Class: PreCalculus Problem Set: g and and An acute is an whose measure is > than 0 and < than 90.

Σχετικά έγγραφα
Rectangular Polar Parametric

Trigonometric Formula Sheet

Homework 8 Model Solution Section

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Answers to practice exercises

Inverse trigonometric functions & General Solution of Trigonometric Equations

Chapter 6 BLM Answers

Sheet H d-2 3D Pythagoras - Answers

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Solution to Review Problems for Midterm III

is like multiplying by the conversion factor of. Dividing by 2π gives you the

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CRASH COURSE IN PRECALCULUS

Review Exercises for Chapter 7

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Leaving Certificate Applied Maths Higher Level Answers

MATH 150 Pre-Calculus

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Rectangular Polar Parametric

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =


3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Reminders: linear functions

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Math 6 SL Probability Distributions Practice Test Mark Scheme

Chapter 5. Exercise 5A. Chapter minor arc AB = θ = 90 π = major arc AB = minor arc AB =

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651

Section 8.3 Trigonometric Equations

298 Appendix A Selected Answers

Section 9.2 Polar Equations and Graphs

ω = radians per sec, t = 3 sec

COMPLEX NUMBERS. 1. A number of the form.

ITU-R P (2012/02)

Quadratic Expressions

Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.

Areas and Lengths in Polar Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Parametrized Surfaces

Matrices and Determinants

Areas and Lengths in Polar Coordinates

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 8.2 Graphs of Polar Equations

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Spherical Coordinates

Trigonometry 1.TRIGONOMETRIC RATIOS

Fractional Colorings and Zykov Products of graphs

Προβολές και Μετασχηματισμοί Παρατήρησης

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

SENIOR GRAAD 11 MARKS: PUNTE:

(... )..!, ".. (! ) # - $ % % $ & % 2007

!"#$ % &# &%#'()(! $ * +


CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ax = b. 7x = 21. x = 21 7 = 3.

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Second Order RLC Filters

PARTIAL NOTES for 6.1 Trigonometric Identities

11.4 Graphing in Polar Coordinates Polar Symmetries

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Numerical Analysis FMN011

Solutions to Exercise Sheet 5


r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Second Order Partial Differential Equations

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

GAYAZA HIGH SCHOOL MATHS SEMINAR- APPLIED MATHS SOLUTIONS

Το άτομο του Υδρογόνου

SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Cable Systems - Postive/Negative Seq Impedance

Probability and Random Processes (Part II)

ITU-R P (2012/02) &' (

TRIGONOMETRIC FUNCTIONS

C.S. 430 Assignment 6, Sample Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Two-mass Equivalent Link

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

F19MC2 Solutions 9 Complex Analysis

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

bits and bytes q Ο υπολογιστής χρησιμοποιεί τη κύρια μνήμη για αποθήκευση δεδομένων

Differential equations

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

Class: PreCalculus Problem Set: 1. 10 4. 1775 g 6. 8. 7 10. 13 1. 14. 40 and 10 16. 8 and 15 18. An acute is an whose measure is > than 0 and < than 90. 0. A = 10, B = 30, C = 40. x = 6 4. 4 3 in 6. 3 m 8. 08 5 m 30. B

Class: PreCalculus Problem Set:. 30 4. 091 8. 6rs 5rs 10. 5 3 6. 5a 4 b 7 1. 3 3 3x xy5xy y 14. N 5 and N 1 W G 16. A scalene Δ is a Δ which has sides all of different lengths. 18. x = 10, y = z = 60 0. 1. 175 m 18 4. V cylinder 18 m 3 and 6. cm V sphere 56 m 3 3 8. V cylinder 1980 115 cm 3, Asurface 508 60 cm, V cone 660 375 cm 3 30. C

Class: PreCalculus Problem Set: 3. 59 4. NN 1 and ND 8 6., 1, 7 x 8, y 63 8. x 9, y, 5 z 84 5 10. x 70, y 3 14, z 3 5 1. 6 6a b 14. 55 36 16. 6x 8x xx ( 1)( x) 8 3 0. 15 x yz 18. 6 4. 1 cm 4. 4 in 6. 6.9 cm 8. 70 m 3 30. A

Class: PreCalculus Problem Set: 4. 1580 4. ND 11 and N 9 6. obtuse Δ 8. refer to Lesson 4 10. refer to Lesson 4 1. x 10 and y 5 Q 14. 3 16. 7 3s t x and 7 9st 3 18. 9 y 0 3 0. 9 5 a, b, and c 5. 35 6 4. 54 3 cm 6. cm 3, 100 100 cm 8. 15 3 cm 3 30. D

Class: PreCalculus Problem Set: 5. 81 g 4. acute Δ 6. 4 5 8. 37 1 1 x y 10. y a x 4 z 4a x 3 1. 3 3 x x 14. x y 16. 9 3i 18. x 5 and y xy 0. 16 cm. 144 m 4. refer to Lesson 4 6. refer to Lesson 4 8. 448 3 cm 3, 96 3 48 61 cm 30. C

Class: PreCalculus Problem Set: 6. 7 4. right Δ 6. 40 7 8. 16 10. x 1 and y 5 1. x 1, y, z 1 5a6 ba 14. 3 3 x y x y 16. y 18. 6 3 i 0. 5. refer to Lesson 4 18 4. a and b 5 6. 18 cm 8. 3 15 m 30. C 0 3

Class: PreCalculus Problem Set: 7. If the student is an advanced math student, then the student is intelligent. 4. If the coach is not happy, then the team did not win. 6. If the motor is on, then the car is moving. valid. 8. NN 90, ND 130 10. 38 1. 11 13 14. 6 6 15 5 x y 16. a 18. 3 3i b ab 0. 3 14i. 0 m 4. a 5, b 7, c 5 6. 33 m 8. 3 cm 3 30. C

Class: PreCalculus Problem Set: 8. 56 4. A 74 8. 5, 7, 9 10. 3 and B 84 6. valid 1. x 3, y, 1 z 14. x 5, y 3 16. 5 18. a b b a 3 3 6x xy4y 0. 10 3i. refer to Lesson 4 4. refer to Lesson 4 6. x 0, y 10 8. 0 0 3 cm 30. 100 3

Class: PreCalculus Problem Set: 9. NG 100, NB 00 4. invalid 6. 8, 7, 6, 5 8. obtuse Δ 1. 9 6 6 10. ΔABD ΔCBD by SAS 14. 4x a y b 16. x 3 18. (, 1,3) 0. a 3 7, b 3 4, c 3 6. x 1 4. refer to Lesson 4 8. 00 cm 3 30. A 6. 5 4 a, b 5

Class: PreCalculus Problem Set: 10. 4 D N, Q 100 N 4. 8, 6, 4 6. y x 7 8. 16i 10. 1 4 10 5 i 1. 6, 14. valid 16. ΔBCD ΔAED by AAAS 18. ΔQSR~ ΔPSQ so SR QR SQ PQ 0.. (4,,1) 4. 7a 5a 6. refer to Lesson 4 6 3 x y 8. V 36 in 3, Asurface 36 in 30. C

