Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Σχετικά έγγραφα
Electronic Supplementary Information (ESI)

Supplementary Information

Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR Thessaloniki, Greece. Supplementary material

Electronic Supplementary Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

SUPPLEMENTARY INFORMATION

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

SUPPORTING INFORMATION

Available online at shd.org.rs/jscs/

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Electronic Supplementary Information (ESI)

difluoroboranyls derived from amides carrying donor group Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Table of Contents 1 Supplementary Data MCD

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Electronic Supplementary Information (ESI)

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Experimental section

Supporting Information for Substituent Effects on the Properties of Borafluorenes

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supporting Information

of the methanol-dimethylamine complex

Studies on the Interaction between Copper( ) Complex with Phenanthroline and L2Methionine Ligands and D NA

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Electronic Supporting Information

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Molecular Tweezers with Varying Anions - A Comparative Study

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

Electronic Supplementary Information

Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

phase: synthesis of biaryls, terphenyls and polyaryls

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Homework 3 Solutions

Supporting Information

Supporting information

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

IV. ANHANG 179. Anhang 178

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Supporting Information. Experimental section

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure, Thermal decomposition study and Interaction with calf thymus DNA and albumins Ariadne Zianna, George Psomas, Antonios G. Hatzidimitriou, Maria Lalia Kantouri * Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece Supplementary material S1. Interaction with CT DNA The binding constant, K b, can be obtained by monitoring the changes in the absorbance at the corresponding λ max with increasing concentrations of CT DNA and it is given by the ratio of [DNA] slope to the y intercept in plots versus [DNA], according to the Wolfe Shimer equation ( A f ) [1]: [DNA] [DNA] 1 (eq. S1) (ε ε ) (ε ε ) K (ε ε ) A f b f b where [DNA] is the concentration of DNA in base pairs, ε A = A obsd /[compound], ε f = the extinction coefficient for the free compound and ε b = the extinction coefficient for the compound in the fully bound form. b f S2. Competitive studies with EB The Stern Volmer constant K SV is used to evaluate the quenching efficiency for each compound according to the Stern Volmer equation: Io 1 KSV[Q] (eq. S2) I where Io and I are the emission intensities in the absence and the presence of the quencher, respectively, [Q] is the concentration of the quencher (i.e. complexes 1 6); K SV is obtained from the Io Stern Volmer plots by the slope of the diagram vs [Q]. I * Corresponding author: Tel./fax: +30 2310 997844, E mail address: lalia@chem.auth.gr (M. Lalia Kantouri)

S3. Interaction with serum albumins The extent of the inner filter effect can be roughly estimated with the following formula: I corr meas ( exc )cd 2 ( em )cd 2 I 10 10 (eq. S3) where I corr = corrected intensity, I meas = the measured intensity, c = the concentration of the quencher, d = the cuvette (1 cm), ε(λ exc ) and ε(λ em ) = the ε of the quencher at the excitation and the emission wavelength, respectively, as calculated from the UV Vis spectra of the complexes [2]. The Stern Volmer and Scatchard graphs are used in order to study the interaction of a quencher with serum albumins. According to Stern Volmer quenching equation [3]: Io =1+ kq τ0[q] =1+ KSV[Q] (eq. S4), I where Io = the initial tryptophan fluorescence intensity of SA, I = the tryptophan fluorescence intensity of SA after the addition of the quencher, k q = the quenching rate constants of SA, K SV = the dynamic quenching constant, τ o = the average lifetime of SA without the quencher, [Q] = the concentration of the quencher, the dynamic quenching constant (K SV, M 1 ) can be obtained by the Io slope of the diagram vs [Q]. From the equation: I K SV = k q τ o (eq. S5) and taking τ o = 10 8 s as fluorescence lifetime of tryptophan in SA, the approximate quenching constant (k q, M 1 s 1 ) is calculated. From the Scatchard equation [3]: I Io nk K [Q] ΔI Io (eq. S6) where n is the number of binding sites per albumin and K is the association binding constant, K (in I M 1 ) is calculated from the slope in plots Io [Q] to the slope [3]. ΔI versus and n is given by the ratio of y intercept Io References [1] A. Wolfe, G. Shimer and T. Meehan, Biochemistry, 1987, 26, 6392 6396. [2] L. Stella, A.L. Capodilupo and M. Bietti, Chem. Commun., 2008, 4744 4746. [3] Y. Wang, H. Zhang, G. Zhang, W. Tao and S. Tang, J. Luminescence, 2007, 126, 211 218.

