A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation

Σχετικά έγγραφα
Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model.

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

Multi-GPU numerical simulation of electromagnetic waves

SPFC: a tool to improve water management and hay production in the Crau region

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Consommation marchande et contraintes non monétaires au Canada ( )

Couplage dans les applications interactives de grande taille

A Convolutional Neural Network Approach for Objective Video Quality Assessment

ACI sécurité informatique KAA (Key Authentification Ambient)

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Jie He. To cite this version: HAL Id: halshs

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Jeux d inondation dans les graphes

Algorithmique et télécommunications : Coloration et multiflot approchés et applications aux réseaux d infrastructure

Développement de virus HSV-1 (virus de l herpes simplex de type 1) oncolytiques ciblés pour traiter les carcinomes hépatocellulaires

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Inflation Bias after the Euro: Evidence from the UK and Italy

Modélisation de la réaction d alkylation du motif zinc-thiolate

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development

Les gouttes enrobées

Microscopie photothermique et endommagement laser

Langages dédiés au développement de services de communications

Coupling strategies for compressible - low Mach number flows

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Des données anatomiques à la simulation de la locomotion : application à l homme, au chimpanzé, et à Lucy (A.L )

Vers un assistant à la preuve en langue naturelle

Mesh Parameterization: Theory and Practice

Spectres de diffusion Raman induits par les intéractions pour les bandes v2 et v3 de la molécule CO2 en gaz pur et en mélange avec de l argon

Analysis of a discrete element method and coupling with a compressible fluid flow method

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

Points de torsion des courbes elliptiques et équations diophantiennes

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Discouraging abusive behavior in privacy-preserving decentralized online social networks

Measurement-driven mobile data traffic modeling in a large metropolitan area

Logique et Interaction : une Étude Sémantique de la

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Geometric Tomography With Topological Guarantees

Modeling floods in a dense urban area using 2D shallow water equations

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

Fusion de données multicapteurs pour la construction incrémentale du modèle tridimensionnel texturé d un environnement intérieur par un robot mobile

Global excess liquidity and asset prices in emerging countries: a pvar approach

La naissance de la cohomologie des groupes

Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc

A qualitative and quantitative analysis of the impact of the Auto ID technology on supply chains

Développement d un nouveau multi-détecteur de neutrons

Voice over IP Vulnerability Assessment

Déformation et quantification par groupoïde des variétés toriques

Pathological synchronization in neuronal populations : a control theoretic perspective

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Une Théorie des Constructions Inductives

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original)

Conditions aux bords dans des theories conformes non unitaires

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe

Transformation automatique de la parole - Etude des transformations acoustiques

Interaction hydrodynamique entre deux vésicules dans un cisaillement simple

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Microcredit: an answer to the gender problem in funding?

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Etude et Mesure de Paramètres Pertinents Dans Un écoulement Réactif Application Au Refroidissement Par Endo-carburant d Un Super-statoréacteur

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

Debashish Sahay. To cite this version: HAL Id: tel

Το άτομο του Υδρογόνου

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Mohamed-Salem Louly. To cite this version: HAL Id: tel

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Erkki Mäkinen ja Timo Poranen Algoritmit

Pierre Grandemange. To cite this version: HAL Id: tel

Réalisation et identification de systèmes bilinéaires homogènes


Na/K (mole) A/CNK


Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Dark matter from Dark Energy-Baryonic Matter Couplings

Modélisation / Contrôle de la chaîne d air des moteurs HCCI pour euro 7.

Buried Markov Model Pairwise


No item Digit Description Series Reference (1) Meritek Series SI Signal Inductor LI: Leaded Inductor PI: Power Inductor

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί


Architectures des Accélérateurs de Traitement Flexibles pour les Systèmes sur Puce

M14/1/AYMGR/HP1/GRE/TZ0/XX

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Transcript:

A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation J. Kron, Michel Bellet, Andreas Ludwig, Bjorn Pustal, Joachim Wendt, Hasse Fredriksson To cite this version: J. Kron, Michel Bellet, Andreas Ludwig, Bjorn Pustal, Joachim Wendt, et al.. A Comparison of numerical simulation models for predicting temperature in solidification analysis with reference to air gap formation. International Journal of Cast Metals Research, 2004, 17 (5), pp.pages 295-310. <10.1179/136404604225020669>. <hal-00576280> HAL Id: hal-00576280 https://hal-mines-paristech.archives-ouvertes.fr/hal-00576280 Submitted on 14 Mar 2011 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

!"!#$% &&'"#'()%"*'+ $&!',*# '+!!"!+* ' *' ($+ # ' +- %"!, *' %""" &,'$.*$! # ' &,* # '+!!"&"'"$ #"'"""!" '! "&'%'#' +!& +, " % $!, "&'!/, #&%"!,.*"! #&+ $ %%'"&!"**')**$-!##'&'+ +%&!%$**' %&"(-"!,&'% ++'%!$!0& "% )$$ #!%"!,*' %"" % +*' &!'*'!%! ")!&.*'!+$#!!," &.*'!+$#%")',!#' +&" $!!#!%! "("1% $!, #%-$!'!%$ %"!," #%!%$023!''-$043!0523,$$ -"" &"#!!," &+6 '!##'%"()&*'!%! " #&+ $"&%$# '+! #&!',*'!"%"" 7 ''"* % 8!%&$$$ 7'!" '+"9'!. % $"!" '!" 74:2; <54 5:=5> *&!!* $!" '% ' &" ''!/"" #$$*' #"" ' ')!&& %/& $+ )$$ "! '"%!!"!")!&% $"!"'!" 7'# ''!$ ' %""!,?7@ *&!!* $!" '% )!, #$$ *' #"" '!" )!& &!A'"!- # ( *'+ #$$',- "'!"$ &"!")!&& '-"! #&%&!A'"!- '+-)""! ''"'%&"%!!" B"'!$-"+" "*!$ '!,&"-!" ))!&+(, '+-

! c p E fs h "*%!#!%&?/, 0 0 @ C,+ $"?@ A $+'!%" $!#'%!?0@ &'"#'% ##!%!?7@?+ 0< 0 @ I m!!-" '?0@ p = 'σ *'""'?@ 2 "'!0'""!!A!-!.?0@ s = σ + pi A! '!%"'""" '?@ T T S T L α h f ε ε tr el ε pl ε vp ε th ε ρ? T = L @ ρ? T ρ? T L @ S +*''? 'D7@ " $!"+*''? 'D7@ $!1!"+*''? 'D7@ &'+$$!'.*"! % ##!%!? 0 @ "*%!#!%$& ##"!?/, 0 @ @ < 5 "&'!/,'! 8'$!AA $+%&,"" %!)!&& $ $!1!0" $!'"!!?0@ "'!'" '?" 0 @ $"!%*' #&"'!'" '?" 0 @ *$"!%*' #&"'!'" '?" 0 @ A!"% *$"!%*' #&"'!'" '?" 0 @ &'+$*' #&"'!'" '?" 0 @ pl < eq 2 ε pl ij pl ij = ε ε A!"" 1!A$*$"!%? ' A!"% *$"!%8 vp!" # pl@ < eq 2 ε ij ij "'!0'?" 0 @ = ε ε A!""1!A$"'!0'?" 0 @ pl = t pl eq ε 5 eq ε dt A!""1!A$*$"!%? 'A!"% *$"!%8vp!" #pl@ "'!?0@ <

ε dt A!""1!A$"'!?0@ = t eq ε 5 eq λ ν ρ σ &'+$% %!A!-?+ 0 0 @!"" % ##!%!?0@ "*%!#!%+""?/,+ 02 @ 7%&-"'""" '?@ σ = 2 < s s A!""1!A$"'""?@ eq ij ij σy "!% -!$ "'""?@?*$"!% &'"& $8!# eq σy +'!$!"$"!%@ σ < & 2