Class: PreCalculus Problem Set: 11. NB 135, N 45 S 4. invalid 6. 5 8. b b 4ac x 10. 4, 1 a 3 1. 9 17 17 i 14. 1 39 4 4 i 16. x, y 4, z 1 18. 1 0. ΔPQR ΔPSR by HL. 6 3 4. 13 x and 4 y 39 4 6. b a b 8. 11 a 5 7 3 36x 4 y 30. C

Class: PreCalculus Problem Set: 1. NB 14, NG 38 4. interior = 70, exterior = 360 4 6. x 4, y 3 1. y x 1 8. 36 14. 8 5 4 10. 1 39 4 4 i 16. 1 18. 4 0. 1 i a. SAS b. HL c. SSS d. AAAS 4. ΔABE ΔCBD by SAS 6. 0 3 8. 15 3 cm 6 30. D

Class: PreCalculus Problem Set: 13. 394 4. 50 6. 7 5 8. 35 10. valid 1. x 95, y 10, z 115 16. 3 17 14. 1 5 5 i 18. x 5, y, z 1 0. 1. 94 5 4. ΔABD ΔCBD by SAS 6. 9 8. 144 19 m 3 30. A

Class: PreCalculus Problem Set: 14. 11, 9, 7 4. 10,650.7 ft 6. 7.69108.7, 7.6951.73, 7.6988.7, 7.6971.73 8. 5.93iˆ 4.47 ˆj 10. x 140, y 80, z 140 1. 59 5 14. 7, 1 4 16. 18. 3 3 1i 0. 1 7 10 10 i 1 31 5 5. ABC CDE by AAAS 4. 3 5 y 4x 16 6. 9 4 8. 10 3 30. B

Class: PreCalculus Problem Set: 15. 1080 4. 5847.61 ft 6. * proof * 8. 5.16 34.46⁰, 5.16 35.54⁰, 5.16 44.46⁰, 5.16-15.54⁰ 10. 31.1iˆ 8.10 ˆj 1. 1 16. line A: y 3, line B: 3 y x 9 14. 3 3 i 18. 6i 0. 1 xy(3x y). 4. x, y 4, z 6 30. D 6. 1 8. l 5 m; h 3 m

Class: PreCalculus Problem Set: 16. 14, 1, 10 4. 114.49 mi pc pb 6. mc mb 8. d pmay xyb pmb 10. x 1. * proof * x4 x 7 14. 1033.13, 1016.87, 1053.13, 10306.87 16. 10.87iˆ 40.57 ˆj. 3 16 5 5 i 6. x 10, 18. 4. 45 y, z 110 8 1 139 10 10 i 0. x 3, y, z 1 1 i 8. 48 cm 3, 36 1 13 cm 30. C

Class: PreCalculus Problem Set: 17. NO 8, NS 30 4. ΔABC~ ΔXYZ by SAS 6. ΔPQR~ΔSTU by AAA 8. * proof * 10. x x x 4x 4 1. ax r bxt ab 14. * proof * 16. 1.17170.54, 1.17189.46, 1.17350.54, 1.179.46 18. 3 1, 4 0. x 1, y 1, z 3. 7 1 i 4. 3 5 6. 8. l 10 cm, h 8 cm 30. B

Class: PreCalculus Problem Set: 18. NN 8, ND 9, NQ 3 4. 11 y x 5 5 6. 106.8 oz 8. ΔPQR~ ΔSTU by SSS 10. md mc ad ac bd pm 1. k mc pa 14. * proof * 16. 14.3347.91, 14.31.09, -14.3167.91, -14.319.09 18. 37.68iˆ 6.38 ˆj 0. 3, 1. 36i 4. 6. 13 8. 4 cm 30. B

Class: PreCalculus Problem Set: 19. NR 5, NB 5, NG 10 4. y x 5 5 6. 56 1 17 1 17 1 17 1 17 8.,,, 10. 1 5, 1 5, 1 5, 1 5 1. x a b a b y x y 14. x y p4xy 4 xyp p 16. 3acdbcd 3 abdabc 18. 159 56 3 0. 407 9a x 3 b y. 3 13 4. * proof * x x 4x6 x 6. 40 8a. 6, 44 m 3 8b. 3 cm 30. C

Class: PreCalculus Problem Set: 0. 3 6 y x 5 5 4. NR 10, N 4 6. 84 B 8. 133.33 oz 10. 3 6 1. ~ by SSS similarity postulate 14. x 4, y 3, z 16. no solution; x 3, 1 18. xy 4 3z 3 4x y 8 6xy 4 z 3 9z 6 0. 1 8x y 1 5. y 3dfgs 1x 4g 3 4. 14.7698.30, 14.7661.70, 14.76118.30, 14.7641.70 6. * proof * 8. l 10 cm, h 8 cm 30. A

Class: PreCalculus Problem Set: 1. y x 3 4. 5 N, N 0, N 10 6. 4.71 liters 8a. not a function 8b. function 10. 15 1. 8 14. * proof * N D S 16. 8 ab 3 p4a b 6 ab 3 p p 18. 3 ay6xm x l 6ty 0. 63 3 17i. 1 i 4. x 1 x 3 x 6. * proof * 8. 07 m 3 30. B

Class: PreCalculus Problem Set:., 4, 6 4. NP 10, NN 10, NQ 4 6. * graph * 8. * graph * 10a. function, 1 to 1 10b. function, not 1 to 1 10c. not a function 10d. function, 1 to 1 1. 3 14. 9 16. (3,3),(3, 3),( 3,3),( 3, 3) 18. xb 3p4x b 4 6xb p9p 0. 4 4i 3. 3 a b b 4. 3 11 i 4 4 6. * proof * 8. 300 cm 3 30. C

Class: PreCalculus Problem Set: 3. 15 4. NG 5, NR 10, NB 6. 9 gallons 8. * graph * 10. * graph * 1a. 1b. 1c. 14. 8 3 16. * proof * 18. (3,3). 10 5 10 3 i 0. ab 3 3 b 3 a 4 b 6 ba 9 a 4 4. mn 6. * proof * 8. 900 m 30. B

Class: PreCalculus Problem Set: 4. 4, 6, 8, 10 and 1, 10, 8, 6 4. 3 N, N 4, N 6. 64 ml 8. * graph * 10a. not a function 10b. not a function 1a. 6 1b. 1c. 0 14a. 16 14b. 4 14c. 13 16. 33 5N 3N1 18. x 43x 0. 31 8 15 15 i. xy 6. * proof * 8. 150 cm 30. A R G 4. B 1 33 6 6

Class: PreCalculus Problem Set: 5. 3 13 hr 4. 16 men 6. 1 1 y x 8. * graph * 10a. function, not 1 to 1 10b. not a function 10c. function, 1 to 1 10d. function, 1 to 1 1a. 0 1b. 1 3 14. 1 18. a a a a x y x y 0. 16. 3 3smr 3sq mr q 6rl. 1 18ktm 9x4z 4. z 5sm 1k 6. * proof * 8. 1 3 m 30. C

Class: PreCalculus Problem Set: 6. 80 7 min 4. Donnie = 65 mph; time = 5 hr; Sarah = 45 mph; time = 10 hr 6a. log 7 k p p 6b. k 7 8. 3 10. 16 1. * graph * 14a. 14b. 0 14c.,3 16. 0 18. 1 0. * proof *. 4. 4 x 4 y 3 a b 3 16 x 8 y 4 1 x 4 y a b 3 9 a 4 b 6 6. x 4 x 7 8. 10 m 30. A

