ϕ be a scalar field. The gradient is the vector field defined by

Σχετικά έγγραφα
ϕ be a scalar field. The gradient is the vector field defined by

webpage :

webpage :

General theorems of Optical Imaging systems

ECE 222b Applied Electromagnetics Notes Set 3b

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

Matrices and Determinants

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Inverse trigonometric functions & General Solution of Trigonometric Equations

Multi-dimensional Central Limit Theorem

( y) Partial Differential Equations

α & β spatial orbitals in

Homework 8 Model Solution Section

Multi-dimensional Central Limit Theorem

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Phasor Diagram of an RC Circuit V R

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Example Sheet 3 Solutions

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

ON THE MEASUREMENT OF

Reminders: linear functions

Chapter 4 : Linear Wire Antenna

DISPLAY SUPPLY: FILTER STANDBY

Το άτομο του Υδρογόνου

Trigonometry 1.TRIGONOMETRIC RATIOS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Finite Field Problems: Solutions

Hydraulic network simulator model

Spherical Coordinates

Section 8.3 Trigonometric Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

EE512: Error Control Coding

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ECE 222b Applied Electromagnetics Notes Set 3a

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Differential equations

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

Κύµατα παρουσία βαρύτητας

#%" )*& ##+," $ -,!./" %#/%0! %,!

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

1.19 Curvilinear Coordinates: Curved Geometries

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Na/K (mole) A/CNK

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Prey-Taxis Holling-Tanner

The Spiral of Theodorus, Numerical Analysis, and Special Functions

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. Chemical Thermodynamics and Energetics - I

Lifting Entry (continued)

8.324 Relativistic Quantum Field Theory II

Constant Elasticity of Substitution in Applied General Equilibrium

ΠΑΡΑΡΤΗΜΑ Α ΑΝΑΛΥΤΙΚΗ ΛΙΣΤΑ ΣΗΜΕΙΩΝ ΕΛΕΓΧΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΠΟΜΑΚΡΥΣΜΕΝΟΥ ΕΛΕΓΧΟΥ (BMS)

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

MathCity.org Merging man and maths

Laplace s Equation in Spherical Polar Coördinates

Mean-Variance Analysis

Commutative Monoids in Intuitionistic Fuzzy Sets

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Boundary-Layer Flow over a Flat Plate Approximate Method

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Fundamental Equations of Fluid Mechanics

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Forced Pendulum Numerical approach

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

X g 1990 g PSRB

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Homework 3 Solutions

The Finite Element Method

rs r r â t át r st tíst Ó P ã t r r r â

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Strain gauge and rosettes

Linearized Lifting Surface Theory Thin-Wing Theory

Reflection & Transmission

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Η Χρυσή Τομή - Μια εφαρμογή της Θεωρίας της Αρμονικότητος του Πεδίου του Φωτός Διονύσης Γ. Ραυτόπουλος, Μ-Η Μηχανικός Ε.Μ.Π., Ανεξάρτητος Ερευνητής

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

The challenges of non-stable predicates

Homomorphism of Intuitionistic Fuzzy Groups

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα

Transcript:

Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I an thn scala o ot poct cto o s poct In som boos s also cons ot poct n b GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR GRADIENT Lt ϕ b a scala l Th ant s th cto l n b a ϕ ϕ ϕ ϕ DIVERGENCE Lt R Q b a cto l contnosl ntabl th spct to an Thn th nc o s th scala l n b R Q CURL Th cl o s th cto l n b Q R Q R R Q cl o Q R Q R cl DEL NABLA OERATOR Th cto ntal opato s call l o nabla / 8

Amn Halloc Math Ecss U can not a an cl as blo: a ϕ ϕ cl Not that s not th sam as Q R LALACIAN OERATOR Th Laplacan opato s n o a scala l U b U U U U U an o a cto l Q R b Q R Som omlas o pola an clncal coonats ola coonats m ϑ ϑ ϑ ϑ tansomaton: aa lmnt: A stana bass: [Rma : Not that a pn on hn mo om pont to pont ths s th ason h ths bass n som boos s call local bass ] I n Catsan coo an ϑ th sam cto n pola coonats thn ϑ [Rma : V can ths omlas b calclatn th componnts o n th ctons o an Ths / 8

Amn Halloc Math Ecss smlal ϑ ϑ ] Clncal coonats : tansomaton: olm lmnt: V ϑ ϑ stana bass: I n Catsan coo an ϑ th sam cto n clncal coonats thn ha ollon cto componnts latonshp: ϑ [Rma : o ampl can t n th ollon a: ] scala l: ant: a laplacan: cto l: nc: cl: cl / 8