! "#!!',*# '+!!"!+* '*' ($+! +-%"!,*' %""""!%!&" $',!#$% &&'"#'()%"!,+ $ '/ &% %! () A'-!,&'"#'% ##!%!&# '+! #!',*&"(*'"!A'! " '!%$"( + $%"!,E0:F&,*# '+! &"(# "')&&" $! +$"&$$!""',,& '"!"&*'""'#' +&$!1!+$E4F&&'"#' #' +&+$ &+ $!" +!(-% %! (# '!',*&"# '+& +%' "% *!%!',*!"# '+ &% %!!"'% && '"#'% $( "%'!("&"+ #&% %! &'!! A'&"$!EGF&%" # $+!!+(" $$ -"&&'"#' '!!!"!"!,!#!% E=F 7 A%! &" (*' A &A,$!,!($##%E5F&,'$.*$! #&!',*# '+!!"&"&'!/, #&%"!,.*"! #&+ $ %%' "'""""'!" #' +&'+$,'!"%''!,&%"!,*' %""E50;F +&+!%$ + $$!, # %"!, *' %"", A'!, 1! " &'+ *&-"!%$ *' *'!" ( '-%!! " ' ' + "*'%!%$%"!,*' %""" & &'+$ ( '- %!! " '!##!%$ %! & ',&$- # ' $$ *!" # & + $H+$!'#%&'" # '&!"!"&&&'"#'%A'-% "!'($-)!&!++*''$,&#% #&%"!,!$$&"( '-%!! "%!& '"$" #&'+$")$$"&'+ +%&!%$+ $$!, #&*' %"" &*'") '/.*'!+"&A( )&'+*''"!"*$%+" #& %"!,&+ $&A(+"''!," $!!#!%! *' %""&, +'- # &"0*&"(%& " ( #"!+*$%-$!'!%$"&*! '' +/!* ""!($ % & '"#'% ##!%!#' + & +*'' +"'+" &!" A$!# ' & )& $( '- #&%"!, &!+ #&*'") '/!" + $&.*'!+"%'!(( A+'!%$$-)!&& %$%$&'"#'% ##!%!"( '-%!! &!##'&'+ +%&!%$ **' %&""(-# '!##'"!+$! *','+""& $("!&+ $$!,) '/ &'"$" # & + $$!,*'!%! "','!, &" $!!#!%! *' %"" ")$$ " &!"*$%+"# '+!,!',*"& $(% +*' %& &' &.*'!+$ '"$" &"!+$! *','+" "&')' 702 E:F E4F 7EGF7E=F &$$ -"%& "# '&.*'!+")'%!%$023!? 0+!#!@$043!0 523,?,'!'#!@!+$! ) '/&"'$!'(!&!"'E <F (".*'!+"*'# '+ '$!'(- %&+! A"" E<5F )A'! &!' ) '/ $- & $!',* )",!A & &'+$.*"! # & + $ )"!"!,!"&#' +&% '%! #&%"!, $%&'&!&("&!! "&#( "'!" #%"!,.*'!+"&A(*'# '+!%-$!'!%$+ $)!&% '!!" %'&&!,& #&+ $)"55++ &.'$!+'" #&% ' & >

%"!,&+ $)'<> ;5<;5++ '"*%!A$-, +'!%"%'!*! #&.*'!+$"0*!""& )!!,' &+ $)"+#' +$ )$$ -"$?5>37 52;3!<3@&% ' )"+"1'I(#!$$)!&!$( "&( +& * #&% ' %"!,+ $)'!"$!A&'+ % *$" #-*)'!"'!&+ $ # '!&%"!, $$$!,+!&!,& #&"0*&+ $&'!$!"% () & &'+ % *$")"( 5 ++!&+$ ; ++ 7 $!,%'A")' '% '&',& &" $!!#!%! *' %""&"("1% $!, ) -*" #.*'!+")'*'# '+8 )!&%!%$023!& &')!&$0 43!0523,"%"$$ -"&"'!" #.*'!+"*'# '+)!&%!%$023!" %"$$ -&A(*'"'$!'!! $.*'!+"'!")!& &'$$ -"&A ( E< <<F&+$)"* '#' +& * #&+ $&**'"'#%)" '*!$-% A')!&,'$!"$!,+'!$&!!!$+*'' #&+ $)" 4 D7 25 D7# ' $023! $043!0523,'"*%!A$- & "!+!!!$ +*'' #' #!$$!, )" 44= D7 4: D7 # ' $023! $043!0523, '"*%!A$-!,'<"& )"&% $!,%'A"#' +&.*'!+" #&) $$ -"&#!,' $- ) #' +!'% ' +*''%'A" '!"*$-J /! & + $ & &'!&%"!, &!"*$%+" # & + $ & %"!, )' +"' )!& $!' A'!($!##'!$'"%'"?BK"@ *$%%% '!,!,'L'I("&A(" % % & BK" & +"'!,*!" & 1'I ("#' I! &" $!!#-!, "&$$# $$ )!"!+ A&+ A+ #&!'+ $)$$)"+"'!"% #++#' +&!'+ $"'#%&"!I #&!',*)"&'+! " &!##'%() & + A+" # &" $! +$"&$$ &!')$$ # & + $ ""' & &!"*$%+" %%'"-++'!%$$- &-)' +"' &' $ %! "' &%-$!')!&<5D!()&!"/! #.*'!+ " $)-" "& ), "-++'- $- ( # &'.*'!+" )" "-++'!%$.*'!+" &! "& ) "-++'!% (&A! ' )' $)-"!"%' "!% & +"' & '"#' ) $ ( **$!%($ & )& $ ( '- # & %"!, &')!"+.!++!##'% #<5M+)"%%*!&!"*$%++"'+"!,'2&.*'!+$$-+"'!"*$%+" % "1$-!',*" '"& ) # '&).*'!+"*'"&'!") '&!,&&' ) #&'+ % *$")" *$%!&A!%!!!" #&+"'!,*!"# '&!"*$%+ && '"#'% ##!%!?7@ &!'#%()%"!, + $ h )" '!A#' +&/ )$, #&#$."!&A!%!!- #&!'#%&+&+!%$.*'""! " "!+h#' +&+"'+*''"!",!A"8 λ casting T r casting T = h? Ti casting Ti mould@ = λmould?@ r mould ;

)&' λcasting T i casting λmould T i mould ' &&% %!A!!" # &%"!, & + $ ' &!'#% +*''" # & %"!, & + $ &!'#% +*''"! & + $ &%"!,)'.'* $#' + &!' '' * $- +!$#!!, # & +"' +*''" & +*'','! &"'#% # & + $ +" $" ( / )! '' %$%$ & & '"#' % ##!%! & +*'','!)"/"&'!A!A #&#!* $- +!$&"'#% #& + $ & & '"#' % ##!%!" % )!& &!" +& #' + & +"' +*''!"'!(! ',!A!!,'> )%#&!(!#(! < +'!%$"%'!*! &+ $$!,) '/&!!!$!+"! " #&, +'-'",!A!%! '!##'% +*! $ +!"'!!#!8!@% '!!@+$?%"!,@J?!!!@+ $?!A@!"$!!+ "*!$!"%'!"! "&A (!+* "!!!##'%" #!! $+ +"&"&A( " *!, &" #)' $$ &'0!+"! $ +"&" '+"&" #'"'!%,$'"% '&A("!$"',!A!%! <<# '%&" #)'**$!%! <<&'!##'-*" #%$%$! " &(%&+'/!,.'%!"&"(% %!&'"*"8 $* &!" *'$!+!'-"*"'A""% +*'!" ()&&'"#'" $A'" #&!##' +'!%$% "&)& $+ $!"% "!''!,!&!#$% #&!',* & % $!, #&"*%!+!",$% )*+,-. &" $!!#-!,*' & + $ # '+ &% ' &!"$! '""+'!,!&!+*7!"%#' +&.*'!+" ".*$!! %! &'!" ##%!A % *$!, #' + & +%&!%$ %$%$! )'" && '"#'%$%$! $- &% *$!,#' + & &'+$ %$%$! )'" & +%&!%$ %$%$!!" /! %% &',& & +*''*%- #&*'+ $% "!!A*'+'" /* +,-. "!"* < &" $!!#-!,*' & + $ # '+ & % '&!"$! '""+'!,! )A'!&!"%"&#$$&'+ +%&!%$ % *$!,!"% "!' "!%&7!'%$-*" &,*&!%/"" )&!%&!" '"$#' +&+%&!%$%$%$! <2'!$"*' *'!" :