Table S1. The HSA constants derived for the free saloh and ketoh and their complexes 1 7. Compound Ksv (M 1 ) Kq (M 1 s 1 ) K (M 1 ) n o vanh 2.52(±0.23) 10 3 2.52(±0.23) 10 11 6(±0.17) 10 5 0.10 5 Me saloh 0(±0.15) 10 4 0(±0.15) 10 12 8.71(±0.12) 10 5 0.41 5 NO 2 saloh 5.00(±0.46) 10 4 5.00(±0.46) 10 12 2.41(±0.09) 10 5 0.45 5 Cl saloh 5.64(±0.40) 10 3 5.64(±0.40) 10 11 2.19(±0.10) 10 5 0.10 5 Br saloh 2.31(±0.32) 10 3 2.31(±0.32) 10 11 3(±0.09) 10 6 0.22 bpoh 3.05(±0.19) 10 3 3.05(±0.19) 10 11 8.33(±0.12) 10 5 0.17 mpoh 7.67(±0.46) 10 3 7.67(±0.46) 10 11 4.26(±0.41) 10 4 0.26 [Cu(o van) 2 H 2 O)]. 0.25H 2 O. 1. 0.25H 2 O 9(±0.25) 10 4 9(±0.25) 10 12 4.39(±0.22) 10 5 0.18 [Cu(5 CH 3 salo) 2 ], 2 2.81(±0.54) 10 4 2.81(±0.54) 10 12 6.32(±0.48) 10 5 0.18 [Cu(5 NO 2 salo) 2 (CH 3 OH) 2 ], 3 6.09(±0.27) 10 4 6.09(±0.27) 10 12 3(±0.11) 10 5 0.76 [Cu(5 Cl salo) 2 ], 4 4.50(±0.60) 10 3 4.50(±0.60) 10 11 5.74(±0.43) 10 5 0.10 [Cu(5 Br salo) 2 ], 5 1.38(±0.07) 10 6 1.38(±0.07) 10 14 8.61(±0.36) 10 5 2 [Cu(bpo) 2 ], 6 5.61(±0.64) 10 4 5.61(±0.64) 10 12 3.12(±0.12) 10 5 0.47 [Cu(mpo) 2 ]. 2H 2 O, 7. 2H 2 O 3.79(±0.18) 10 3 3.79(±0.18) 10 11 4.57(±0.68) 10 4 0.12

Table S2. The BSA constants derived for the free saloh and ketoh and their complexes 1 7. Compound K SV (M 1 ) k q (M 1 s 1 ) K (M 1 ) n o vanh 2.37(±0.13) 10 4 2.37(±0.13) 10 12 2.15(±0.10) 10 5 0.41 5 Me saloh 6.15(±0.58) 10 3 6.15(±0.58) 10 11 2.35(±0.27) 10 6 0.32 5 NO 2 saloh 6.55(±0.17) 10 4 6.55(±0.17) 10 12 5(±0.07) 10 5 0.76 5 Cl saloh 6(±0.06) 10 4 6(±0.06) 10 12 3.11(±0.20) 10 4 0.59 5 Br saloh 4.63(±0.31) 10 4 4.63(±0.31) 10 12 3(±0.08) 10 5 0.66 bpoh 9.43(±0.36) 10 3 9.43(±0.36) 10 11 3.18(±0.23) 10 5 0.31 mpoh 7.41(±0.46) 10 3 7.41(±0.46) 10 11 7.02(±0.17) 10 4 0.17 [Cu(o van) 2 H 2 O)]. 0.25H 2 O, 1. 0.25H 2 O 3.33(±0.23) 10 4 3.33(±0.23) 10 12 9.69(±0.98) 10 4 0.54 [Cu(5 CH 3 salo) 2 ], 2 8.55(±0.51) 10 3 8.55(±0.51) 10 11 0(±0.13) 10 5 0.19 [Cu(5 NO 2 salo) 2 (CH 3 OH) 2 ], 3 7.11(±0.43) 10 4 7.11(±0.43) 10 12 3.03(±0.20) 10 5 0.65 [Cu(5 Cl salo) 2 ], 4 2(±0.09) 10 4 2(±0.09) 10 12 7.36(±0.81) 10 4 0.34 [Cu(5 Br salo) 2 ], 5 6.42(±0.29) 10 4 6.42(±0.29) 10 12 9(±0.06) 10 5 0.72 [Cu(bpo) 2 ], 6 6.56(±0.35) 10 4 6.56(±0.35) 10 12 1.93(±0.10) 10 5 0.73 [Cu(mpo) 2 ]. 2H 2 O, 7. 2H 2 O 2.88(±0.14) 10 4 2.88(±0.14) 10 12 2.14(±0.23) 10 3 0.95