Amn Halloc Math Ecss EXERCISES n a b a an c cl o th ollon ntts a cl 0 o 0 b cl ϕ 0 o ϕ 0 Whch on o th ollon nctons a b ln c p 5 5 satss th Laplac qaton 0? n 5 Wt th nal tanspot qaton ϕ ϕu Γ ϕ S t φ thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an 6 Whch on an o th ollon nctons a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U an S 7 n hch on an o th ollon nctons a ϕ b ϕ 5 5 ϕ c satss th qaton / 8

Amn Halloc Math Ecss ϕ ϕu Γaϕ S t h Γ U an S 8 5 8 am 008 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an B Lt Γ U n S n th qaton q no that th ncton ϕ satss th qaton 9 Q6 am 008 Cons th ollon qaton ϕ ϕu Γ ϕ U 6 q t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton 0 I possbl n o th n patal ats an a an b an c an an 5 Hnt: Ncssa conton: I has contns ats thn th m ats o shol b qal Ths * s th ncssa conton o th stnc o a ncton that has th n ats Dtmn th al o a o hch th sstm o patal ntal qatons 5 / 8

Amn Halloc Math Ecss a an has soltons Thn n ponn to ths al o a I possbl n o th n patal ats an a an b an c an an Hnt: Ncssa conton: I has contnos ats thn th m ats o shol b qal Ths Con : Con : Con : a th ncssa conton o th stnc o a ncton that has th n ats Dtmn th als o a an b o hch th sstm o patal ntal qatons a an b has soltons Thn n ponn to ths als o a an b W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s 6 / 8

Amn Halloc Math Ecss Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: µ q t componnt: µ q t componnt: µ q t a V 0 b V c V 5 am 009 A Cons th ollon qaton ϕ ϕu Γ ϕ U 6 6 8 t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton q B W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s an V 6 6 am 009 W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l V Us th ollon qatons contnt an Na Stos qatons to n st paamt a an thn 7 / 8

Amn Halloc Math Ecss n psson o pss as a ncton o an h constant µ constant 00 0 an h 98m / s an V 5 a 7 Cons sta ncompssbl sothmal lamna statona Ntonan lo n a lon on pp n th -cton th constant ccla s-scton o as R m Us th contnt an th Na-Stos qatons n clncal coonats to n th loct l V an th pss l th l lo satss th ollon contons: c0 All patal ats th spct to tm t a 0 Sta lo c μ000 /m s an 000 /m c A Constant pss ant / /50 a/m s appl n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 an 0 c W assm that th lo s asmmtc Th loct os not pn on that s 0 c5 Bona con No-slp bona conton V l V all : I thn 0 c6 Bona conton : has mamm at 0 that s 0 0 --------------------------------------------------------------------------------------------- Th contnt an th Na-Stos qatons o an ncompssbl sothmal Ntonan lo nst const st µ const th a loct l V n Clncal coonats : Incompssbl contnt qaton 0 q a Na-Stos qatons n Clncal coonats: -componnt: t µ -componnt: q b 8 / 8

Amn Halloc Math Ecss t µ q c -componnt: t µ q 8 Eam Mach 0 qston A ponts W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l a b c V Us th ollon qatons contnt an Na Stos qatons h constant µ constant 00 0 an / 98 s m to n: paamts a b an c n psson o pss as a ncton o an Th GRADIENT VECTOR th chan o aabls an bass Th ant cto o th ncton s n as a * I chan aabls to an plac bass ctos th n lnal npnnt ctos thn can pss th sam ant cto a n tms o aabls an ctos W smpl calclat th ats an n n aabls an pss as a lna combnatons o Thn sbsttt thos als nto * S th ollon ampl 9 W cons a scala l n n clncal coonats h an bass ctos a 9 / 8

Amn Halloc Math Ecss n th psson o th ant a n clncal coonats that s n tms o an a p th sam bass b c am 0; Q5 B ponts ths s otn s as a local bass o clncal coonats 0 am 06; Q6 A ponts D th Cach momntm qaton DV σ Dt n th l o th cto l pa thoh th sac 0 0 Us th Dnc Thom to n th l o th cto l ot o th sph S th qaton 9 ANSWERS AND SOLUTIONS: Solton: Q R a Snc ha 0 0 Ans a ϕ ϕ ϕ b Snc a ϕ ha o ϕ a 00 Ans b a 00 c cl Q R 0 / 8

Amn Halloc Math Ecss Ans c cl Hnt Us th ntons o an cl 0 0 Ans: Th nctons ln an 5 5 satss th Laplac qaton Ans: cl a 6 5 Solton: ϕ ϕu Γaϕ Sφ t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ Sφ t ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ t 6 Whch on an o th ollon nctons a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U an S Solton : Th qaton ϕu Γ ϕ S can b ttn as ϕ Γ S φ / 8