' & +'!%$ "!+$! # & %-$!'.*'!+" # ' +'!$,' *" )' % "!'8!@ % '!!@ +$?%"!,@J?!!!@ + $?!A@!"$! ' & &'+$ "%'!*! # & *' %"" & # $$ )!, +'!$ *' *'!" & (,' 8 & % %!A!- λ?t@ "*%!#!%+"" ρ?t@ "*%!#!%& c p?t@!! $$- &$& ##"! h f &A $! #" $!#'%! f s?t@ &$!1!"" $!"+*''" T L T S &A (/ )# '&%"+$ '&+$&+ $),' +*'' **' *'!" )&'"# ' &% ' &!"$! ) "% " " &!#&'$" #&$&!"+ $$A! h f f s?t@&a$" # c p?t@"& $ %!-% '!(! #&$& $&,& & % '!" %" )!& 1'I (!!" + $$!'$- (- "!, " *' *'!" ' & +%&!%$% +*! &# $$ )!, +'!$*' *'!")'% +*!$8 C,K" + $" E?T@!"" K"'! ν?t@ &'+$.*"! % ##!%! α?t@ -!$"'"" σ y?t@# &$!'&'+$.*"! % ##!%! α?t@&'$!aa $+'!% " $!!#!%! "&'!/, ε tr )'%#' +&*'!+'-ρ?t@ &!##'**' %&""" %!)!&&!##'% "*'"!%! <<!!" ""+&&+'!$(&A"$"!%$$-!#&A!""1!A$"'""σeq!""+$$' &&-!$"'"" σy# σeq.%" σ y!!"""+& *!, &+ $ & +'!$(&A"!&'*$"!%$$- 'A!"% 0*$"!%$$-8 σ σ eq eq < σ $"!%(&A! ' y > σ $"!% 0*$"!% y '$"!%0A!"% 0*$"!%(&A! '?<@ "%'!(&"'""H"'!%'A( A&-!$"'""!)"""+&&$"!%0*$"!% +(',0", "'""0"'! + $ E<2 <>F%( **$! $&,& & # '+! # $!1! "+!0" $! &!,& +*''" $!0" +$$!% $$ -"!" (A! "$-"'!0' * &!"%&!%&"(! '' (($ % +*'&!##'+'!%$ % "(-"!,% ++ % "!!A+ $&&# '+'!%$% ""!&!""- %'""&"!&*$"!%',!+"'""?'#'%@"'!!"'$(- σ eq σy n ε eq = + n # 'εeq ε y?2@ ε y ' ε = σ H E!" & +.!++ $"!% "'! (A! "$- & '#'% "'! εeq y y '*'"" & $"'! &!" &"+ # & $"!% &?A!"% 0@*$"!%"'! &!+"! $""*'+'n?t@(&a"$!/&!a'" #"'!&'!,% ##!%! 'n N 1?2@'"! /K"$)"& )" $-$"!%(&A! ' )&'"# 'nn & +'!$**' %&"!$*$"!%!-? σeq!"%$ " σ y )&A'&A$ # ε eq@"&!##'+'!%$% ""!##'"'""0"'!+ $" &% "!!A!# '+!,!A $$+'!$"*' *'!""!&!""-%(+A!$($(-&& '" 4

(- 1?2@ +" ( '"#''! & + $ " (- & % ''"*!, *','+" & *' %')!$$("%'!(,&')!&&"%'!*! #%&+'!%$% <>!!$%!! " & +6 ' (6%!A" # &!") '/ ' &"!+$! # &,* &# '+"() & %-$!'!%$%"!,&+ $(-"!,!##'**' %&" % +*'&*'!%! )!&.*'!+$#!!," %! A'$ & "/(-"!+$!, & + $ #!$$!,&"!!"""+ "$'-!!%!%! &&*' %"""'"(-% $!, # +$)!&!# '+ +*''!"'!(!! *'& ""+($- # & + $ & % '&!"$! &A!,&"+!!!$+*'' <; '-%!! " " '&'+$( '-%!! )""+% "7 #h out N<5+ 0< 0 ()+ $!"$! "''!,&+*'' #&"''!,)"""+ (T out N<5D7 ) %& *!' # +'!$" #' + % ' +$ + $!"$! ) ""+ &.!"% #&'"#'% ##!%!& "7")'%& "!&' (% "!+ * '* -,*)&!%&# '+"()&+'!$" &7()*'% '!"""+ (% " h castinghcore N<555+ 0< 0 % ("& )&&!"""+*! &",$!,!($!#$% &'"$""!%&% ''*!$- '%&"&+*'' #&+$ &&.%&,% ##!%!)!&!"$! &"(#!. '(!''-A$ h OHinsulation N >55+ 0< 0? O ""# '%"!, + $% '@ $&,&&""+*! #% "A$ #&7()&%"!,&+ $!" '$!"!%!&!"%"!($"% +*'!" #&% " A'-#+$$A$&!"!"& (6%!A #&%$%$! "% %!"*&A%& "&% "A$",!A! ($ & " A$" % ''"* & +.!++ A$" +"'! &.*'!+(# '&,*# '+" "!$$"'(-!,'"> <<7028 7!"!0& "#!! $+% # '%"!,"!+$! " '!,!$$-)'! & '-"! #&%&!A'"!- )A' "!%&'$-!+" #7+- #'"&A( (- 77 '!$" ' %""" B 0*' #! "! # (-& '-"!!=G:&%$%$! "!&#'+ #&*'"*' 6% &A( )!&A'"! <:E:F '$$$ &A$ *+ #7+'!%$% "!+$"'"""!" '! " '!," $!!#!%! % $!, #%"*'" 2 &"()'! & '- "! E<;F &!"" #)'% ""'"$#!$" +$- +*''" $! " #' +, G

7! '' *'!%"'"""!" '! "%"(-!& +, "% $!," $, " "1% ##!$")!& +*'''"$"!" A!$($ 2%( " % +*$$-!* # 7 +-*'!%"'"""!" '! "# ' - +'!$ %$""""!'J+ $ % ' '%"!, '# '$$&' )A'!#) +'!$"'%& " )&!%& '!!!$$-!% % 2% "!'" & ) +'!$" (!*'+ % %&'# ' $-&# '+! #&%"!,&"("!+$ &%$%$! #"'""" # '+! "!"(" * &'+ 0$"!%0*$"!% + $ &1! "''!A#' +&'$0""1! "')'!"# $$ )"8 el pl th ε = ε + ε + ε el + ν ν + ε = σ σ I + T ν T ν '? @ σ '? σ@ I E E T E T E f = σeq σy 5 2 ε pl eq pl ε = s!# f = 5s8 σ 5 ε = 5 < σeq th ε = αti &')!"?>@ & "% 1! & ) $" '+" %% # ' & +*'' *%- # $"!%!-% ##!%!"Eν&&!'1!!"&%!!!+* "(-&A!"" *$"!%!-%'!'! &-!$"'""σ y %A'-)!&&*$"!%# '+! ε $!'"'!&'!,+ $&# '&1!!"&A!""K*$"!%#$ )'$!" # pl eq %% '!, ' &# ' +'!$,' *" + $ %"!, % '!"$! " &'0!+"! $,'!% A'!, 1'' # &#$$ + $)" "!, "!, G2:5&.&' 55G *&' <24> " &% ''"*!,%&'%'!"!%"!I # & $+"!" ( >;++ '&&'+$"!+$! % "!+"* tn5;")""&"("1 % *$"!+$! #"'"""!" '! ")'*'# '+)!& tn" &"&'!/,!""%'!((-+!#!&'+$.*"! % ##!%!&" $!!#!%!!'A$ &A$ #α!&# '&1! #?>@!"%& ""%&&8 L T S tr 2α? T @ = ε?;@ )&' tr ε <<<8!"&"&'!/,'! "" %!)!&&" $!!#!%! P!"20% ++'%!$"!+$! " #)'(" &#!!!##'% +&!"% +* " #"A'$+ $"# '!##'*'* ""$!/%$%$! " #"'"""!" '! " +%' ",',! +!%' "'%'*'!%! "# '.+*$&'!"$" ("A!$($!&*','+ =

