49 2 Vol.49 No.2 2013 Ò 2 221 228 ACTA METALLURGICA SINICA Feb. 2013 pp.221 228 Ï Å Ê ÆNiCrBSi TiC ÇÍÕ«ÞĐ Ñ ( ««Ä «, 650093) XRD, SEM «EDS Ç ½ÚÑ Ä Û¼È NiCrBSi TiC Æ ËÆ Å TiC Æ «Ã M 23C 6 «Å ÃÈ ½ γ Ni Ô¾ Ô. ³, ¼ TiC Æ ¼È Å ¾, ¾ÁN ¼ Å «Ti «C Ï Å TiC Æ, Ô Ç, M 23C 6 «Å Þ, ÐÃÈ; Ì, TiC Þ, (Ti, Cr, Ni, Fe, Si)C È Ñ Ë «Å. Ñ ½, Ý ÛÔ Ô¹ßÓÈ, Ñ Đ TiC Æ Á ñ, ÚÆ Æ TiC ß. Ñ ½ ¼È É ¹ß ÆÏ, ÛÔ (Fe, Ni) Ô¾ Å Cr ¾Å, TiC Æ Ç», Æ, Đ Û Ê 25%. Û XRD ÁÆ, Ñ ½, ±, ³ Ô ºÖ, Ô Ï. Ñ ½ Ð Æ Ê Áº ÛÔ «ÛÔ. É Û¼È, ½ÚÑ, NiCrBSi TiC ËÆ, ¹ß, ÃȽ ÅÒÀÃ Ì TN249, TH113.1 ØÝ A Ø Ì 0412 1961(2013)02 0221 08 CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 Correspondent: LIU Hongxi, professor, Tel: 13987634786, E-mail: vipliuhx@yahoo.com.cn Supported by National Natural Science Foundation of China (No.51165015) Manuscript received 2012 05 30, in revised form 2012 07 22 ABSTRACT The good high temperature wear resistance and corrosion behavior of particle reinforced Ni based alloy composite coating have attracted extensive attention in material science and engineering. It is necessary to analyze the morphologic characteristics and distribution of particles in composite coating. TiC particle reinforced NiCrBSi composite coating on medium carbon steel surface was fabricated by mechanical vibration assisted laser cladding technique. According to the distribution characteristics of hard phase particles in laser cladding molten pool, the growth morphology of TiC particle and endogenous M 23 C 6 carbide, formation mechanism and its distribution characteristics in γ Ni solid solution were analyzed by XRD, SEM and EDS. The results showed that most of TiC particles dissolved into the melted Ni based alloy, but some supersaturated Ti and C atoms were precipitated in the form of TiC particles eutectic during cooling process. The TiC particles lateral growth with heterogeneous nucleation way depended on M 23 C 6 type carbide substrate. At the same time, some composite carbide core shell structure with (Ti, Cr, Ni, Fe, Si)C encapsulated TiC were generated in the coating. Under the effect of vibrant force, the bulky branch crystal eutectic structure disappeared in the bottom of laser cladding coating, the TiC particle floatation * Ð ± º 51165015 Æ : 2012 05 30, Æ Ï : 2012 07 22 ½  : ½Ò,, 1984 ÓÃ,» à DOI: 10.3724/SP.J.1037.2012.00318