Amn Halloc ϕu Γaϕ S 5ϕ 5ϕ 5ϕ ϕ ϕ ϕ ϕ ϕ ϕ 5 ϕ 5 ϕ 5 ϕ Math Ecss q a Lt ϕ ϕ V calclat th ats oϕ an sbsttt n th lt han s LHS an ht han s o th qaton q ϕ ϕ ϕ ϕ 5 ϕ 5 ϕ LHS: 5 RHS 60 Whnc LHS RHS Ths th ncton ϕ s not a solton to th qaton b ϕ ϕ LHS RHS Whnc LHS RHS an th ncton ϕ s not a solton to th qaton ϕ ϕ c Lt Thn LHS 6 RHS 7 Ths LHS RHS an th ncton ϕ s not a solton to th qaton Ans: Non o th nctons satss th qaton 7 Ans: ncton ϕ 5 satss th qaton 8 am 98 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos cl o a H U nctons ϕ Γ S a al nctons o t an / 8

Amn Halloc Math Ecss B Lt Γ U n S n th qaton q no that th ncton ϕ satss th qaton Solton: A ϕ ϕu Γ ϕ S t ϕ ϕu Γaϕ S t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ S t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ S q t B W sbsttt Γ U an ϕ n th qaton q an t ϕ ϕ 8φ ϕ ϕ ϕ 0 S 0 8 0 6 8 S Consqntl S 8 8 9 Q6 am 008 Cons th ollon qaton ϕ ϕu Γ ϕ U 6 q t Lt Γ constant U n th constant Γ n th qaton q no that th ncton ϕ t satss th qaton Solton: ϕ ϕu Γ ϕ U 6 t ϕ ϕu Γaϕ cl U 6 t c cl U 0 ha cl U 0 / 8

Amn Halloc Math Ecss ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 0 6 t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 0 6 q t W sbsttt U an ϕ t n th qaton q an t ϕ ϕ ϕ φ ϕ ϕ ϕ Γ Γ Γ 6 t Not that Γ s a constant 6 0 Γ Γ 6 8 Γ Γ Ans: Γ 0 I possbl n o th n patal ats an a an b an c an an 5 Hnt: Ncssa conton: I has contnos ats thn th m ats o shol b qal * s th ncssa conton o th stnc o a ncton that has th n ats Ans: a C b C c C No solton c th conton * s not lll 5 Solton a Snc an th ats a contnos th conton * s lll an can n o th n ats In o to n ntat th spct to th st o th qatons q / 8

Amn Halloc Math Ecss an t q C Ths C W ha ntat th spct to tho th constant stll pn on No to n C ntat an sbsttt n q an t: C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a Thn o a ha C Ans: a C b C c C No solton c th conton Con s not lll Solton a a an Snc th contons Con a lll an can n o th n ats In o to n ntat th spct to th st o th qatons q q q an t C Ths 5 / 8

Amn Halloc Math Ecss C W ha ntat th spct to tho th constant stll pn on an No to n C ntat an sbsttt n q an t: C C C C C W ha ntat th spct to tho th constant stll pn on an Ths C No sbstttn n q ha C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a b b b b Ths all th contons a lll a an b o ths als o a an b t C Calclaton o th pss l o a non loct l o an ncompssbl sta stat sothmal Ntonan lo Ans: a 8 8 C 6 / 8

Amn Halloc Math Ecss 7 7 b C c C Solton a W sbsttt 0 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 0 q ntcall lll Na Stos qatons: componnt: 6 q componnt: 6 q componnt: 0 q No q s 8 C * Sbsttton n q mpls C 6 C 8 C Hnc om * ha 8 8 C ** No sbsttt ** n q an t 0 0 C C C h C s a constant nall sbstttn C C n ** ha 8 8 C h C s a constant 5 Solton A: ϕ ϕ U Γ ϕ U 6 6 8 t ϕ ϕu Γaϕ cl U 6 6 8 t c cl U 0 ha cl U 0 ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 6 6 8 t 7 / 8

Amn Halloc Math Ecss ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 6 6 8 t q W sbsttt U an ϕ t n th qaton q an t ϕ 8ϕ 8ϕ φ ϕ ϕ Γ Γ t Not that Γ s a constant 6 6 6 8 6Γ 6 6 8 0 6Γ Γ 5 Ans A: Γ 5 Solton B: W sbsttt 6 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 0 q ntcall lll Na Stos qatons: componnt: 6 q componnt: 8 q componnt: q No q s 8 C * Sbsttton n q mpls C 8 C 8 C Hnc om * ha 8 8 C ** No sbsttt ** n q an t C C C h C s a constant nall sbstttn C C n ** ha 8 8 C Ans B: Γ ϕ 6 6 8 8 / 8