Class: PreCalculus Problem Set: 7. 40 3 min 4. N R 4, N B 7, NW 8 6. 7 y x 3 3 n 8. m 8 10. n 3 1a. * graph * 1b. * graph * 14a. not a function 14b. not a function 14c. function, 1 to 1 14d. function, not 1 to 1 16. 3 18. 1 0. (0,4), 1 16, 5 5. 8 16 5 5 i 4. 1 7 4 4 i 6. * proof * 8. 6 cm 30. A

Class: PreCalculus Problem Set: 8. RT 0 R 5 hr 4. 80 13 hr 6. 840 8. log 9 k 10. 3 1. 16 14. * graph * 16. 3 18a. 6 18b. 3 18c. 3 0. 3 x y y zca stcarz. 4. 3 6 6. * proof * x x x x 1 8. l 0m, h 1 m 30. B

Class: PreCalculus Problem Set: 9. 1 henway per day 4. Nat is 65, Odessa is 75 6. 10,080 8. log31 k 10. 7 1. 64 14. * graph * 16a. 16b. 3 16c.,,1 18. 0 0. 3 1 b. ab 3 c d 4 a b 6 abc d 9 c 4 d 4 4. 1 5 i 6 3m a. 4 a ( a)( a) 6. xhx xhh 8. x 60 ; y 80 30. B

Class: PreCalculus Problem Set: 30. 14, 41 4. 4.86 ml 6. 6.58 03.07⁰ 8. * proof * 10. 1 1. 3 14. * graph * 16a. 0 16b. 16c. 3 18. 3 0a. x 0b. x. a b x y 4. kxd kc axd ac bd 6. x xh h x h 8. 304 cm 30. C

Class: PreCalculus Problem Set: 31. Lannes is 0 and Davout is 40 4. N B 1, NG 6, N R 4 6a. x-axis, no; y-axis, yes; origin, no 6b. x-axis, yes; y-axis, yes; origin, yes 8. * graph * 10. * proof * 1. 14. 1 7 16a. function, not 1 to 1 16b. function, not 1 to 1 16c. not a function 16d. function 1 to 1 18. 0 0a. 1 0b. 1 0c. 0 5n n1. 7a 7 a 4. 8. xh h 30. B y x 3 xy 3 3 6.

Class: PreCalculus Problem Set: 3. 84 min 4. ft 6. 1 4 y x 3 3 8a. x-axis, yes; y-axis, no; origin, no 8b. x-axis, no; y -axis, yes; origin, no 10. * graph * 1. * proof * 14. 4 16. * graph * 18. 0,1 0. 1. 3 5 (0,),, 4. 5 17 17 i 6. 1 5 6 6 i 8. 600 m 30. A

Class: PreCalculus Problem Set: 33. 375 lb 4. C 6. 1 7 y x 4 4 8a. x-axis, no; y-axis, no; origin, yes 8b. x-axis, yes; y-axis, yes; origin, yes 10. * graph * 1. 495 14. 6 16. * graph * 18.,,3 0a. 80 0b. 9 0c. 4. x 4 a (1 3 a) 4. 5 1 4 4 i 6. h hxh 8. x 115, y 41, z 89 30. B

Class: PreCalculus Problem Set: 34. 1 10 hr 4. $135 6. 5 8. H 6.67C 580 10. A 1. 5 y 3x 14a. x-axis, yes; y-axis, yes; origin, yes 14b. x-axis, no; y-axis, no; origin, yes 16. * graph * 18. 5 0. 5. 11,3,4 4a. 8 4b. 8 4c. 19 8. 144 3 cm 30. C 6. h x hx

Class: PreCalculus Problem Set: 35. 500 lb 4. multiply by 9 6. 17 1 8. 11 15 10. Y 45B 4550 1. C 14. 6 8 y x 16. 5 5 4 5 18a. x-axis, no; y-axis, yes; origin, no 18b. x-axis, yes; y-axis, no; origin, no 0. y ( x 3) 3 a. 4 3 b. 3 c. 7 4. 3 6. 3 h x( x h) 8. * proof * 30. A

Class: PreCalculus Problem Set: 36. N R 10, NW 100, NB 50 4. mp m p mi / hr 6. 1 8. 37 7 0 10. f ( x) x ; g( x) x 1 1. y 3x 7 14. 10 7 0a. 3 3 16. y x 18. 4.7981.36 0b. 11 0c. 1 9 a. function, not 1 to 1 b. function, not 1 to 1 c. not a function d. function, not 1 to 1 4a. 1 4b. 1 6a. 1 18 6b. 1 9 30. C 6c. 9 8 8. * proof *

Class: PreCalculus Problem Set: 37. $384 4. $4000 6. 7 6 y x 5 5 8. 96 35 10. O 6.67I 106.7 1. A 14. 1 1 y x 4 6 16a. x-axis, no; y-axis, no; origin, yes x 16b. x-axis, yes; y-axis, no; origin, no 18. y 4 3 0a. D: 35, R: 17 0b. D:, R: 88 a. b. 3 c. 4 4. 6. x h 8. 457 cm 3 30. A

Class: PreCalculus Problem Set: 38. RT 100 miles T P hr 4. 4 liters of 90%, 16 liters of 75% 6. 10 8. 43 10. 5 y 8x 1. 5 4 14. f ( x) 3 x, g( x) x 3 16. 3 cm 18. y 3 x 0. 19.8937.0. 100, 5, 4a. x 4b. x 30. A 6. x x ovt o g t 8. * proof *

Class: PreCalculus Problem Set: 39. 10 ft 4. 10 6. y s 10 8. xy80 10. 31 1. 1 14. 9 1 y x 4 8 16. 14 3 18. S 5.71P334. 0. no isosceles trapezoid a. 45 b. 6 5 4a. 3 4b. 3 4c. 3 9 6a. x 6b. x 8. 05 m 30. B

Class: PreCalculus Problem Set: 40. 17 mph 4. 10 lb 6. 1,860,480 8. 10. 9 1. x 3y9 0 14. 3 4 16. 1 18. 9x y7 0 0. f ( x) x 1, g( x) x. y x 4. 0,1 6. 6x 3h 4 8. 3 30. B

Class: PreCalculus Problem Set: 41. 18 mph 4. 9:00 pm 6. 6 3 8a. 5040 3 8b. 154,440 10. no solution 1. 8 14. x3y7 0 16. 1 1 x x 0 18. 6 3 3 4 0. H S. 6 cm 4. y 1 x 3 6. 6.04153.30 8. 1 x( x h) 30. A

Class: PreCalculus Problem Set: 4. B 0 mph, C 5 mph 4. 16 hour 6. $300 8. * graph * 10. 1. 151,00 14. 49 16. no 18. 1 0. x y1 0. A 4a. 60 4b. 7 4 6. gx ( ) x 3 8. * proof * 30. D