$%&! "'""!" & + $ " (- # ' %$%$! " # "'"""!" '! "# '+! " $!!#!%! *' %"" &*','+ +/" &'+$%$%$! "#!'" "" &%$%$ +*''!"'!(! "!0# ' "'"" & &'+$ &&'+ +%&!%$%$%$! "% $ (% *$ '&"'"""!+$! &'+ 0$"!%0*$"!%+ $!"% "!'!"(" &"+ 1! " "?>@ & # $$ )!, +'!$ *' *'!" ' A!$($! & (" # 8C,K"+ $"!"" K"% ##!%! &'+$.*"! % ##!%! -!$ "'""% ##!%!" #"'!&'!, $%&! # &"'""A'"! >5)""!&!") '/ '&# '+'!$,' *"#!J + $ %"!, % '!"$! &#$$, +'!%$+ $)"!"%'!")!&,'! "!,:5:;<GA $+$+"=5>5 #&"A $+")'"# '&%"!,?A', %&'%'!"!%"!I <> ++@ ' & &'+$"!+$! +!%!+"*% ' $$!,!" **$!!% % *$ +*''0"'"" %$%$! " ' * ""!($! & +*''!"'!(! )" %$%$ #!'" # $$ ) (- %$%$! # "'"""!" '! " &!""("1"!+$! )"*'# '+)!& +.!++!+"* # <5 "% "&"&'!/,)""%'!((-+!#!&'+$.*"! % ##!%! $!/! 7028"%! << & *','+ ",!A & * ""!(!$!- %$%$!"*$%+"! ) % % +'!$""!+$ "$-&'# '&%$%$! #!',*& (+!) "*"J )&'&!"*$%+ #&%"!,)"%$%$ )&'&!"*$%+ # &+ $)"%$%$ <<27 7!"% ++'%!$#!!$+" #)'*%/,# '%"!,"!+$! & %!" A$ *(- &% +*- E<:F % "!"" # (" + $ "A *! $ + $" & " $% "!"" # " $!!#!%! " $A')!&*' * " *' %"" '"&!! $+ $"'"&!, $! '""!!!%' "'%' $%' +,!% A'" '%! & + $ %% " # ' '"! 0$!' 2 & % %! & % A%! '!! )!&*&"%&," ' "!, &$*- # '+$! & &.%&, ()#%!, +!"%(')!&%!%! ' 0%!%!+"&" '"#'"'""%$%$! "'% *$&'+$% %()*'"!"% "!' (-+" ###%!A7 h eff )&!%&!"#!" 5

h eff = )!& + h h + h 5 air rad h air λ = g air?:@ λ air (!,&% %!A!- #!'?I' # 'A%+@ g&,*)!& h rad &'!! & '"#'% ##!%!&% ##!%!h 5!"&#$&'"#'% ##!%!)&,*.!""8h 5!"* ""!($-'$ &*'"% #%!,&!'#%!"A$(!,&,!A(-&'! #&%!,+'!$% %!A!- A'&%!,&!%/"""','" +%&!%$% %()!##' +!"!!" +,(-,+,', +$!*$!'# '+$! E<4F &"'""+ $"A!$($!7!%$&'+ 0$"!%0A!"% *$"!%+ $ #& 'I--*E<GF &'+ 0$"!%0*$"!%+ $?"!+!$' 1?>@@$"!%+ $# ' &%"*'")$$"'!,!( -+ $# '+ $+'!$"E<=F$$+'!$*' *'!" %(%& "+*''* '% "&!"% +*'!" &'!,! $!'$"!% &'+ 0$"!%0*$"!%+ $")'" " ' *!% /!+!%&'!, + $" ' A!$($ '!" ' *!%&'!, $!' # '+$! * )'$)# '+$! 'A!$($8 eq y pl eq σ = σ + Hε '"*%!A$-σ eq βε = σ55 +? σy σ55@ e?4@ H!"&*$"!%+ $"σ55&$!+"'"" β&&'!,.* "# '$!1!0" $!% *$!, "'"""!+$!!"*'# '+)&$+"'#$$-$!1! &"'"""!+$!!""')&&#'%! #" $!!#!+$!$+.%",!A$!+! '%! # &"!+$! ")'*'# '+# ' 1'' # &, +'- +"&% "!"!, # '&'$ $+"?<> 4;: " 2: 2= $+" A',%&'%'!"!%"!I 2> ++@ &' +"&% "!"!, #('!%/ ), $+"?< =G4 " 455 $+" A',%&'%'!"!%"!I;>++@)'" '&*'&'"#'%$%$! "!"* $-&'&'$+"&)"" )A'!)"""'(-+(' #% ' $ "!+$! "&" #'&'$&.&'$+"&"$ &"+'"$" " #& "!+$! " # ' & $$ -" $043!0523, $023! )' *'# '+ "!, ( & +"&" &'* ''"$" #"*" < 2 '#' + &"!+$! " "!, & +"& % "!"!, #('!%/),$+" &"'""+ $"%& "# '&"!+$! "'8'!,!# '&% '&!"$! $!' $"!% # ' & + $ $"!%0*$"!% # ' & +$ & +$ & +(',0", % "!!A1! &"(**' %&(-$"!%0*$"!%$))!&$!'&'!, <<>7 7 P!" % ++'%!$ #!! $+ % &!+" & &'0!+"! $ &'+ +%&!%$ $-"!" # %"!," & %!" A$ * (- 7 B!" # %" & %$%$! # # '+! " "'"""! & pl eq

%"!," /!,! %% * ""!($ # '+! "! + $"!%$" + $#!$$!, + $ *'+!!, * ""!($!!!$!"! # A$ %!- +*'' #!$" +!%+"&!,+ $E=F!('! & + $% "!"" # +$! +!& '"#'" $A' # &$*- -* "!, $!' +*''#!$!'&'$$+" #+$! +!+%&!%$" $A' (" +!. A$ %!-0*'""'# '+$! E 25F & +%&!%$% %() &!##' +!"?&%"!, &!##'% +* " # & + $@!" +,(- *$-0 -*$, '!&+E25 2F&&'"#'&+%&!%$" $A'"'"',$-% *$ %&!+!%'+ & '"#' +%&!%$'" $! '*'# '+ && '"#'" $A' 7"%*$ %$$- &"!I #&!',* ' &$ %$% % *'""'())!##' +!"&+%&!%$" $A' &% "!!A*'+'" '+*''*E25F,'!,% "!!A1! " &%"$$ -%(% "!'!&'"$!1!0-* '" " $!0-*%! "+!+ "*'(-%'!!%$+*''T C E25 2< 22F( AT C *'&'+ 0A!"% *$"!%+ $!""&!"%" &% +*'""!(!$!-!" $- & &'+$% '!(!? $"!%!-@ ""& )!1?G@&!"!"%$""!%* )'0$)+ $# ','$!I )!#$!" & "" %! 0!+"! $'$! "&!*!",!A (-1?=@&$!+!%" #&)!(&A! '!" (!# 'mn&!"%" KN 2η)!&η&-+!%A!"% "!- #&$!1!$$ - vp th vp 2 vp m th tr ε = ε + ε ε =? εeq@ s ε = ( αt + f 2 s ε )I?G@ < K vp eq m σeq = K?ε @?=@ $ )T C!##'&'+ 0$"!%0A!"% *$"!%+ $"%("&!""- &+ $ "%'!((- 1?5@&"(%& " 1!?5(@-!$" &&-* $"!% /Q" $) )&!$?5%@,!A" &.*'""! # & A!"% *$"!% "'! '?&.*'""! () ('%/" '%" I' )&,!A8 )& σ eq!" $ )' & & *$"!% &'"& $ vp eq n σ y + H?ε @ A!"% *$"!%# '+! %%'"@ el vp th ε = ε + ε + ε el + ν ν + ε = σ σ I + T ν '? @ σ T E E T E vp n m eq y H vp 2 σ σ? εeq@ ε = s < σeq K th tr ε = ( αt + f 2 s ε ) I ν '? σ@ I T E?5@ ' +&!"" #" '1! " & 0!+"! $$)%(.'%8 <

σ eq y vp eq n vp eq m = σ + H? ε @ + K? ε @?@ & $!1!0" $! % *$!,!" ' " # $$ )" & " $!0-* #!! $+" ',',!?! +"& A$ %!- 1$" +'!$ A$ %!-@ )&'" )& $!1! &- ' $'!0,',!?+"& A$ %!-!"%$%$!*$- # +'!$ A$ %!-@ &!" *'A" +"&,'%-!%" # &'+$% A%! $$ )" & +"&( '- # $$ )&A $! #&#'"'#% #&'+!!,$!1!* $& + $ * "&'!/,E2< 2>F!('! # / A, # &"-++'- # &*' ($+ &#!! $+ +"&"&A( '"'!%,$'"% ' #<;,'"&+"&"!I"!&*')"( < 2;++!&*' 2++!&+ $,'!,% "!!A1! "! '' % +*')!&& &'% " $-&" $!0$!/% "!!A+ $&"("?1?5@0?@@)!&% ##!%! K(!, $$! '' **' %& & +(',0", "'!0'!*$"!%0*$"!%+ $8*'+'"H(T)n(T)&A(!!#! #!1?2@ &)& $+*'' +! 7 & &'+$ $!'.*"! % ##!%!!" % +!%$$-#' + & *'!+'-ρ?t@,!a*!)!" '!"%!#!!$+ α!1?g@ '?5@!" #!"8 α = 2? T t+ t T t @ ρ? T t+ t ρ? T @ ρ? T t @ t @?<@ )&'&"*%!#!%+""!"!'* $!&($ρ?t@%"&"&'!/,'! ε tr!" " &% ##!%!α!"" I'!&" $!!#!%!!'A$ +!%!+"*% ' $&"(**$!# '&'+$&'+ 0+%&!%$"!+$! " )!&+.!++ #;" /%&#(""!#! )! ".*$!!%!!&!"#!'""* &%"!,&+ $'% "!''!,! &!#$% # &!',* && '"#'( '-%!! "!"!, ' &'# ' $-*'& '"#'!"% "!' )!&% " 7" &!" %+!%*'$!+!'-"* "'A""% +*'!" ()&&'"#'" $A'" #&!##'+'!%$% " 2$043!0523,$$ - "* %("!!,'; & &'"$" (!)!& &!##'"!+$! % " ' %$ " 2