Amn Halloc Math Ecss C 8 8 h C s a constant 6 Solton 5 a V st sbsttt a 5 n q an t not that al ats th spct to t a 0: Contnt qaton: 0 a a No ha 5 V U th Na Stos qatons t: componnt: 6 9 q componnt: 5 q componnt: q No q s 6 9 C * Sbsttton n q mpls 5 5 C C C Hnc om * ha 5 6 9 C ** W sbsttt ** n q an t C C C h C s a constant nall sbstttn C n ** ha C 5 6 9 Ans : C 5 6 9 h C s a constant Q7 Cons sta ncompssbl sothmal lamna statona Ntonan lo n a lon on pp n th -cton th constant ccla s-scton o as R m Us 9 / 8

Amn Halloc Math Ecss th contnt an th Na-Stos qatons n clncal coonats to n th loct l V an th pss l th l lo satss th ollon contons: c0 All patal ats th spct to tm t a 0 Sta lo c μ000 /m s an 000 /m c A Constant pss ant / /50 a/m s appl n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 an 0 c W assm that th lo s asmmtc Th loct os not pn on that s 0 c5 Bona con No-slp bona conton V l V all : I thn 0 c6 Bona conton : has mamm at 0 that s 0 0 Th contnt an th Na-Stos qatons o an ncompssbl sothmal Ntonan lo nst const st µ const th a loct l V n Clncal coonats : ---------------------------------------------------------------- SOLUTION Incompssbl contnt qaton 0 q a Na-Stos qatons n Clncal coonats: -componnt: t µ q b -componnt: t µ q c -componnt: 0 / 8

Amn Halloc Math Ecss t µ q W choos as a tcal as an a n a hoontal plan an th lo s paalll th th -as W not loct cto V h an a -componnt - componnt an -componnt n clncal coonats Accon to th assmptons ha 0 0 an os not pn on Snc s th tcal as ha that cto - 00 h 98 m/s hch n clncal coonats s an 0 No sbsttt / /50 a/m μ000 /ms n th contnt an Na- Stos qatons: Snc 0 an 0 accon to c contnt qaton n clncal coonats 0 s 0 / 8

Amn Halloc Math Ecss Ths tlls s that s not a ncton o thmo c loct os not pn on assmpton c concl that pns onl on To smpl notaton not * No sbsttt an 0 / /50 a/m μ000 /ms n th Na-Stos qatons: Th -componnt o th Na-Stos qaton s: 0 q -c Th -componnt o th Na-Stos qaton: 0 q -c Th Z-componnt o th Na-Stos qaton h an 0 q -c 50 000 50 s: Stp W n th pss In o to n th pss sol q -c q -c an th qaton s 50 that 50 om ths qatons t C 50 / 8

Amn Halloc Math Ecss Stp W n th loct componnt W sol q -c th bonas c5 an c6: 0 q -c 50 000 0 c5 0 0 c6 Rma: Tchncall can t nsta aabl om q -c ha 0 50 000 c s no a ncton o onl on C sbsttton 0 an c6 C 0 C sbsttton an c5 C Ths an V 0 0 Ans : C 50 V 0 0 / 8

Amn Halloc Math Ecss 8 W cons an ncompssbl nst const sta stat aabls o not pn on tm sothmal Ntonan lo th a n loct l a b c V Us th ollon qatons contnt an Na Stos qatons h constant µ constant 00 0 an / 98 s m to n: paamts a b an c n psson o pss as a ncton o an Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: t µ q componnt: t µ q componnt: t µ q ------------------------------------------------------------- W sbsttt a b c n q an t not that al ats th spct to t a 0: Contnt qaton: 0 a a q Ths b c Na Stos qatons: componnt: q componnt: q componnt: / 8

Amn Halloc Math Ecss q Th sstm q q q s solabl onl m ats a qal: : c c Con 0 0 : b bc Con 0 0 : b b Con Ths c an b0 W sol smpl qatons an t C 6 8 5 Ans C 6 8 5 9 W cons a scala l n n clncal coonats h an bass ctos a n th psson o th ant a n clncal coonats that s n tms o an a p th sam bass b c am 0; Q5 B ponts ths s otn s as a local bass o clncal coonats 5 / 8

Amn Halloc Math Ecss Solton: In aabls ha a q o clncal coonats ha st t th ats an n coonats th aabl s n both coo sstms Soln th ollon sstm o an t ** W sbsttt th ats ** n q an t *** a To sol poblms a b c an mst pss as a lna combnatons o an sbsttt thm nto *** a om *** c ha mmatl a b om n q b Thn pt om q b nto *** an t a 6 / 8

Amn Halloc Math Ecss an at collctn componnts o a c om ha q c ttn om q c nto *** s a W can sol n th sam mann as n abc bt ths tm can st collct tms an t th slt: a Ans: a a b a c a a 0 S http://nomhannths/amn/ar_000/hl008/deriv_navier_stokesp Solton: N 7 / 8

Amn Halloc Math Ecss N Φ N Φ D Ans: Φ 0 0 0 Solton: Φ ΦV K Ans: K Φ π VolmK π π 8 / 8