [x (t + τ) y (t), x + (t + τ) y + (t)] Proof. [x (t) y (t τ), x + (t) y + (t τ)] j [x j ] [h j ] 238

[x j ](t) = [x j ](t) [h j ] (t) = [h j ] (t) t 0 t 0 ([f]([u j (τ)],[x j (τ)]) + [n x (τ)])dτ (8) (1 + [n h ] (τ))dτ (9) t [x j ] [h j ] [x j ] [h j ] i j [x i ] [a(k)] i k j i j [a (k)] [b(k)] [x i(k) ](a (k)) [x j(k) ](b (k)) [y i(k) ](a (k)) [y j(k) ] (b (k)) x j(k) (b (k))) [x j(k) ] ([b (k))]) (before) [x i ] [x j(k) ] ([b (k))]) (after) [c (b(k) a (k))] [b(k)] ẋ i (t) = ( ) ui1 (t). cos(u i2 (t)) + n x (t) u i1 (t). sin(u i2 (t)) u i1 (t) u i2 (t) u i (t) i x i x i y i i n x (t) ( ) sin t x 1 (t) = 10 cos t ( ) sin(t + π) x 2 (t) = 10 cos(t + π) For AUV 1, n x (t) = 0.1t and n h (t) = 0.01t For AUV 2, n x (t) = t and n h (t) = 0.1t 239

[h](t) τ = h(t) (10, 0) T ( 10, 0) T c = 100 k = 0 t = 1 ã(0) = 1 a(0) [h 1 ] [a(0)] [x 1 ] [y 1 ] [x 1 ]([a(0)]) [y 1 ]([a(0)]) ã(0) [a(0)] [x 1 ]([a(0)]) [y 1 ]([a(0)]) 1.00 [0.99, 1.01] [5.21, 5.59] [8.26, 8.57] t = 1.37 b(0) = 1.37 b(0) [h 2 ] [b(0)] [x 2 ] [y 2 ] [x 2 ]([b(0)]) [y 2 ]([b(0)]) b(0) [b(0)] [x 2 ]([b(0)]) [y 2 ]([b(0)]) 1.37 [1.22, 1.51] [ 4.67, 0.90] [ 11.49, 8.16] b(0) [b(0)] [x 2 ]([b(0)]) [y 2 ]([b(0)]) 1.23 [1.22, 1.23] [ 4.67, 1.25] [ 11.49, 9.98] 1.37 1.23 ( ) sin t 10 i {1, 2, 3}, x i (t) = 10 cos t ( ) sin t i {4, 5, 6}, x i (t) = 10 cos t 5m 10 i = 1, 2 3 x i (t) < 9m 4, 5 6 240

[h 4 ] [x 4 ] CISCREA u i 0.001 0.1 0.1 241

References IBEX Automatica Proc. CP, Constraint Programming Automatica IN PROC. 10TH INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS (ISER), RIO DE NOLCOS 2010 Proceedings of the International Conference on Logic Programming International Journal of Advanced Robotic Systems Méthodes ensemblistes pour le diagnostic, l estimation d état et la fusion de données temporelles. Artificial Intelligence and Symbolic Computation Artificial Intelligence Introduction to Lattices and Order ION GNSS Int. Symposium on Information Theory and its Applications IEEE Transaction on Robotics Springer-Verlag Ellipsoidal Calculus for Estimation and Control International Journal of Robotics Research Intelligent Robots and Systems, 2005. (IROS 2005). 2005 242

IEEE/RSJ International Conference on IEEE Transactions on Automatic Systems Bounding Approaches to System Identification Methods and Applications of Interval Analysis LAP Academic Publishers, Kln, Germany Journal of the Association for Computing Machinery Probabilistic Robotics The Psychology of Computer Vision Journal of Marine Science and Application 243

0SQ_\O [x1 ] [y1 ] b (0) [h2 ] a (0) [h2 ] [h1 ] [x2 ] [y2 ] [a(0)] [a(0)] [y1(0)]([a(0)]) [x1(0)]([a(0)]) [b(0)] [x2 ] [b(0)] [y2(0)]([b(0)]) 244 Unauthenticated 86.72.182.150 [y2 ] [x2(0)]([b(0)]) :+6+.C8 4Y_\XKV YP,ORK`SY\KV <YLY^SM]