&% ' &'"$"#' +7"$!,&$-!##'#' +& &' "?"!,'; &'+ % *$$ %'NG++@ (&!"%('!(!##'%!&+"&!, '+"&!,% A!% &% '&" (+"&* &.!0"-++'!%$.!"&!" *''(" &&!, # &% ' (&" #'&'% "1%(%" # &'*!& "'! #&% '&)&A$'-+!!%! &*' &% $!,%'A"&"$%$ %! "'A'-"!+!$'?!,;7@ *'.+!! # &'"$" $" &# $$ )!,'+'/" ( A & 1"!0%!% +*'' #;:D7 )&!%&=23 #&$$ -!"" $! $$'"$"'!%$! +*''!'A$ #:D7$ )&!"+*'' &"%'!'A$",' )* <>D7#'% +*$" $!!#!%! &!"*'"!!"+!!' A$ #<5D7!,' ;7!$$"'" & $',!##'% () & %$%$ +*'' & +"' &"+$ %!?+!0&!,& #&"*%!+ '!$% 0 '!:=++! &%"!,44++!&+ $@&!"!"%$'$- &%&!% #&% "7 & A$ #)&!%&&"(%& "%$ " & +.!++ # & +"' A$" & %'" #&7,* *!,?!,>@!" /! %% &!"$" A'"!+! # &&.'%#' + &*' & +*'' # &*'!" & '"!+ (- G5 =5 D7 &!" %$'$-!$$"'" & %'%!$!+* '% # & &'+ +%&!%$% *$!,!"%&"!+$! " &+ $ $$&'"$"'!%$!!'A$ #4 GD7?!,;@& A'"!+! #&&.%&,$"!&!"%" A'"!+! #+*''" (- ( >5 D7 &.*'!+ & +.!++ # +*''&**" +%& $' & )&!"% +* 2<%!%$023!$$ - "* &%" # & %!% $$ - &!##'%"# () &'"$" # &!##' % " ' + ' "!,!#!%?!, :@ &!"!" *' (($- & " *&" %&, "" %!)!&&!"%!%$$ - )&!%&!"+ '"A'&# '&*'A! "$$ -&!" "A'$-""&!##'+'!%$$, '!&+"" '&*&"%&,!'" #$$ &!##'%"'#!&*'?!,:7@ )&')!##',' *" #'"$"**'87 & 77 & &'& & +.!++"%' **'" ( <; D7(# '% +*$" $!!#!%! # &%"!,* >;D7#'" $!!#!%! &'"$"#' +7**' (##% (-" +/! # R"!')-S ##% &'$" # $& $!, +'!%$ *' ($+"!A'-"+$$$!1!H" $!!'A$".*$!!E:F &**'&%*%!- +& $&,&% +*$+(-* "0!'! % ''%! +!,& (%%',&!%" #%!%*&"%&,,'!,&% +*'!" )!&+"'+*''" &"+% %$"! "%(')" # '&*'A! "$$ -&'"!+! #+*''"!&%"!,A'!"#' +:5 =5 D7 *!, )&!%&,' * #'"$"!"% "!'?!,:7@ &% '&+ $?!,: @ &"+!##'%"$,!%$$-**'() &% " ()%$%$ +"' +*''"?+!0&!,& # &"*%!+ '!$% 0 '!45;++!&%"!,44++!&+ $@* & # >

" $!!#!%! &"+),' *" #'"$"%(!!#! )A' )&!$7 7"& ) A'-"!+!$''"$" "& ) + ''*!% $!, & & &' &' % " &'# ' *','""!A$-!##' #' + 7 & +.!++ +*''!##'%)!&&+"'+"!"( =5D7?!,:@ )! &"% "* #&% +*! " &" $!!#-!,*'&+ $# '+ &'+ +%&!%$ % +*!!" %''! & " ) +!" & % ' &!"$! '""+'!,!)*'+ $!+*7%#' +.*'!+$!"% "!' ".*$!! %!!" A$ )&!%&!" ""+!# '+ &)& $!'#%!"!'%$-%#' +&.*'!+$+"'+" &'!" ##%!A% *$!,#' + & +%&!%$%$%$! )'" && '"#' %$%$! $- & % *$!, #' + & &'+$ %$%$! )'" & +%&!%$ %$%$!!"/! %% &',&&+*''*%- #&*'+ $ % "!!A*'+'" %" #&!" 0)-% *$!, &"+'""# '"*%( ("'A# '& % $!,%'A"*'"!!,'"4G,'!,*'+ $!"*$%+"!)!$$ ("&&''(!,!##'%"()&!##'% " 2<$043!0523,$$ - "*< %("!,' 4 & &*'!% +*'' A $! " '!,,'+ )!&&.*'!+$+"'+"&!"!"1! '+$"!%!&!"%"&% +*! " &A " & 7"!'%$- %#' +.*'!+$ +*'' +"'+" & " % ##!%!"&A %'",*# '+!?!, >@8% "1$- &% $!, # & *'!""$ )'&!"* &&!, #&+ $!"$" "$ ) )#'&!!!! #&!',* ' 55"&+*''A $! "%$%$(-&!##' % "'A'-"!+!$' "# '"*,'!, & +%&!%$"! # &% +*! "!,' 4"& )" & A $! # &!"*$%+ #&*'+ $"'#%"&*'H+ $!'#%?'N4;++@+!0 &!,& #&%"!,&.*'!+$%'A"'&"+ ""!!,'2&-"& ) &.*"! #&+ $ )&!%&"(!$!"">55"&(,!!, #&% $!, &!".*"!!"# $$ )(-&*'"'#% * 55")&!%&!"&!',*# '+!!+ &+ $.*"! )&!%&!", A'(-&'+ 0$"!%!-!"% ''%$-*'!%(-& ) % "&)'($ /!! %% 87"& $( & &%$%$! " )!& 702 7 ""+ '!,! + $&%" #7 &" #)'% '!+*7"< A'"! #&% +< )""# '"*< (*'+!!, $-'!,!+ $ % +*! " &% +*'!" " #&!##'%'A"# '!"*$%+ #&*'"& )&,!"*'"! %(" & 702 7?<@"& )!++! % '%! # & $$ - ( & +*$! &!+ A $! # &!" # '+!!" $$-!##' 8!'+!" A'-"+$$)!& )&'" & ;