222 Ò Å 49 trend slowed down with the fluid stratosphere which caused by vibratory force and high pressure gas, and some double and petal shape TiC particle clusters were also formed. The precipitated TiC particle increases with the Cr content in the inter dendrite reticular (Fe, Ni) solid solution, and the average particle size was increased by more than 25%. The XRD results indicated that the diffraction peak intensity and lattice integrity of the main hard phases were enhanced, the half peak width was broadened and the crystalline grain size become smaller. The mechanical vibration promoted the dispersion of particles in the matrix dendrites and inter dendrite. KEY WORDS laser cladding, mechanical vibration, NiCrBSi TiC composite coating, microstructure, growth mechanism Ü½É 20 Ð ± Î Õ,» Î Þ± [1,2]. Ø ¹, «µ Î Ã, ĐË Æ ½É Ô Î, À µ Π± Ø ¹ Ô»Ì µà, ܽ Î ³ Ñ Ð. Ü½É«Ç Õ»»», «, Õ» Î Æ» Ȳ Ö ½Ý  ¹ Ì µà [3 6]. [7,8] µõ», Ti Õ Ë µé, «Î ²Ä TiC ¹ Õ» Ì µà, µàº γ Ni ÜÕ, CrB, TiB 2, M 23 C 6 TiC º, Ø Î ½, µà Ò±. ¾Ý [9] º La 2 O 3 TiC/Ni» µàò ØÂ, ½ÉÀ«TiC ¹ Ä ÝÈ, Õ»¾, Ô ÎÆ ¹ Þ Đ ÁÕ ; Đ α γ Õ (Fe, Cr) 23 C 6. Cui [10] µì Ni Ti C µ» Î ½ÉÀ, ÄÉ TiC ¹ ÜÕ, «TiC ¹ ÅÅÄ. º [11,12] TC4 Î TiC, γ Ni, M 23 (CB) 6, CrB Ni 3 B º NiCrBSi TiC Ì µà, Đ ÜÑ Í, µà«tic ¹ Ä, Í Ö ÜÕ È ; ÜÑ, TiC ¹, ½É «TiC ¹Ñ Ni» «Ö ¹ ÜÕ È. Ý ¼ Â Ü Ù µàº Ò È, ºµÀ«½ º Õ ¾¼, ÖŠܽÉ. Å Ù, ¾Ë¾ÛÒµ ܽɫ, 45 Î NiCrBSi TiC Ì µà, È Ò»º ܽ µ Õ Õ, È ¾ÛÒµÅ Ü ½É È TiC ¹ ÐÄ Æ ½ «É Õ Å Äɾ Õ. 1 Á Ï» 100 mm 80 mm 6 mm 45. ½ÉÆË» βÚÒ ÙÜв, ± Þ Í. ½É ¹Ü 42 63 µm Ni60 (NiCrBSi) ¹ÜÖ 9 µm TiC º, «TiC Ù 5%, Ø ¾Û Ç ± 1. Ni60 ( Ù, %) : C 0.7 1.0, Si 3.5 5.5, B 3.0 4.5, Cr 15 18, Fe<10, Ni Ã. Ë Æ Ì µ» Î, ± Õ ÂÒµ Î, Ì µà 1.4 mm, 6 mm. ܽÉÏ GS TFL 6000 ¼ CO 2 Ü«Ý Siemens Ù ¾Ô». ½É È : Ü À 3.5 kw; Ø«ÐÜ 4 mm; ĐÀ 3.3 mm/s; Õ Ar, Ar 0.13 L/s; Òµ ÑÖÐ Î, Ò 0.05 0.3 mm, Òµ À 100 350 Hz. ½É Ø, µ Ë ÖеÀ Ñ, º ÎÒ ØÂ È. ¾Ü (HCl HNO 3 =3 1) º Ò Á ÆÎ, XL30ESEM TMP Ú (SEM) ØÂ «TiC ¹ ÐÄ Æ Å, È É Õ, ½ÉÀ Ê ¹ÐÜ. EDAX Phoneix Ñ (EDS) º¾ Æ ¹ Ê Î Ò È, ÈÎ ½ÉÀ«TiC Ù. D/max 3BX Đ X (XRD, CuK α ) ºÌ µà ÎÒ Æ Õ, Ù 40 kv, Ù 30 ma, ĐÀ 10 /min. Ó 1 NiCrBSi TiC Æ Æ Fig.1 Morphology of NiCrBSi TiC mixed powder used for laser cladding 2 Ë ÂÚ 2.1 ÈÎÖ Ùß ± 2 Á¾ÛÒµÅ Ü½É NiCr- BSi TiC Ì µà XRD. µÀ«ÑĐ