A A A A (A) 0.10 0.08 0.06 4, 0d 4, 1d 4, 2d 0.8 0.6 4, 0d 4, 1d 4, 2d 0.04 0.4 0.02 0.2 0.00 500 600 700 800 900 1000 1100 (nm) 0.0 320 340 360 380 400 420 440 460 480 500 (nm) (C) 0.15 0.10 6, 0d 6, 1d 6, 2d (D) 0.8 0.6 6, 0d 6, 1d 6, 2d 0.4 0.05 0.2 0.00 500 600 700 800 900 1000 1100 (nm) 0.0 320 340 360 380 400 420 440 460 480 500 (nm) Figure S1. UV spectra of a DMSO solution of complexes (A) 4 (10 3 M), 4 (2 10 4 M), (C) 6 (10 3 M) and (D) 6 (2 10 4 M) during time (0 h, 24 h and 48 h).

A A A (A) 0.4 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.0 Complex 2 Complex 2 : buffer = 1:2 Complex 2 : buffer = 1:4 600 640 680 720 760 800 (nm) 0.1 0.0 Complex 6 Complex 6 : buffer = 1:2 Complex 6 : buffer = 1:4 600 640 680 720 760 800 (nm) (C) 0.6 0.4 0.2 Complex 7 Complex 7 : buffer = 1:2 Complex 7 : buffer = 1:4 0.0 600 640 680 720 760 800 (nm) Figure S2. Visible spectra of 10-3 M DMSO solution of complex (A) 2, 6 and (C) 7 upon addition of buffer solution (150 mm NaCl and 15 mm trisodium citrate at ph 7.0) at diverse ratios.

Figure S3. PXRD of complex 5.

{[DNA]/( A - f )}x10 7, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) (A) -0.4-0.8 - - 0.4 0.6 0.8 1.8 [DNA]x10 5, (M) -0.6-0.8 - - - - -1.8-0.4 0.6 0.8 [DNA]x10 5, (M) (C) -0.8 - - - Figure S4. Plot of 0.4 0.6 0.8 [DNA]x10 5, (M) [DNA] vs [DNA] for (A) o vanh, 5 Me saloh and (C) mpoh. (ε ε ) A f

{[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) {[DNA]/( A - f )}x10 8, (M 2 cm) (A) -0.2-0.4-0.6-0.8 0.8 - - - 0.6 0.5 2.5 3.0 3.5 [DNA]x10 5, (M) - -1.8 0.0 0.5 2.5 [DNA]x10 5, (M) (C) -0.5 (D) 0.0 - -0.2-0.4 - -0.6 - -0.8 - -2.5-1.8 2.2 2.4 2.6 0.0 0.5 2.5 3.0 3.5 [DNA]x10 5, (M) [DNA]x10 5, (M) (E) 0.0-0.2-0.4 (F) -0.2-0.4-0.6-0.6-0.8-0.8 0.4 0.8 2.4-0.4 0.8 [DNA]x10 5, (M) [DNA]x10 5, (M) (G) 0-1 -2-3 -4 0 1 2 3 [DNA]x10 5, (M) Figure S5. (A) (G) Plot of [DNA] vs [DNA] for complexes 1 7, respectively. (ε ε ) A f

I ( A) -600-400 -200 0 200 2 2 + DNA 400-200 -400-600 -800-1000 V (mv) Figure S6. Cyclic voltammogram of 0.4 mm 1/2 dmso/buffer (containing 150 mm NaCl and 15 mm trisodium citrate at ph 7.0) solution of [Cu(5 Me salo) 2 ], 2 in the absence or presence of CT DNA. Scan rate = 100 mv s 1. Supporting electrolyte = buffer solution.