Class: PreCalculus Problem Set: 43. ft 4. 50 hr 6. S 31yr, J 33yr 8. y 5sin x 10. * graph * 1. 1 14. 1 16. 10 18. yes. 35 9 0. 4. H 8C9 3 3 y x 6a. domain: 6, range: 6 6b. domain: 55, range: 44 8. * graph * gx ( ) ( x ) 1 30. A

Class: PreCalculus Problem Set: 44. hw w m hr 4. 100 mi 6. 100 yd 8. y 11sin x 10. * graph * 1. 4 3 3 14. 46 3 16. 18. yes 0. x4y10 0. 5 1, 4. F 55.56D 1555.68 6a. 45 6b. 3 5 8. 30. B

Class: PreCalculus Problem Set: 45. 8640 4. 891 mi 6. 400 liters 8. C 0.317 55.056, r 0.8109, not a good correlation 10. y 10sin 1. ( x) ( y5) 6 14. 9 4 3 16. 90 18. 30 6 0. 3. x 4x1 0 4. f () x x3 6. y x 3 8. * proof * 30. A

Class: PreCalculus Problem Set: 46. 34,560 4. 00 b d b balls 6. RO 9 mph, RB 18 mph 8. N R 1, N E 4, N D 10. 3 15 3 15 x i x i 1. y 1cos x 14. ( xh) ( yk) 6 16a. 3 16b. 18. 0 0. 9. yes 4a. 5 194 194 4b. 7 4 6. * graph * 8. 1 x h 30. C

Class: PreCalculus Problem Set: 47 dm dm. days 4. dollars 40 1 6. B 40 mph, W 10 mph 8. y 37cos x 10. x 6x13 0 1. O 0.434 1.176, r 0.9596, good correlation 14. * graph * 16. 5 18. 3 0. x y 1 3 1. 8 3 4a. 150 4b. 8b. 81 7 3 7 7 6. y x4 8c. 77 7 8a. 74 3 30. B

Class: PreCalculus Problem Set: 48. 34 4. 190 cal 6. 450 ml of 40%, 150 ml of 80% 8. $5000 10. 7 3 1. 3 5 y x 4 4 14. y 6 14sin 16. x x100 18. 4.77 19.4935, 0.853, good correlation 0. * graph *. 11 4. 50 6. y x1 3 8. * proof * 30. D

Class: PreCalculus Problem Set: 49. 480 4. 51 days 6. 7 dp 4c dollars 8. 10. 5 1. x y 5 9 1 14. y 1 5sinx 16a. 45 16b. 60 18. 3(x i)(x + i) 0. (x + ) + (y + 3) = 3. 0 4. 10 ft 6. * graph * 8. x 30. C

Class: PreCalculus Problem Set: 50. 40 4. John = 30 yr, Sally = 45 yr 6. qt 8. 45, 315 10. 1. 14. y 3x 16 16. y 15 5cos 18. x 1 3ix 1 3i 0. ( x ) ( y4) 4 a. 6 5 b. 81 4a. 150 4b. 33 7 6. * graph * 8. * proof * 30. B

Class: PreCalculus Problem Set: 51. 130 4. 15 hr 6. 8 packages 8a. 0.5441 8b. 1.58 10. 40⁰, 300⁰ 1. 14. 3,3 16. 5x + y 4 = 0 18. y = 10 0cos 0. 4x 1 6ix 1 6i. (x + 3) + (y 3) = 5 4. 6384 6. yes 8. 30. x + 1 y x

Class: PreCalculus Problem Set: 5. 80 4. 56 13 hr 6. $56 8. W = 5 mi / hr, B = 10 mi / hr 10. 15⁰, 75⁰, 135⁰, 195⁰, 5⁰, 315⁰ 1a. 1.1 1b..791 14. 11 6 x y 16. 1 10 18. y 8cos 0. ( x i)( x i). ( xh) ( yk) r 4. 0 9 6. 5 8. 5 30. A

Class: PreCalculus Problem Set: 53. 3000 m 4. hm m p hr 6. 400 francs 8. 30(10) (.54) 3 3 in 3 10. 60⁰, 10⁰ 1. 180⁰ 14. 8.594 e 16. 11 4 18. y 15cosx 0. x x9 0. x 3 ( y) 5 4. 5 6. yes 8. y x 4 30. x 1

Class: PreCalculus Problem Set: 54. 8. * graph * rad / min 4. m 10.. cm / s 6. 16 hr 1. 135⁰, 5⁰ 14. 0⁰, 180⁰ 16. 8.039 18. 1 e 0. x y 7 7 4 1. y 6 6cos 4. S 0.089T 14.47, r 0.9047, good correlation 6. * graph * 8. 5 6 30. C

Class: PreCalculus Problem Set: 55. 6 4. rad / s 6. 100 mph 8. * graph * 14. 45,5 10.. mi / hr 1. 30,10 16. 8.6656 e 18. 3 0. y 7 3sin. 5 7 5 7 x i x i 4. ( x) ( y5) 7 6a. 6 6b. 31 8a. 3 4 8b. 7 4 30. B

Class: PreCalculus Problem Set: 56. 39,916,800 4.. 6. $594 8. youngster: 13 yr, ancient one: 53 yr 10. 18.43 cm 1. 5 m 14. B 16. * graph * 18. 80⁰, 100⁰, 00⁰, 0⁰, 30⁰, 340⁰ 0. 10 4.819. 3 4. (8, ) 6. 3(x + 3 i)(x + 3 + i) 8. (x 4) + (y 5) = 5 30. x

Class: PreCalculus Problem Set: 57. 83,160 4. 6. 4010.77 km 8. y = 6sin( 90⁰) 10. 43.6 cm 1. 17.51 ft 14. 0.57 cm 16. * graph * 18. 0⁰, 100⁰, 140⁰, 0⁰, 60⁰, 340⁰ 0. 10 4. x y 7 1 4 1 4. 4 6a. 33 6b. 13 3 8. 5 30. D

Class: PreCalculus Problem Set: 58. 30 4.. 6. 3640 8. 3.57 atm 10. * graph * 1. y = + 6cos 14. 344,70 cm 16. 0.1 m 18.. 0. 6⁰, 66⁰, 78⁰, 138⁰, 150⁰, 10⁰, ⁰, 8⁰, 94⁰, 354⁰. 3x + y 7 = 0 4. 1 6a. 1 6b. 8a. D: 5, R: 36 8b. D: 55, R: 44 30. B

Class: PreCalculus Problem Set: 59. 70 4. 6. 0( x 1) y pencils 8. 30 gal of 80%, 0 gal of 0% 10. 1. 6 14. 5 5 16. y = 3 + 8sin( 45⁰) 18. 85,316.95 cm 0. 0.61 m 4. 10⁰, 70⁰, 130⁰, 190⁰, 50⁰, 310⁰. 6. e 9.9035 8. (x 3) + (y ) = 10 30. A

Class: PreCalculus Problem Set: 60. 6,65,800 4. 6. NR = 4, NW = 8, NG = 10 8. 90⁰, 70⁰ 10. 5 1. 7 14. 4 16. y = 5 + 15cos( 45⁰) 18. 190.53 m 0. 79.5 cm. A 4. 1 6. x y 1 5 5 8. yes 30. x + 3 4