2 ¼Ñ : ¼ÙÐ³Ã Ú»Ç NiCrBSi TiC Ê ³ Ó 223 Intensity, a.u. b (Fe,Ni) CrB TiC M23C6 B(Fe,Si)3 a 20 40 60 80 2, deg Ó 2 À½ÚÑ Ä Û¼È NiCrBSi TiC ËÆ XRD Fig.2 XRD spectra of NiCrBSi TiC composite coating prepared by laser cladding without (a) and with (b) mechanical vibration Æ Þ º ÕÎ Đ ÓÂ, Í Õ È Æ Õ, Õ Ç٠IJ, ½ µàº «Æ ŵ [13]. º Õ» Ö [14,15], º PDF Ð, µà ÎÎ Đ, ³ È Ì µà (Fe, Ni) Õ, M 23 C 6, TiC, CrB B(Fe, Si) 3 Æ º, µâ TiC Í Cr 2 B BC [16] 4. ± 2, ¾ÛÒµÅ Ü½É µà Ð ², Ð Debye Scherrer (D = Kλ/Bcosθ, «, K Scherrer ÇÙ, D Õ¹, B, θ, λ X ºÉ) Ý, ¾ÛҵŠչ ÄÖ; ¾Û ÒµÅ Ü½É µàº, Ì µà Õ Ò». ÙÞ, ¹ Ò»º½ «Õ ÅÉ, Ñ ÒÕ ¹, Õ Ò». 2.2 ÈÎÖ ½É ¹ Õ Â½ «º Ó ¹ ÆÕ/ ÎÞ ¹Æ ¹Þ ¾ ĐÀ ÄÉ Ñ [17]. Ù, Ý«¾ÛҵŠÅÄ Ò»Ë. ± 3 NiCrBSi TiC Ì µà Î SEM. ± 3, Á TiC ¹ ÙܵÀ É,, TiC ¹ É, ¹ ³µ Ñ Ø ÆµÀ Ì ¾ Ä ½É «½ º [18]. TiC Ì (4.9 g/mm 3 ) Ö½ Ì, Ö TiC ¹ Ñ Â» Ö, ÂÍºÂ ÑÆ Ò γ Ni Õ/ Î ½ ¹ ½ È γ Ni ÜÕ Ë ; ½ TiC ¹» Õ ÐÕ Ê [16,19]. Ù¹, ± 3 «Æ, TiC ¹ γ Ni ÜÕ Í Cr Ó 3 Û¼È NiCrBSi TiC ËÆ Í SEM Fig.3 SEM images of the cross section of NiCrBSi TiC laser cladding composite coating bottom area (a), middle area (b) and top area (c) ÐÕ È, Í, Đ Ö TiC ¹ ÐÄ È Â γ Ni ÜÕÐ. ¹, µà ÜÕ «ÜÕ Ö, µÀ, Õ¹ Ó. ± 4 ¾ÛҵŠNiCrBSi TiC Ì µà Î SEM. Æ, µà ¾ ß, Ù ¹¹, ¹, Þ Ò»º½ «¹ ÅÄ. Ʊ 3 Æ, γ Ni» ÜÕ Đ, «ÜÕ Í Cr Ò; ¹ Ä ², ÊĐ TiC ¹ (± 4a), ¹ Ù ± 3c (± 4c). ± È È Ý, ¹ Ù É, 2.7% Æ 4.9%. ÜÈ [20] TEM ØÂ Stokes È Đ, TiC Å É «Ë ½ Â, Ù Å TiC ¹Þ Đ ¾ ß Æ ½ Ä Æ, TiC ¹ ÄÉ»
h n 224 49 gxq 1 - z Æ %}a^), Q, 61 w - 0 -[0>5a1QH #8. x% 4a h, 8h ` 5 ` TiC 6r B Y -, g L a TiC w 1 - : TiC 0 -- $, z 2wn)M 6x1Q 1 a a R a A H s9, Y" " H C+ +&"L&,. "^+n%6d, ) H 8h ` 5 X 9 h `a# 8 TiC - g 8` n. =-,. SEM k - n E 3 4`, n )2 Y -g - x [ 5 25%. x% 4b c, [ - g h `a xq l 8 U Cr xqg, 1 µm +Z -gh`a (Fe, Ni) / l8. 