I/Io (A) 3.5 3.0 2.5 4.0 3.5 3.0 2.5 0 1 2 3 4 5 6 [o-vanh]x10 5, (M) 0.0 0.5 2.5 3.0 [5-Me-saloH]x10 5, (M) (C) 2.8 2.6 2.4 2.2 1.8 0 1 2 3 4 5 6 7 [mpoh]x10 5, (M) Figure S7. Stern Volmer quenching plot of EB bound to CT DNA for (A) o vanh, 5 Me saloh and (C) mpoh.

(A) 3.5 3.0 2.5 3.5 3.0 2.5 0.0 0.5 2.5 [1]x10 5, (M) 0.0 0.5 2.5 3.0 [2]x10 5, (M) 4.0 (C) 3.5 3.0 2.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 [3]x10 5, (M) (D) 3.0 2.5 0 1 2 3 4 5 [4]x10 5, (M) (E) 2.2 1.8 2.4 (F) 2.2 1.8 0 1 2 3 4 5 6 [5]x10 5, (M) 0 1 2 3 4 5 6 [6]x10 5, (M) (G) 3.5 3.0 2.5 0 1 2 3 4 5 6 [7]x10 5, (M) Figure S8. (A) (G) Stern Volmer quenching plot of EB bound to CT DNA for complexes 1 7, respectively.

(A) 1.3 1.1 0.9 0.0 0.4 0.8 [o-vanh]x10 5, (M) 0.0 0.4 0.8 [5-Me-saloH]x10 5, (M) (C) 2.5 (D) 1.35 1.30 5 0 0.0 0.4 0.8 [5-NO 2 -saloh]x10 5, (M) 1.15 1.10 5 0 0.0 0.4 0.8 [5-Cl-saloH]x10 5, (M) (E) 2.2 1.8 (F) 1.3 0.0 0.4 0.8 [5-Br-saloH]x10 5, (M) 1.1 0.0 0.4 0.8 [bpoh]x10 5, (M) (G) 1.12 1.10 8 6 4 2 0 0.0 0.4 0.8 [mpoh]x10 5, (M) Figure S9. Stern Volmer quenching plot of BSA for (A) o vanh, 5 Me saloh, (C) 5 NO 2 saloh, (D) 5 Cl saloh, (E) 5 Br saloh, (F) bpoh and (G) mpoh.

(A) 0 1.15 1.10 5 0.0 0.2 0.4 0.6 0.8 [1]x10 5, (M) 0 0.0 0.4 0.8 [2]x10 5, (M) (C) 2.5 0.0 0.4 0.8 [3]x10 5, (M) (D) 1.30 5 0 1.15 1.10 5 0 0.0 0.4 0.8 [4]x10 5, (M) 2.4 (E) 2.2 1.8 (F) 2.4 2.2 1.8 0.0 0.4 0.8 [5]x10 5, (M) 0.0 0.4 0.8 [6]x10 5, (M) (G) 1.3 1.1 0.0 0.4 0.8 [7]x10 5, (M) Figure S10. (A) (G) Stern Volmer quenching plot of BSA for complexes 1 7, respectively.

(A) 1.10 8 6 1.8 4 2 0 0.98 0.0 0.4 0.8 [o-vanh]x10 5, (M) 0.0 0.2 0.4 0.6 0.8 [5-Me-saloH]x10 5, (M) (C) (D) 1.12 1.10 8 6 4 0.0 0.2 0.4 0.6 0.8 [5-NO 2 -saloh]x10 5, (M) 2 0 0.0 0.5 [5-Cl-saloH]x10 5, (M) 1.30 (E) 5 0 1.15 1.10 5 (F) 0 1.16 1.12 8 4 0 0.0 0.5 [5-Br-saloH]x10 5, (M) 0 0.0 0.5 [bpoh]x10 5, (M) 1.16 (G) 1.12 8 4 0 0.0 0.5 [mpoh]x10 5, (M) Figure S11. Stern Volmer quenching plot of HSA for (A) o vanh, 5 Me saloh, (C) 5 NO 2 saloh, (D) 5 Cl saloh, (E) 5 Br saloh, (F) bpoh and (G) mpoh.