Class: PreCalculus Problem Set: 61. 1 4.. 6. $47 8. 483 10. 68% lie between 6 and 68, 95% lie between 59 and 71, 99% lie between 56 and 74 1. * box-and-whisker plot * 14. 30⁰, 150⁰, 10⁰, 330⁰ 16. 18. 3 0. * graph *. y = + 5sin4 4. 8000 cm 6. * graph * 8. 0 30. y = 4x + 3

Class: PreCalculus Problem Set: 6. 30,40 4. 4 6. W = mph, D = 4 mph 8. 190 10. range = 6, mean = 4, median = 3.5, mode = 7, variance = 5.33, standard deviation =.31 1. * box-and whisker plot * 14. 45⁰, 135⁰, 5⁰, 315⁰ 16. 3 18. 0. 1 y 35cos x 3. 89.88 cm 4. * graph * 6. 4 3 8. 5x + 3y = 0 30. yes

Class: PreCalculus Problem Set: 63. 35 4. 1 6. ma mb ab hr 8. onlookers = 850, bystanders = 00 10. * graph * 1. point = 14, range = 14, median = 18, standard deviation: 5. 14. * stem-and-leaf plot * 16. 0⁰, 180⁰ 18. 7 0. * graph *. 1 y 35sin x 4. 190 cm 6. * graph * 8. 0 30. 6

Class: PreCalculus Problem Set: 64. 50 4.. 6. mr mb br hr 8a. 10cis18.43 8b. 5 3 5 i 10. 6 1. * graph * 14. 7 and 7 16. 70⁰ 18. 0⁰, 45⁰, 180⁰, 5⁰ 0. 3. 7 4. y 6 4cos x 3 6. 676.30 cm 8. 1 30. x y 1 1 1 5

Class: PreCalculus Problem Set: 65. 6 4. (45)(1000)(100) (30)(60) 6. 50( h 4) m x hr 8. 500( kxm) d pencils 10. x = 7 11 1a. 5.83cis59.04⁰,,, 3 3 6 6 1b. 3 3 3i 14. 9 9 3i 16. x gf af hd cd 18. 68% 0.. 9 4. y 610sin 7 6. 7 85 85 8. (600)(1000)(100) (.54)(1)(580) 30. D

Class: PreCalculus Problem Set: 66. 84 4. (1)(580)(1) (60)(13) 6. mz ma az hr 8. y = 1 8cosx 10. 30⁰, 10⁰ 1. * graph * 14. 6cis350⁰ 16. * graph * 18. 3 0. * box-and-whisker *. x =, 4 4. 145 8 6. 1440.54 cm 8. 3 30. 1 ( x h)( xh)

Class: PreCalculus Problem Set: 67. B = 0 mph, W = 4 mph 4. $1 per dozen eggs, 50 per pound of flour 6. 5 8a. 9 8b. 1 9 10. y 46sin 3 1a. 13cis9.6⁰ 1b. 7 3 7 i 14. 3 3 3i 16. bc ad y cg df 18. 47.5% 0. 3 5 7. 40⁰, 80⁰, 160⁰, 00⁰, 80⁰, 30⁰,,, 3 4 3 4 4. 1, 3 6. 3 8. 395.98 cm 30. (80)(1000)(100) (.54)(580)(1)

Class: PreCalculus Problem Set: 68. 16 4. (15)(580)(1) (60)(400) in 6. 3 750w a g stereos 8. parabola: 1 y x 1, vertex: (0, 0) 10. 5 ft 1. * box and whisker plot * 14. y 3 3cos 16. 15 3 15 i 18. ws kd x wa bd 0. 7 11 0,,, 6 6. 67.5⁰, 157.5⁰, 47.5⁰, 337.5⁰ 4. 0 6., 3 8. 116 30a. 15 30b. 81

Class: PreCalculus Problem Set: 69. p is multiplied by 3 4. x k 0 6. 38 8. directrix: 3 y, axis of symmetry: x = 0, parabola: 10 5 y x, focus: 6 3 0, 10 10. mean: 0.17, median: 0.5, variance: 9.14, mode: does not exist, standard deviation: 3.0 1. * graph * 14. y 310sin3 0 16a. 6.3cis341.57⁰ 16b. 5 5 i 18. * graph * 0. 1764.31 cm. 7 11 0,,, 6 6 4. 150⁰ 6. x x3 0 8. 1 30. f (x) = ln x, g (x) = log x

Class: PreCalculus Problem Set: 70. 4 hr 4. J is doubled 6. 81.85% 8. 3 10. * graph * 1. * graph * 14. y 1 cos x 3 16. 15 15 3 i 18. 3 11 0. 30,,, 6 4 4 6. mean: 4, median: 3.5, mode: 1, variance: 7.33, standard deviation:.71 4. 0.040 ft 6. 1 8. 7 5 5 30. D

Class: PreCalculus Problem Set: 71. NB =, NR = 4, NW = 7 4. 0 9 hr 6. length: 100 cm, width: 17 cm, height: 33 cm 8. * graph * 10. 1. * graph * 14. * graph * 16. 1 y 1cos x 18. 3 3 3i 0. 30, 150, 10, 330. 1 4. mean: 3.83, median: 4, mode: 5, variance: 4.14, standard deviation:.03 6. 14 9 9 8. 1 7 11 7 11 30. x i x i

Class: PreCalculus Problem Set: 7. y m 4. 380 beauties 6. 6 8. B = 8, c = 5.87, b = 7.35 10. * graph * 1., 3 14. 1.5 ft 16. 1 y 35sin x 18a. 10cis143.13 18b. 3 3 3 i 0. 3,. 7 5,,, 6 3 6 3 4. 6. * graph * 8. 1 30. yes

Class: PreCalculus Problem Set: 73 5000. M M 5 dollars 4. 6 times 6. x x 1 8. 48.84 cm 10. A = 0, a = 6.70, b = 9.79 1. 64.49% 14. * graph * 16. * graph * 18. y 6sinx 4 0. ag cd y af bd. 0, 30, 150, 180 4. 10, 40 6. 3 4 8. 3 30. 9 y x

Class: PreCalculus Problem Set: 74 1. L3 13 4. $6.44 per hour 6. D P x N 8. x = 1, y = 10. 300 cm 1. 9 4 14. * graph * 16. x = 4, 5 18. * graph * 3 0. y 311sin x40 6. x = 0 8.. 4 + 0i 3 5 7 11 4. t,,, 6 6 6 6 x 30. x 5i x 5i

Class: PreCalculus Problem Set: 75 0D. p 0 p 4. 14 miles 6. 70 8. 93.89 cm 10. 5 4 1. * graph * 14. * graph * 3 16. y 34cos x90 18. 10 + 0i 0. 60, 10, 40, 300. x = 90 4. mean:.67, median: 1.5, mode: 0, variance: 14.46, standard deviation: 3.8 6. 10 5 8a. 3 8b. 14 8c. 0 30. 5 3 5 3 x i x i 4 4 4 4

Class: PreCalculus Problem Set: 76. 10 groups 4. M = 9, R = 8 6. 8. 10. radius: 9.71 in, area: 34.38 in 1. B = 30, a = 11.70 ft, b = 6. ft 14. 30.5% 16. * graph * 18. * graph * 3 0. y3 sin4x30. 3 x, 4. x 6. 13 13 8. 4 30a. 05.70 30b. 38.80