2.3 o 4 1vm(L 5w0P NiCrBSi TiC SÆ(G ^U j SEM Fig.4 SEM images of the cross section of NiCrBSi TiC laser cladding composite coating bottom area (a), middle area (b) and top area (c) under mechanical vibration o 1vm(L 5w0P lbll> % 5 ;2wn)M 6x 1 Q NiCrBSi TiC T )H _V BES SEM k C, Ti, Cr, Fe : Ni >5 EDS a. y, Ti C U8JxqG, D 8 >> 5J/ gl8, N% 4 ^a % ; Cr >5 RNx qg4 g%, 6 Cr. Y "N, u R Cr %: VN C Y Cr "N, Y; TiC 5 {, 6 1a4 g l 8 :l xq! R> 5! - g; = % : V, Cr H*n 6 γ Ni / Y 'q 3 ; Fe Ni > 5 R/ %, a Fe Ni > 5 R > 5 D %$ 3 Cr, 1 Ni, Fe Cr X $ x< O go,. Y 'q 3 (Fe, Cr)Ni. 1 Q ; 8 Ni 3 / [, /; 1"*Y Fe n61a, a % 2 XRD >P, +-/ g. Y + (Fe, Ni) q 3 ;, HD E 3 (Fe, Cr)Ni q 3. % 6 ;D I2wn)M Z NiCrBSi TiC T ) H _ V EDS >P, $% 2! q Rn EDS >P, a 5 ( 1 ^. BJ EDS.X $ u SÆ(G ^U j 9 =4 `~ 5 NiCrBSi TiC BES SEM C, Ti, Cr, Fe Ni EDS Fig.5 BES SEM image of cross section NiCrBSi TiC composite coating prepared by laser cladding under mechanical vibration (a) and distributions of C (b), Ti (c), Cr (d), Fe (e) and Ni (f) measured by EDS
2 ¼Ñ : ¼ÙÐ³Ã Ú»Ç NiCrBSi TiC Ê ³ Ó 225 Ö Î Á, Ó 1 «C Ѿ È. ± 6 1, ± 6 «¹ A1, A2, B1 B2 EDS Đ«Ti, C, Cr, Fe Ni, Ti, ¹ Ù ¹ TiC, ½ Î ² TiC Ê; ± 6 «¹ EDS Đ,, ¾ÛҵнɵÀ«¹ Ti, ¹, EDS ĐÑ Ê Ö, Ó Ï ¹.» C1 D1 Ó, «D1 «Cr, Þ ½ Ð Õ «,» C1 ÕÈ, Í Cr Çà ²» ÜÕ D1; C2 D2 EDS Đ Þ Æ C1 D1. º ± 6a b ¾, ± 6b «ÆÙ, Þ ¾ÛÒµ Ò Ü½ «Ó, Â Æ Å É. 2.4 ÈÎÖ ß ± 7 ¾ÛÒµÅ Ü½É NiCrBSi TiC Ì µà«tic ¹ SEM EDS Đ. ± 7b, TiC ¹ÎÓ Ti C, TiC ¹ ² ± Ï, «; Fe Ni TiC ÎÓºµ, ½ TiC Ð Ï» ; Cr º µ Ä ÜÕ TiC ¹, Þ Ì µàðđ Ä TiC, Đ Æ È M 23 C 6 Đ Æ Å» ; Si. TiC ¹Ð ÎÓ Î Æ± 5b f Î Î Đ». ¹, ± 7 «TiC ¹ Ti C Ø À, ½ TiC ¹Ð ÊĐ Cr, Fe, Ni Si ºµ, Þ µà«tic ¹ 4 Î, ½ É TiC «, ĐÚ µà«tic ¹¾¹ ¹ Î ½, ½» È ÄÉ. ± 7b «Ó 6 À½ÚÑ Ä NiCrBSi TiC ËÆ ÍÅ EDS Ç Fig.6 Positions selected for EDS analysis in NiCrBSi TiC composite coatings prepared by laser cladding without (a) and with (b) mechanical vibration 1 ² 6 EDS Table 1 EDS results of the different positions as denoted in Fig.6 (atomic fraction, %) Position C Si Ti Cr Fe Ni A1 9.83 1.42 26.99 5.25 35.35 21.17 B1 14.14 1.44 30.39 5.36 30.76 17.91 C1 2.32 1.85 0.37 4.33 54.50 36.62 D1 2.83 1.98 0.59 6.76 52.03 35.80 A2 9.47 0.95 50.99 12.60 13.88 12.11 B2 13.85 1.42 49.60 12.00 12.94 10.20 C2 1.14 2.07 0.58 4.80 45.41 46.00 D2 2.31 1.61 0.70 12.29 49.79 33.30 Intensity, a.u. (b) TiK CK CrK FeK NiK SiK 0 5 10 15 20 Scan distance from the top down, m Ó 7 ½ÚÑ Ä Û¼È NiCrBSi TiC ËÆ Å TiC Æ SEM EDS Ï Fig.7 SEM image of TiC particle in the NiCrBSi TiC prepared by laser cladding with mechanical vibration (a) and EDS line scanning results along line AB in Fig.7a (b)