(A) 0 0 1.16 1.16 1.12 1.12 8 8 4 4 0 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 [1]x10 5, (M) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 [2]x10 5, (M) (C) 2.4 2.2 1.8 (D) 1.10 8 6 0.0 0.5 [3]x10 5, (M) 4 2 0 0.98 0.0 0.2 0.4 0.6 0.8 [4]x10 5, (M) (E) 30 25 (F) 20 15 10 5 0 0.0 0.5 0.0 0.2 0.4 0.6 0.8 [5]x10 5, (M) [6]x10 5, (M) (G) 8 6 4 2 0 0.0 0.5 [7]x10 5, (M) Figure S12. (A) (G) Stern Volmer quenching plot of HSA for complexes 1 7, respectively.

/[mpoh] /[5-Br-saloH] /[bpoh] /[5-NO 2 -saloh] /[5-Cl-saloH] /[o-vanh] /[5-Me-saloH] (A) 70000 100000 80000 50000 30000 10000 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.28 0.29 0.30 0.31 0.32 (C) 80000 (D) 18000 16000 14000 12000 0.1 0.2 0.3 0.4 0.5 0.6 10000 0.00 0.05 0.10 0.15 0.20 0.25 (E) 80000 (F) 50000 30000 0.1 0.2 0.3 0.4 0.5 10000 0.12 0.16 0.20 0.24 0.28 (G) 10000 9000 8000 7000 6000 5000 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Figure S13. Scatchard plot of BSA for (A) o vanh, 5 Me saloh, (C) 5 NO 2 saloh, (D) 5 Cl saloh, (E) 5 Br saloh, (F) bpoh and (G) mpoh.

/[7] /[5] /[6] /[3] /[4] /[1] /[2] (A) 36000 32000 28000 24000 16000 0.15 0.20 0.25 0.30 0.35 0.40 18000 16000 14000 12000 10000 8000 6000 4000 0.02 0.04 0.06 0.08 0.10 0.12 0.14 (C) 1 1 1 100000 80000 0.1 0.2 0.3 0.4 0.5 0.6 (D) 18000 16000 14000 12000 10000 0.10 0.12 0.14 0.16 0.18 0.20 (E) 100000 (F) 1 100000 80000 80000 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 (G) 20200 19800 19600 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Figure S14. (A) (G) Scatchard plot of BSA for complexes 1 7, respectively.

/[mpoh] /[5-Br-saloH] /[bpoh] /[5-NO 2 -saloh] /[5-Cl-saloH] /[o-vanh] /[5-Me-saloH] (A) 9000 80000 8000 70000 7000 6000 5000 4000 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 (C) 80000 50000 30000 0.32 0.33 0.34 0.35 0.36 0.37 0.38 12000 (D) 70000 10000 50000 30000 8000 6000 4000 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.04 0.05 0.06 0.07 0.08 1 (E) 100000 (F) 80000 35000 0 0.14 0.16 0.18 0.20 0.22 30000 25000 0.115 0.120 0.125 0.130 0.135 0.140 0.145 (G) 9000 8000 7000 6000 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 Figure S15. Scatchard plot of HSA for (A) o vanh, 5 Me saloh, (C) 5 NO 2 saloh, (D) 5 Cl saloh, (E) 5 Br saloh, (F) bpoh and (G) mpoh.

/[7] /[5] /[6] /[3] /[4] /[1] /[2] (A) 50000 45000 30000 10000 0.06 0.08 0.10 0.12 0.14 0.16 90000 (C) 80000 70000 35000 30000 25000 15000 10000 5000 35000 (D) 30000 25000 0.11 0.12 0.13 0.14 0.15 0.16 0.17 50000 30000 15000 10000 5000 0.1 0.2 0.3 0.4 0.5 0.6 0.04 0.06 0.08 0.10 (E) 0 350000 300000 (F) 100000 80000 250000 0 150000 100000 50000 0.5 0.6 0.7 0.8 0.9 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 (G) 5000 4500 4000 3500 3000 2500 0.02 0.03 0.04 0.05 0.06 Figure S16. (A) (G) Scatchard plot of HSA for complexes 1 7, respectively.