Class: PreCalculus Problem Set: 77. 4.86 mph 4. $104 6. x x 1 8. 1x 5 y 10. 1. x = 4, y = 5 14. A = 30, a = 10 cm 16. 8.08% 18. * graph * 3 0. y 37sin x60. 60, 10, 40, 300 4. 1 6. * graph * 8. 17 8 30. 4x 3 + h

Class: PreCalculus Problem Set: 78. 6 4. (5Q Ka) cents 6. A: $1000, B: $000 8. * graph * 10. 15a b 4 1. * rules of the game * 14. side: 5 cm, radius: 8.09 cm 16. A = 30, a = 8.77 m, b = 13.44 m 18. 17 0, 0. * graph *. 3 y 5 4sin x 3 4. 5,, 3 3 6a. 10 6b. 3 8. 13 17 17 30. 3 5 5

Class: PreCalculus Problem Set: 79. 0,160 4. B = 18 mph, W = 6 mph 6. 7cis105 8. cis30, cis150, cis70 10. * graph * 1. x 6 + 6x 5 y + 15x 4 y + 0x 3 y 3 + 15x y 4 + 6xy 5 + y 6 14. * rules of the game * 16. 31 x, 7 y 18. side: 8 ft, area: 716.55 ft 0. * graph *. 1, 4. y 15cos3x50 6. 45, 135 8. 3 10 10 30. 5 10 y x 3 3

Class: PreCalculus Problem Set: 80. (300 hm) mi 4. 3 hr 6. 78 8. * rules of the game * 10. 64cis0 1. i, i, i, i 14. a 3 + 3a b + 3ab + b 3 18. C = 15, b = 0.1 in, c = 9.08 in. * graph * 16. 3 x 11, 0. 7 73 6 6 15 y 3 4. y 46cos x110 6. 7, 4 4 8. 4 3 30. 5

Class: PreCalculus Problem Set: 81. 0 4. 45, 55, 80 6. B = 91.43, C = 48.57, a = 5.14 in 8. 69 ft 10. * rules of the game * 1. cis15, cis135, cis55 14. * graph * 16. 35x 4 y 3 18. * graph * 0. * graph * 9 8. y 10 sin 90 4. 50, 110, 170, 30, 90, 350 6. 3 5 8. 10 11 30. 1 4

Class: PreCalculus Problem Set: 8., 33, 44 4. (t rh) mi 6. 39b ab 9 days 8. log(5) 4 x 0.75 log(5) 3 10. B = 110.49, A = 110.49, C = 18.19 1. * rules of the game * 14. 1cis0 16. 1 3 i, 1, 1 3 i 18. p 5 + 5p 4 q + 10p 3 q + 10p q 3 + 5pq 4 + q 5 0. radius of circumscribed circle: 6.74, radius of inscribed circle: 6.57. * graph * 4. y 9sin 4 x 3 5 7 8 6.,,, 4 4 4 4 8. 5 30. 51.38% 5

Class: PreCalculus Problem Set: 83. $130 8. 1 log(5) 1.95 34log(5) 4. 1 6 6. 15 68 10. A = 44.41, B = 101.54, C = 34.05 1. * rules of the game * 14. 3i 16. 1, i, 1, i 18. 0x 3 z 3 0. area: 716.55 cm, radius: 14.93 cm 9. y86cos ( x30 ) 6. * graph * 8. 3 4. 15, 75, 195, 5 30. x 3 3 i x 3 3 i

Class: PreCalculus Problem Set: 84 a. 16 49 b. 7 4. k p m yd / min 6. jobs 8. * graph * 10. * rules of the game * 1. * rules of the game * 14. 4.15 16. q = 16.34 cm 18. 3 i, 1 3i, 1 3i, 3 i 0. * graph *. radius: 9.71 cm, area: 76.99 cm 4. * graph * 6. no solution 8. 10 10 30. 4.0%

Class: PreCalculus Problem Set: 85. 1 49 11 min 4. 4 7 6. 10 seating arrangements 8. 4, 6, 8 10. 10, 180, 40 1. * graph * 14. * rules of the game * 16. * rules of the game * 18. 8.05 0. p = 16.93 cm, area: 5.71 cm. 3 i, 1 3i, 1 3i, 3 i 4. 16 x 7, y 0 7 6. * graph * 8. mean: 0, median: 0, mode:, variance: 3.60, standard deviation: 1.90 30. 5.33 cm

Class: PreCalculus Problem Set: 86. 13 68 4. O = 4I + 5 6., 4, 6 8. 111 10. 93, 86, 79, 7, 65 1. 7, 3, 11 6 6 14. 5 16. * graph * 18. * rules of the game * 3 0. 1.44. 5.39 m 4., i 3 i, 3i 6. r 3 + 3r s + 3rs + s 3 8. * graph * 30. 4 5

Class: PreCalculus Problem Set: 87. 13 36 cos sin 8. 4. 360 km 6. 18, 1, 4 10. 3 1. 6, 46, 66, 86 14. 70 16. 60, 10, 40, 300 18. * graph * 0. * rules of the game *. 0.60 4. B = 64.89, C = 95.11, a = 3.78 cm 6. * graph * 8. area: 64.95 in, radius: 4.33 in 30. 9 7

Class: PreCalculus Problem Set: 88. At = 40e -0.014t, 9.86 g 4. 3:16: 6. 1 36 8. 6 10. * rules of the game * 1. 6, 4, 4 14. 5 0,,, 4 4 16. * graph * 18. * rules of the game * 0. * rules of the game *. 0.1 4. 3cis10, 3cis130, 3cis50 6. A(pentagon) = 61.94 cm, A(circle) = 81.84 cm 8. 14 7 30. 75

Class: PreCalculus Problem Set: 89. At = 40,000e -0.09t, 3.9 hr 4. 6. 4, 6, 8 8. * graph * 10. cosx 1. 3 14., 4, 10, 16 16. 10, 140 18. * graph * 0. * rules of the game * 6. i,. 6 7 i 8. 1 4. 9.06 30. 4x 4 + 4x +

Class: PreCalculus Problem Set: 90. At = 000e -0.35t 4. 1 7 6. $170 8. * rules of the game * 10. * graph * 1. * graph * 14. 38 16. 5 18. * graph *, 6 6 0. * rules of the game *. 8.8 4. * graph * 6. -.60 8. 7 30..8%

Class: PreCalculus Problem Set: 91. 16,000 marbles 4. A0 = 30, k = 1.13, At = 30e 1.13t 6. 1 hr 8. 1, 36 10. * proof * 1. * proof * 14. * graph * 16. 6 18. 60, 300 4 0. * graph *. * rules of the game * 4. A = 6.7, B = 3.73 6. 3 10 10 8. 3 5 30. 0

Class: PreCalculus Problem Set: 9. A(t) = 10,000e -0.006t, t = 66.60 min 4. 7 6. 7 13 8. 4 1 a 4 10. * proof * 1. sinx 14. 8, 6, 4, 16. 4 5 0,,,,, 3 3 3 3 18. * rules of the game * 0. 44.36. 3 i, 1 3i, 3 i, 1 3i 4. P = 38.68 cm, A = 13.11 cm 6. 9 8 8. 1 30a. 1 5 30b. 5