A $! '!,&#!'":5"!""!+!$')!&7027?<@ ( &(% +"% +*$$-!##'8 G55" &,**'!%(- 702.%" &.*'!+$ (- ;5 3?' =55 µ+!" #:55 µ+@ &,* *'!%(-7!"&'!+",''?' G55µ+@7"& )"+-( &("? '$"(T@'"$ )!&!!!$.*"! #&$$ - # $$ )!,&+ $ ( )!& '$-,*# '+! (-% +*'!" )!&&.*'!+,*"!I)!%(!,,' &&+"' 8G55" <55µ+!" #:55µ+ &!"!"*'"! #+%&!%$'"$"%(%"(-)!##''" "8 *'!+'-" '% # '' '"!" & +(',0", $)!"$#!" $"!%0*$"!% % "!!A1! )&!%&&(%& "# '!""!+*$!%!- (%"$$&% " )' ($ % +*!? ' $" % +* )!& **' %&!, $"!%0*$"!% % "!!A 1! @ )A'!!" )$$ / ) & & % "!!A 1! " # +$$!% $$ -" &!,& +*'' ' # $"!%0A!"% *$"!% -*!%$!,"'!' *%-!! 1"! "%('!"( &1$!- #&+(',0", *'+'" &&A( " & "*'+'")' /#' + & (" # &'!" ( & &!''$!(!$!-!" $!+! "*%!$$- &!,& +*''($ )&" $!"+"&-$!1!" "%&$"!%0*$"!%+ $!" %'!$- '$A$$,&' &!"+!,&(*'!+'-" '% #!##'%"() % +*! ".*'!% )A'!"& $(*! &&!" ".*$! )&-&!##'% +*! "'"!##' & +(',0", % "!!A $)&"( '!##'$-! &% ".%* # ' & $)!"!'%$- A!$($! &% " #!!,&"( (- %& "' **' %& "(" "* ""!($ &"'""0"'!%'A"!##' +*''")!& &'% "!!A + $""%& "* )'$) + $"# '!"%?" %! <<@)"!+* ""!($ %' ""0%&%/!, #&!##'%'A#!!,"! '' ("'&&-)'$$'$!($ #&"+1$!-&!"!" (A! "$- " '% #!##'%"() &!##'% +*! " )&!%&%( &%(- * ""!($'' '" )&)'!!,&#!$"# '&!##'"!+$! % " 2<<%!%$023!$$ - "*< &'"$"#' +&%$%$! " #$023!',!A!!,'G /!,+*'' %'A"?!,G 7@ )!%" +!"*'"! ()&'"$" "# '&% +*! " # "* # ' & "+ $$ - )A' & "!!!"!##' ) 7 7,!AA'-"!+!$''"$" )&'"702"& )"+ ''*!% $!, $,' &!"!" "'*'!"!, (%" ','!, & &'+$ % +*! " & $-!##'%()"*"*<% +*! "$!"!&#%&!"*< &7"'!+*"# '$043!0523,!%("&& *'!% +*'' A $! " '! '" ($,'+ )!& &.*'!+$ +"'+"' +&!"*! #A!) 702*' A!"&("'"$,'"%'!,%,!(!%! &'"$"# ' &!"*$%+"?!, G@ & + $.*"!!"'&')$$+ $$(-77 7?<@"& )A'-'*!% '%! #&*'&*'!"*$%+!"#!'" :

!##' &(% +" 1!"!+!$'# '&!,&'*' %""!+" & A$" '&!,&$- A'"!+)!&'"*% &+"'+"&% +*! ""& )!"*$%+ $$ # & *'!$ 255 " & % '%! )!& A$" & ' % +*'($ & +"' " '"$" '"& )# ' 702(%" & +%&!%$% +*! #&% #!$!&!"%" )* & &!' $""* # &% +*'!" &'+ +%&!%$% +*! "&A( %''!!)&!%&&A$ #&7()*'+ $*"$ %$$- &"!I # &!',* $!/"* < & +%&!%$%$%$! &" )!#$% && '"#' %$%$! $- ) % " 7 7 *'+! "%& #$$- % *$&'+ +%&!%$% +*! " "!,7 &7!"'+!%% '!, 1?:@ "!, 7 &,* "!I *%- # & 7 &" ( "($!"&! & # $$ )!,+'' +&+"',*"!IA $! g?t@?!,2@#' +&+"' 7 h?t@?!, >@!)"* ""!($ % &!'!"!%,*"!I *%- # & 7 h?g@&!"'$! )"!' %"*)!"!&#!$ #&% &" $A!,&& '"#'*' ($+ &$ %$,*"!I!"/ )?#' +&+%&!%$+ $@ &'# '& **' *'!$ %$A$ #h!"%#' +&($h?g@(-$!'!'* $! 22$043!0523,$$ - "*2 %("!!,'= 7&&*'!%% $!, #&*'!"+%&"$ )'!&!" %"&" $!!#!%!!+*'!%(-7!"**'.!+$-)!%"$',"& +"' )&!$" 7"& )" A'-"$ )% $!, )8 &*'!""!$$ " $!!#! #' 555" %% '!,$- &&!, # & + $?!, =7@!"% "!'($- '%"% +*' "*<# '.+*$&%" #&!"(&A! '%(#!&.+!! #&!"*$%+%'A"?!,=@ &% "*'!%,*"!I&!",'' &&+"'?+%&,''!&%" #7@% "1$-&A$" #h' A'"!+ $!, '"!+&#$."&!'#%()*' + $' +&+ $"! )%"&!".*"!!"$!+!% +*' "*< % +*! " (%" #'%&!, "# '"*< &"+'" ".*$!&"'"$" 22<%!%$023!$$ - "*2 &!"%"& +%&!%$ + $ # 7#!$ *'# '+ %$%$!!,' 5 $-7'"$"',!A "& )!,&"+'")!&&$043!0523, $$ - +,-. '' A'% + & $!+!! "!%%'%!"% +!,#' + & " # $"!%0 *$"!% % "!!A 1!?" &!"%""!! %! 2<@ % +*$+'- 4

% +*! "&A(%''! )!& 7" #)'! &%" # $043!0 523,$$ -""%'!(!%! <<> $!1!0$!/" $!0$!/% "!!A1! " '!"!,!"&""!+$ "$-!&"!+$! ( A&+*''T C &' %& "1$ ;:=D7?% ''"*!, &%!%+*''f s N544@&+'!$!" % "!' " A!"% *$"!%?)! A'T L @ )&'"! (-" $"!%0A!"% *$"!% + $($ )T C " #1?5%@ +$!*$!%!A0-*.*'""! &"(%& "# ' &A!"% *$"!%"'!0'" '8 m vp 2 σeq σy ε = s?2@ < σ vp n K? ε @ eq eq -!$!,8 σ vp n vp m eq σy + K? εeq@? εeq@ =?>@ & +*'' **'+'" # &"% "!!A 1! " ',!A! ($ < $$ &''&"+7 +*'!,!,'!,'=!%("&&'"$" '!(','+)!&&.*'!+$+"'+"% +*'!" ()!,'" = "*%!$$- "& )" & & +! # & %"!,!" (' '*'" )!& 7)& "!, & $"!%0A!"% *$"!%% "!!A 1! " & +.!++ '' ' &*'!"*$%+!"( 5;++!&!"%" )&'"!!""&!,&"5:++"!, $" 0*$"!%!- &!" + ''$!"!%*'!"*$%+-!$" '" ($-,,*"!I *'!%!?!,'@ )&!%&!'$" ('"!+! #&&!, #&+ $?!,7 )&!%&%(% +*'!,'=7@ #&% $!, #&*'?!, (% +*')!&!,' =@!!!!"!'"!, % +*' &"&* # &*' &!" (! "!, & ) **' %&"8 "!,' < "!, & #!'" $"!%0*$"!% **' %& &*'**'" "&'!/'&'!# '+$- )!&$',!',*#$#' "'#% & * ' *!! &!"% +"#' + & " # $"!%0*$"!%% "!!A 1! &!" "!## + $&#$ ) #$!1!+"&-+'!$7 A'"$- "!, &$!1!H" $!**' %& &,*"$'-"!!"+%&"+$$'&#'"'#%"& )" %'A#'"'#%)&!%&!"!1$!!A,'+)!&&.*'!+ (#! &!" **' & "!+$! " *'# '+ (- # '!##' +'!%$ % " &A ( % +*')!&'#'%.*'!+$ +"'+"# ' ) $+!!+ $$ -%"!," )!&&"+'!,0-*, +'-&+!% %$"! " #&!") '/'&# $$ )!," &'"* "" #&!##'" #)'!&%" #*'&'"#'% +*! &" (# 1!"!+!$'.%*!&%" #&%!%$$ -# ')&!%&&"%'!, # &'"$"!"!+* ','!,&A$! #&(!$!- *'!%!',*# '+! "!,% *$&'+ 0 +%&!%$% +*! "!)"!##!%$ *'# '+% +*$% +*'!" () G