Class: PreCalculus Problem Set: 93. At=4000e -0.0096t, 7.0 hr 4. 3 6. * rules of the game * 4:7 11 8. * rules of the game * 10. 0, 18, 16, 14 sin cos 1. x x 14. * graph * 16. 40, 100, 160, 0, 80, 340 18. * graph * 0. cis4, cis76, cis148, cis0, cis9. 6 x, 3 67 y 4. x = 10 3 3 6. x = 5 18 8a. 36 8b. 1 36 30. 4.46%

Class: PreCalculus Problem Set: 94. At=Ae 0.0t 4. 907,00 6. * graph * 8. * rules of the game * 10. * rules of the game * 1. 3 14. cosx 16. x = 3 18. 7.1 ft 0. 4, 8. * graph * 4. D = 3 5 6. x = 8a. 1 8 8b. 1 9 30. 9

Class: PreCalculus Problem Set: 95. 1 50 4. 16.75 min 6. 1.50cis13.8, 1.5cis103.8, 1.50cis193.8, 1.50cis83.8 8. * graph * 10a. y = tan x 10b. y = cot x 1. * rules of the game * 14. * rules of the game * sin cos 16. x x 18. 11.5, 56.5, 10.5, 146.5, 191.5, 36.5, 18.5, 36.5 0. 7P = 4, 7C = 1. 4 4 0 4,,, 4, 3 3 3 4. * graph * 6. x = 1 8. x = 1 30. 3 x 1

Class: PreCalculus Problem Set: 96. 49.14 min 4. 5 mi / hr 6. * rules of the game * 8. A = 51.54, area = 51.14 cm 10a. * graph * 10b. * graph * 1. 6 4 14. x =, 4 16..4cis6.57,.4cis06.57 3 3 18. 8P3 = 336, 8C3 = 56 0. 16, 1, 8. * graph * 4. 403.06 cm 6. x = 1.94 8. x = 17 5 30. x y

Class: PreCalculus Problem Set: 97. 5 4. H = 3, S = 56, C = 40 6. 10.10 (acute),.38 (obtuse) 8. 10. 1. 14. 16. 90, 10, 330 18..11cis40.67,.11cis60.67,.11cis80.67 0. 1, 9, 6 4. 70.53 cm 6. 8. 1. x y 1, vertices (, 0) and (, 0), asymptotes y = ±x 4 4 5 43 5 43 30. x i x i

Class: PreCalculus Problem Set: 98. 168.75 4. mf f m hr 6. 450 laps 8..45 10. 8 1. no such triangle exists 14. 16. 18. 0.. 3 11,,, 6 6 4. 1.85cis113.86, 1.85cis33.86, 1.85cis353.86 6. x y 1, major axis length: 1, minor axis length: 10 8. 81 7 50 64 30. D

Class: PreCalculus Problem Set: 99. 31.06 yr 4. F 6 r 4 hr 6. multiplied by 18 8. ( 3, 7), (7, 3) 10. arithmetic mean: 15, geometric mean: 411 1..18 14. 1, 16..01 (obtuse), 9.46 (acute) 18. 0. a = 64.50 cm, area = 151,554.45 cm. 4. 3 6. 37.5, 5.5, 17.5, 14.5, 17.5, 3.5, 307.5, 3.5 8. x y 1 5 1 1 3 1 3 30. x i x i

Class: PreCalculus Problem Set: 100. 4 16 11 min 4. 14m d km items 6. 11P4 = 790, 11C4 = 330 8. 10. 1. (4, 16) and ( 4, 16) 14..64 16. 1 18. no triangle exists 0.. A = 33.17, B = 46.83 4. 6. 5, 3 3 8. 1.50cis80.78, 1.50cis170.78, 1.50cis60.78, 1.50cis350.78 30. 1

Class: PreCalculus Problem Set: 101. 4 33 4. B = 9 mph, W = 3 mph 6. 36 8. 3 10. 1. (0, 5) and ( 5, 0) 14. e, e 16. 1, 4 16 18. 0.. 4. 3 6. 30, 150 8. 3 30..8%

Class: PreCalculus Problem Set: 10. 7 13 4. B = 18 mph, W = 9 mph 6. A1 = 60, A = 0 8. 8a 6 1a 4 b 3 + 6a b 6 b 9 10. 1 1. 14a. 1.90 14b. 3.36 16. 3 18. 1.70, 11.15 0.. A = 105.54, area = 63.1 cm 4a. y = 6 + 8csc x 4b. y = cot x 6. 5, 3 3 8. 64.95 ft 30. 1

Class: PreCalculus Problem Set: 103. 1 16 4. 0 atm 6. 54 ml 8. 1.80 10-5 10. 3.16 10-7 mol / L 1. 81a 8 108a 6 b 3 + 54a 4 b 6 1a b 9 + b 1 14. 16a. y = 1.9 16b. y = 1.4 18. x = 3 4 0. x = 4. 4. area: 0.0017 m, a = 11.6 cm 6. 6 4 8. 0 30. x

Class: PreCalculus Problem Set: 104. 400 140 s f gal 4. 45 6a. 6b. 8. 89.13 10. 3.16 10-9 mole / liter 1. x 6 6x 4 y + 1x y 8y 3 14. 0 16. 18a. y =.1. 4. 18b. y = 1.06 0. x = 6. 3 1 i, 3 1 i, i 8. 0 1 11 1 11 30. x i x i

Class: PreCalculus Problem Set: 105. 575.8 min 4. mhk workers 6. 7 8. 3 560 10a. 10b. 1. 3.36 14. 7x 3 54x y + 36xy 8y 3 16. 18. x = 1, 81 0. x = 6. 4. 6. 15, 105, 135, 5, 55, 345 8. i, i, i, i 30. 0

Class: PreCalculus Problem Set: 106. 40,30 4. $5600 6. 8. 10. ( x ) ( y 3) 9, x y x y 4 6 40 1a. 1b. 7 14. log xz 3 y 3 8 16. 4 4860x y 18. 0. x = 5 9. x = 1, 4 e 9 4. 6. 8. 1.64cis36.58,1.64cis16.58,1.64cis16.58,1.64cis306.58 t 30. t 1

Class: PreCalculus Problem Set: 107. x x days 4. x = 0.4 6. 6 8. 10. ( x1) ( y3) 1 x y x6y90 1. x, y, z 1 14. 3.16 10-9 mol / L 16. 80x 3 18a. 18b. 6 0. x = 4 3. x = 4 4. 6. 8. 6 4 3 1 3 1 30. i, i, i

Class: PreCalculus Problem Set: 108. 8.11% 4. Jerri 9, Kelly 17 6. 1 1 1 AB 3 4 3, 5 5 0 3 1 1 AB 3 0 3, 3 3 0 0 A 0 4 6 0 8. AB does not exist, BA 8 10. 1. 144 14. 7 5 ( 1) 3 n 5 4 log x log y 3log z 3 3 16. 6 6 6 18a. 18b. 3 4 0. ln 50 ln 7. 0.5 4. 6. 8. 0, 180 30.