% " +!$-# ') '" "!'" +,&# '% "% "!' $-) )'($ '""#$$-% *$&'+ 0+%&!%$*' ($+!)&!%&&!',*# '+! $ %$$- +!#!" && '"#' %!)"!##!%$ '+! % "!!A 1! &% $(%%*(-$$# '% " &'!""!$$ % "!'($ $%/ #/ )$,','!, & +%&!%$% "!!A 1! " &!'"" %!*'+'" ("!" $!!#!%! %!! "&!" (A! "$-"#'&') '/&+!+ &$!+!! " #&" # A'"!+*$!#! (&A! ' $)""%& " $" 0*$"!%!- A' )! +*''!'A$"!%$!, $!1!+"&-"" &A(+ "' &'"$"#' +&!") '/$",!A'" $ /+ '& ',&$-! &+'!%$ '+ # " $!!#!%! "&'!/, $$ # ' *','+" % "!' & "&'!/, % '!( &!',*# '+! J!&'(-!,'+ &&'+$% '%!! &.*'""! # ' &'+$ "'! ' (- 6"!, & &'+$.*"! % ##!%! )A' &'"$"#' +"*<!&!") '/"& )&)!&&" #&&'+$ #' +&".*'!+" &*'!%! #&!',* )!&&% +*'*','+"!" "!"#% '-&'!"$".*'!+$"** '" )&-&" $!!#!%! "&'!/, "& $('$.(-&+$&'# '% '!( %A!-!& * #&%"!, '* ' "!- '&' & ##%!, &!',*.+*$ # "%&.*'!+$ ("'A!!"&* "!!A",',! &!" ("'A'&"'#% )'"&% $ "! #%"!, "& )!,&'$.! #&"&'!/,!"%$$-/!,*$%& % %$"! +"(&&+ $# '"%'!(!,& $"'!!" $!!#-!,+'!$ " (#!+ '%'#$$- 0 1(&"&& &!"**'!" % + #&0) '/R!%' "'%'$,!'!,- $!!#!%! ' %""!,?@S "(,' * > R&'+$"'""" "'!" '!," $!!#!%! S & & '")!"&.*'""&!','!# '#!%!$"** '(-&' *7 ++!""! =

&&&& EF$$- S&&'+$!'#%()%"!,"+ $"S AFSTrans. =4: 42;0 4>> E<F &$/ S$0+ $!'#%!$&'"#'S Metall.andMat.Trans.B =G; ;G;0;=> E2F &$/ S'"! +& "# ' '+!! # +$0+ $!'#%!$ &'"#'S AFSTrans. =G2 :G=0:=G E>F "% - &'+ SB'!! " #& '"#'% ##!%!" '!, " $!!#!%! #%"!,"!+$$!%+ $"S TheBritishFoundryman =G; >:;0>:G E;F'!##!&" S&&'"#'% ##!%!'!,&!!'%! $" $!!#!%! # $0!$$ -%"!,S Metall.andMat.Trans.B === 25 >420>G< E:F '(& 7+*($$ SA"!,! #%"!,H%&!$$!'#%!$ & '"#' '!," $!!#!%! #$03!$$ -(-!A'"+ $$!,'$!+U0'-!+,!,S Int.J.CastMetalsRes. === < 240>2 E4F!' &$/ SB $+'!% "&'!/,,* # '+! '!, " $!!#!%! #% **'0("$$ -"S AFSTrans. =G2 G0GG EGF &$/ S%&!"+" #& '"#' +$0+ $!'#%, AFS Trans. =G> ;G40;=G E=FI$A'! S*# '+!!*'++ $%"!,"S Trans.ofthe Americanfoundrymen ssociety =:5 :G 242024= E5FC!"&! ' ",$' S&!',*# '+! *' %""&%"!,0+ $!'#%&&'"#'+%&!"+&',&&,*S Metall.andMat.Trans.B =G: G220G>> EF$$ %$!. 9V - 7A!$$ 07& %&+! A"" S&'+ +%&!%" # & % $!, ",! %"!, *' %"""8 &'0!+"! $#!!$+$-"!".*'!+$A$!! S,Metall.andMat.Trans.B ==: <4 G0== E<F%$!. 9V - 7A!$$ %&+! A"" $$ R&'+ +%&!%$ + $!,! %"!, )!&.*'!+$ A$!! S Modelling in Welding, Hot Powder Forming and Casting '$""?@ '! $ ==4 %&*5 <=022 E2FW!+C7&! S&+ A+ #&% %A%"!,"'#% '!, +"&-0-*" $!!#!%!!" ##% && '"#'% ##!%!S Metall. and Mat.Trans.B ==G <= 5;05;: E>F ' A ',-' * $ " S&!+*$+! # +&+!%$ + $ %&'%'!I+ $+$!'#%##%"!+$%"!,S,CanadianMetall.Quarterly ==G 24 G;0=: <5

E;F!%&+! S& '- #&'+$"'"""!'0,*# '+! '!,& '$-"," #" $!!#!%!!'%,$'+ $S J.Mech.Solids =4 = <420<G> E:F "%&!""!(%& S!%' %' "!+$! # 7"!, ' %"""S %' " # > X+ % $ Q99 7 '1' $$" '% ==G *($!"&(-!! "7 ==G %&*7G 0>< E4F&*8HH)))+,+" #% + EGF&*8HH)))%$% +%&H' %"H' %"&+$ E=F7*'"! )))'"A$ '% +H)))"%% "$"% +H E<5F %&+! Heat transfer and air gap formation in permanent mould casting of aluminium alloys & &"!" '!0%05;> & -$ "! # %& $,- %/& $+ ) ==> E<F' "" ''!/"" S!',*# '+! '!," $!!#!%!! %-$!'!%$%"!," #*'$+!!+%!%$0!S Int.J.CastMetalsRes. <55< > <4;0<G; E<<F' ''!/"" R!',*# '+! '!," $!!#!%! #$+!!+(" $$ -"! *'+ + $S ' % '!$" $! " 7 #'%.* "!! <55< % ('405 7 $+(" &! *($!"&(-'! $ &! <55< E<2F +(', ", R'+!! # '""0"'! 7'A" (- &' '+'"S %&!%$ ;52! $A!" '-7 ++! '!%7?=>@ E<>F", R'""0"'!# '+$"S J.Aeronaut.Sci =>: 2 >;0>G E<;F &&"!" %&!%$!A'"!-?@ %& '+- ==> E<:F&*8HH)))"0" #)'% +H E<4F7!+ '" R,+,',!'+ #7 %' ($+" A $A!,'!%! S Comput.Struct. ==< >< =40: E<GF'I- R+$' ($+"!B!"% *$"!%!-S Adv.Appl.Mech. =:: = <>20 244 E<=F + " W W&, R7 *$ &'+$0#$!"0"'"" $-"!" # 7"!,"S Proc. 9 th Int.Conf.onModelingofCasting,WeldingandAdvancedSolidificationProcesses %&?'+-@ <555 &+ " 7 $-?"@ &/' B'$, %& <555 G50G4 E25F Modélisation tridimensionnelle par éléments finis pour l analyse thermomécanique du refroidissement des pièces coulées?three5dimensional finite element modelling for thermomechanical analysis of the cooling of cast parts@ & &"!"?! #'%&@ % $"!"'!" ==G E2F $$ R +'!%$ +%&!%$% *$!, $, '!&+# ' # '+($ (!"8 **$!%! *'H+ $!'%!! %"!, *' %""S Proc.8 th Int.Conf.on <

Modelling of Casting, Welding and Advanced Solidification Processes!,?7 @ ==G & +" 7 %/'+?"@ &!'$" $" '!$" %!- ==G 42=04>: E2<F$$ R!!$+**' %& #&'+ +%&!%" #" $!!#!%! *' %"""S Proc. Int. Conf. On Cutting Edge of Computer Simulation of Solidification and Casting "/?*@ === &/C"?"@ &' $"! # *?@ === 420=5 E22F$$ 7$!, R!!$+"# '&'+ +%&!%$ #$-"!" # " $!!#!%! *' %"""S Proc.9 th Int.Conf.onModelingofCasting,Weldingand Advanced Solidification Processes %&?'+-@ <555 &+ " 7 $-?"@ &/'B'$, %& <555 504 E2>F$$!'$ R0**' %& &&'+ +%&!%" # " $!!#!%! *' %""" )!& **$!%! & *'!%! # *!* "&'!/,S ( *($!"&!Int.J.Num.Meth.forHeat&FluidFlow <<

($87 "A$"# '&&'"#'% ##!%!()*'+ $# '"* % +*! " ($<8& $,!%$*' *'!" #$043!0523,"!7% +*! ' % #!!$!- '" " %$ A$" % (,!A -*!%$ A$" ',!A &!'* $! ()&,!AA$""& $ (""+$!'!,'8 +'- #&.*'!+$"0*!,'<87 $!,%'A"#' +&.*'!+"8%!%$$ -$023!?+"'+' N45;++!&%"!,'N44++!&+ $@ 8$043!0523,?+"'+ 'N:=++!&%"!,'N44++!&+ $@!,' 28 "''!$!"*$%+"!.*'!+" 8 %!% $$ - $023! 8 $0 43!0523, ( & %&'" &!' "'#% # & + $ &" * "!!A '!$!"*$%+)&!$&"'#% #&%"!,&",!A!,' >8 7$%$& '"#'% ##!%!"# ' &.*'!+" 8 %!% $$ - $0 23! 8$043!0523,!,';8 "$"# '"* $043!0523, $$ - '& '"#'%$%$! ")!& % "&'"#'% ##!%!"!,':8"$"# '"*$023!$$ -'&'"#'%$%$! ")!&% "& '"#'% ##!%!"!,' 48 "$"# '"* < $043!0523, $$ - &'+ +%&!%$%$%$! ")!&!+*&'"#'% ##!%!"!,' G8 "$" # ' "* < $023! $$ - &'+ +%&!%$ %$%$! " )!&!+ *&'"#'% ##!%!"!,'=8"$"# '"*2$043!0523,$$ -&'+ +%&!%$%$%$! ")!&,* *&'"#'% ##!%!"!,' 58 "$" # ' "* 2 $023! $$ - &'+ +%&!%$ %$%$! " )!&,* *&'"#'% ##!%!"!,' 8 "$"# '"* 2 $043!0523, $$ - &'+ +%&!%$%$%$! ")!&,* * & '"#' % ##!%!" "!, $!1!0" $! % "!!A + $! 7!,' <8 "$"# '"* 2 $043!0, $$ - -"+% #!,'! 555" % +* )!&7#8+(',0", $" 0*$"!%% "!!A+ $!,&8!"!%! () #$!0$!/ % "!!A + $?)!HA!"% *$"!%@ " $!0$!/ % "!!A + $?$"!%0A!"% *$"!%@ <2

($87 "A$"# '&&'"#'% ##!%! ()*'+ $# '"*% +*! " $$ - h castinghmould $023! $043!0523, 2<5+ 0< 0 G=G+ 0< 0 <>

($<8& $,!%$*' *'!" #$043!0523,"!7% +*! ' % #!!$!-'" " %$ A$"% (,!A -*!%$ A$" ',!A &!'* $! ()&,!AA$""& $ (""+$!' $" 0A!"% *$"!%!- ($ )%'!!%$+*''T C N;:=D7 +*'' ED7F 7 "!"%-K EF '!' ""!!A!- % ##!%!me0f '!, % ##!%!ne0f!%-!$ "'""σ y EF C,+ $" EEF <5 <555 555; 5 >; :G555 <55 <25 55 54 >5 :;555 >55 << 554 5: >; >2555 ;><?NT S @ ; 5<; 5 5 2555 ;:= 5< 52 55 5 255 B!"% *$"!%!- A'%'!!%$+*''T C N;:=D7 +*'' ED7F 7 "!"%-K EF '!' ""!!A!- % ##!%!me0f ;:= 5< 52 :2?NT L @ 2x5 02 5 G55 2x5 02 5 <;

LVDT:s INSULATING GRANULES THERMO- COUPLES CORE CASTING MOULD LVDT- POSITION 24 INSULATION 150 250 LVDT:s!,'8 +'- #&.*'!+$"0* <:

800 700 Measured temperatures for unmodified Al-Si 800 700 A 600 200 100 0 100 200 600 600 200 100 0 100 200 600!,'<87 $!,%'A"#' +&.*'!+"8%!%$$ -$023!?+"'+ r N 45; ++! & %"!, r N 44 ++! & + $@ 8 $043!0523,?+"'+rN:=++!&%"!,rN44++!&+ $@ B <4

Displacement [m] 2 x 10-4 1 0-1 mould casting Displacement [m] x 10-4 1 0-1 -2-3 mould casting A -2 0 100 200 600 B -4 0 100 200 600!,'28"''!$!"*$%+"!.*'!+"8%!%$$ -$023! 8$0 43!0523, ( & %&'" &!' "'#% # & + $ &" * "!!A '!$!"*$%+)&!$&"'#% #&%"!,&"#!'"* "!!A # $$ )!,&+ $ +! &,!A " $!!#!%! "&'!/, <G

Heat transfer coefficient [W m -2 K -1 ] Heat transfer coefficient [W m -2 K -1 ]!,' >8 7$%$& '"#'% ##!%!"# ' &.*'!+" 8 %!% $$ - $0 23! 8$043!0523, <=

700 600 200 100 Casts Magma Procast Thercast 8+*''!% ''NG++ 800 800 700 700 600 600 Casts Magma Procast Thercast Experiment Casts Magma Procast Thercast 8+*''!*''N>;++ 78+*''!*''N:=++ 200 200 100 Experiment Casts Magma Procast Thercast 8+*''!+ $'N44++ 100 Casts Magma Procast Thercast 8+*''!+ $'NG;++!,';8"$"# '"*$043!0523,'&'"#'%$%$! ")!&% " &'"#'% ##!%!" 25

700 600 200 100 Casts Magma Procast Thercast 8+*''!% ''NG++ 800 800 700 700 600 600 Casts Magma Procast Thercast Experiment Casts Magma Procast Thercast 8+*''!*''N>;++ 78+*''!*''N45;++ 200 200 100 Experiment Casts Magma Procast Thercast 8+*''!+ $'N44++ 100 Casts Magma Procast Thercast 8+*''!+ $'NG;++!,':8 "$"# '"* $023! '& '"#'%$%$! ")!&% "& '"#'% ##!%!" 2

700 600 200 100 Casts Magma Procast Thercast (R2sol) 8+*''!% ''NG++ 800 700 600 200 100 Experiment Magma Thercast (R2sol) Casts Procast Experiment Magma Thercast (R2sol) Casts Procast 8+*''!*''N:=++ 78+*''!+ $'N44++ 0,0003 Radial displacement [m] 0,0000-0,0003-0,0006-0,0009-0,0012-0,0015-0,0018 Experiment part Experiment mould Casts part Magma part Magma mould Procast part Procast mould Thercast (R2sol) part 8*'+ $!"*$%+"!,' 48 "$"# '"* < $043!0523, &'+ +%&!%$%$%$! ")!&!+ *&'"#'% ##!%!" 2<

700 600 200 100 Casts Magma Procast Thercast (R2sol) 8+*''!% ''NG++ 800 700 600 Experiment Casts Magma Procast Thercast (R2sol) 8+*''!*''N45;++ 200 100 Experiment Casts Magma Procast Thercast (R2sol) 78+*''!+ $'N44++ 0,0003 Radial displacement [m] 0,0000-0,0003-0,0006-0,0009-0,0012 Experiment part Experiment mould Magma part Magma mould Procast part Procast mould Thercast (R2sol) part 8*'+ $!"*$%+"!,'G8"$"# '"*<$023!&'+ +%&!%$%$%$! ")!&!+* &'"#'% ##!%!" 22

700 600 200 100 Procast Thercast 8+*''!% ''NG++ 800 700 600 200 100 Experiment Procast Thercast Experiment Procast Thercast 8+*''!*''N:=++ 78+*''!+ $'N44++ 0,0002 Radial displacement [m] 0,0000-0,0002-0,0004-0,0006-0,0008-0,0010-0,0012-0,0014 Experiment part Experiment mould Procast part Procast mould Thercast part Thercast mould 8*'+ $!"*$%+"!,' =8 "$"# '"* 2 $043!0523, &'+ +%&!%$%$%$! ")!&,* *&'"#'% ##!%!" 2>

800 700 600 200 100 Thercast 8+*''!% ''NG++ 800 700 600 200 100 Experiment Thercast Experiment Thercast 8+*''!*''N45;++ 78+*''!+ $'N44++ 0,0002 Radial displacement [m] 0,0000-0,0002-0,0004-0,0006-0,0008-0,0010 Experiment part Experiment mould Thercast part Thercast mould 8*'+ $!"*$%+"!,'58"$"# '"*2$023!&'+ +%&!%$%$%$! ")!&,** &'"#'% ##!%!" 2;

700 600 200 100 Thercast 8+*''!% ''NG++ 800 700 600 200 100 Experiment Thercast Experiment Thercast 8+*''!*''N:=++ 78+*''!+ $'N44++ 0,0008 Radial displacement [m] 0,0002 0,0000-0,0002-0,0004 Air gap [m] 0,0006 0,0004 0,0002-0,0006 Experiment part Experiment mould Thercast part Thercast mould 8*'+ $!"*$%+" 0,0000 Experiment Thercast 8"" %!!',*A $!!,' 8 "$"# '"* 2 $043!0523, &'+ +%&!%$%$%$! ")!&,* *&'"#'% ##!%!" "!,$!1!0" $!% "!!A+ $!7 2:

!,' <8 "$"# '"* 2 $043!0, -"+% #!,'! 555" % +*)!& 7 #8 +(',0", $" 0*$"!% % "!!A + $!,&8!"!%! () #$!0$!/ % "!!A + $?)!HA!"% *$"!%@ " $!0$!/ % "!!A + $?$"!%0A!"% *$"!%@ 24