Class: PreCalculus Problem Set: 109. 718.56 4. 10H 15 3H 6., 8. 0 ft 10. 1. 348 14. log 16. 3.16 10-7 moles / L 18a. 18b. 6 0. 10 9. 4. A = 60, area = 10.39 ft 6a. y = 10 + 6cscx 6b. y = 7 + 4secx 8. 1.1cis105, 1.1cis5, 1.1cis355 30. x 3 3x 3x + 1

Class: PreCalculus Problem Set: 110. 49,38.7 4. B = 1 mi/hr, W = 4 mi/hr 6a. 6b. 6c. 8. 1 7 10. 1. 14. arithmetic mean = 19, geometric mean = 1 16. x 6 6x 4 y + 1x y 8y 3 18. y = log8 log 4 0. x = 1 4

. 4. 6. 1 3 1 3 8. 1, i, i 30. 1 3 1 3 ( x1) x i x i

Class: PreCalculus Problem Set: 111. 1 4 4. ft t ft / hr 6. 8P6 = 0,160, 8C6 = 8 8. 1 3 x 3 10. 8, 1. ( x1) ( y) 9 5 1, center = (-1, ), major axis = 10, minor axis = 6, vertical 14. 0 16. 5.65 10-6 18. ± 0. e e. 4. 16.93 cm 6. 8. 3 0,,, 30. 3 3 3 3 3 3 ( x 3) x i x i

Class: PreCalculus Problem Set: 11. 0.8 4. 0.9p 0.5 dollars 6. $190 8. 110a 8 b 4 10. x 89 1. 7900 14. ( x10) ( y4) 64 4 1, center = (-10, 4), major axis = 16, minor axis = 4, horizontal. 4. 16. 3 log z 5 log x 1 log y 4 4 4 18. 3 4 0. e 100 6. 10, 70, 330 8. 1.71cis1.9, 1.71cis13.9, 1.71cis5.9 30. (x )(x + )(x i)(x + i)

Class: PreCalculus Problem Set: 113. 18.51 yr 4. ( k)( r)(.54)(60)(60) 100 m / hr 6. x 3x 6 8. yes 10. yes 1. -13,608x 15 y 6 14. x 49 16. 13 990 18. 1 0. 14. 4. 6. 1, 1 3 i, 1 3 i, 1, 1 3 i, 1 3 i 8. 30. (x + i)(x + i)(x i)(x i)

Class: PreCalculus Problem Set: 114. 99 4. 13 pages 6. 8. A 10. 4 3 3x 6x 10x 0x0 1. yes 14. 101 x 100 16. ( x1) ( y) 4 16 1, center = (1, ), major axis = 8, minor axis = 4, vertical 18. 0.. 4. 6a. 3.98 10 8 moles / liter 6b. 6.11 8. 8 and 1 30. 5 5 3 5 5 3 xx ( 5) x i x i

Class: PreCalculus Problem Set: 115. mk m pk mi / hr 4. N R 10, NW, N P 7 6. f ( ) 50 8. no 10. 1. A 14. x 7 3 9 16. 34 18. ln( x1) ln( y) ln xln y 0. 1 3 4 6. 1, 16 4. A = 36, area = 35.15 yd 4 6. 8..5, 11.5, 0.5, 9.5 30. x =, y = -1

Class: PreCalculus Problem Set: 116. 1111.19 4. 7 c (5 w ) ( m 4) hr 6. 8. 10. B 1. x x x x1 x 1 4 3 14. 1 15 5344x y 16. x 99 18. 71 33 0. 0 1 4 0 0 0 11 5 1. x 4, z 1 4. x = 1 6. 8. 5 7 13 5 7 3 30.,,,,, 1 1 1 4 4 1

Class: PreCalculus Problem Set: 117. 9 4. 0m k hr 6. yes 8. 1 5 1, 5,, 10. 1. 14. B 16. 4 18. x 17 3 0. 1 1 log y 3log ( x1) log ( y) 3. 4. ( x1) ( y) 1, center = ( 1,), major axis = 5, major axis = 4, vertical 4 5 6. 3 and 75 8. 1 7 1 7 30. x i x i

Class: PreCalculus Problem Set: 118. 47.75 yr 4. 1 11 hr 6. 3, 8. 1 3 1,, 10. 14. 1 3 1 3 1,, 3, 6,,,, 4 4 1. 16. 1 18. x 5x y 10x y 10x y 5x y y 15 1 9 4 6 6 3 8 10 0. 17 300. 1 6 4 8 4 4. 6. 8 67x 16 8. 30. 7, 11 6 6

Class: PreCalculus Problem Set: 119. 713 4. RC 40 mph, TC = 6 hr hr, R 0 mph, T 8 hr 6. 1 or 3 8. 0,, or 4 10. upper bound:, lower bound: 4 1., 1,1 14. i W W 16. 1 3 1 3 1 3 1, 3,,,,,, 4 4 8 8 18. 0.. 6 4. 1, e 6. 8. x 10 30. log 7 log 6

Class: PreCalculus Problem Set: 10. 4.64 days 4. HH H H H 1 1 hr 6. 14 18 18 316 8. x 1, y 4 10a. 1 10b. 0 or 1., 1,1,1 14. r = 4 16. 18a. 18b. 8 16x ya 0.. 3 6 1 14 13 6 AB 1 6 4, AB 5 8 1 1 4 0 53 9 1 ee, 4. 9.85 feet 6. 8. ln10 ln 5 30. 3 in

Class: PreCalculus Problem Set: 11. 54.57 hr 4. 30 7 atm 6. 8. 10a. 1 10b. 0 or 1. 1 1 1,,, 4 14. yes 16. r = 3 18. x 3x 7x 1x59 x 3 4 3 178 0. 7 x 3 1. 9 1, 6 4. 6. 8. 45,135,5,315 30. no

Class: PreCalculus Problem Set: 1. 3 4. 1,3,5,7 6. 8. 534 117 10. 734 17, x, y 1 1a. 1 or 3 1b. 0 14. upper bound:, lower bound: 1 16. 1 39 1, i 5 5 18. i,, 0.. C 4. 54 7 3 6 x x 3 8x 36 6. 8 9 8. 30. 4 0,, 3 3

. D N = 00 ml of 40%, P N = 100 ml of 10% 4., 4, 6 6a. 6b. 8. 4 3 40 10. 3 1. 14. 16., x =, y = 1 18. upper bound = 3, lower bound = 3 0. r = 7. 4 4. 6. 8. 30.

. W = mi/hr, B = mi/hr 4. N R = 4, N G = 11, N B = 8 6., 8. 3, 10a. circle 10b. hyperbola 10c. hyperbola 10d. parabola 10e. ellipse 1a. circle 1b. hyperbola 1c. ellipse 1d. hyperbola 1e. parabola 14. 16. 18., x =, y = 0. upper bound = 4, lower bound =. 4. x > 7 6. 8. 30. y

. T = 3 min 4. 6 6. 8. 10. ( 1.5538, 0.5538), (1.5538,.5538) 1. ( 0.7454, 0.4745), (0.4918, 1.635) 14. 1.414, 1.414 16..8846, 1.0815 18. 0.. 4. 6a. 1 6b. 0 or 8., 1, 30. 30, 90, 150, 70