h n 226 5 ( ) Cr > a, D JxqG M23 C6 "N {. X6 Cr23 C6 a [, M23 C6 Y m fl "NS:>5J1, a sq ^, 1 l Ti X$ C X $ A[+ f L M23 C6 "N;5 /, Ti C X $ RVJ "N ( V +r V : \L Q, [ u q V qd za d 4.\ f X $, 61 L Q [, a Y [ u q V p Q, 1 L Q [ L u q V Y5q [21]. >h` Wang [22] 4` sq PZ (103 105 K/s) q/[c j "" + ed, xqg M C "N (TiC) B m; G xq &, / Y4 ; G >x,# ; >4`W [23] h a TiC/FeAl T ; 8 ) H a* xmf G [ Xrxq> 5 TiC * ; 1 h `o sq PZ, o Fernandez [24] 4` B {111}V. Y z V TiC L Q. W PZ, h ` 5 N γ Ni / glq L Q / Y oz TiC -. } Jackson e V an &J [25], q/$ e V ax $ + C x e V, L Q 2 9 D m LQ. % 8 T ) H TiC - : # Ng SEM k. q / j) H _ V / g 9; γ Ni, BJ ja b / ; 1 16 5 Fe, Fe *N γ Ni Y ' q 3 (Fe, Ni), u g[ x $g P h,! U Æ! (Fe, Ni) g xqgu Cr 4 g l X lqp h TiC -. 5ÆE r, o sq PZ, TiC LQ [ z V, W 6x m Es (P/(V d),, P ;6xh H, V ; < X H, d ;x }x) [, o 8 SÆ(G TiC Æ,9 "Mf SEM j Fig.8 SEM magnification morphologies of TiC particles and phases near the TiC from Fig.3c (a) and Fig.4c (b) 49 1 t A b H~D[[ 6xR i H [ ( V u,, a[c 1 3 d+. 6 u, a 5 u [ 6x m3 FhZ, t - * 8 > 3 d, J / 1 " [26]. A b- xrj 9 µm TiC -, o / 3dJq/ j 1. a; ""aqp h ^, 5 Q A[J & 4 Y U "P h. ja b TiC 3 > u [, # 8 $ j p *L& TiC q LQ +n/, e Xq" b [27]. 8>a[C 1a 3" t5 Q Ph, o - }\6 =h q LQ /s. % 8a, 66x1a"" H, TiC - > m d > Q, - g [r, V0[`8Y {# L#. % 8b, i,q TiC - -, 0 u TiC - V [ L # B #. u`n++z, TiC -a2wn) i 6n /:hz, Q ^ddd>. 26.25 kj s cm 2, 2.5 Y xicg}z{plw % 9 6n/ [ 8 A A H ^ 0 %. N, > R D2wn) U, 1 a 1 A m m [ :h [ $m5 (% 9a); 6n / N[ / [ o x :m, j. 1 a l 1 / A m ro 2, 1 l 8h ` A H (% 9b). + C >P a 6J6x 1 Q ^ 6x t D m[ * Y1 a 1 M L tmx. A_ \, 2wn) R D 6n / HeD 5 6x 1 Q 1 a 3 C Z A ), Y AtmX 2 L&, a a6 Y5 AH. j A H 02aJ, % 1 > s q 3 * a f L - g 8f j A * m, Q 5. A o Q u U G; 3 W 5 $g Q - q/$e V +n C J H 1 a l av ~ t + H; 8 X".,, :hxqg 4 gan (% 3c 4c), x 1 Y TiC - :> 5 4L X &. ;dd Q 5 d TiC aq: \ L Q 2, % 10 b h 5 TiC Ni 3Vg%. BJ TiC a γ Ni d g l N lq L Q, o i Fe q 3 :h-, o * ; TiC Ni g% d )J q / j 1 P. x % 10 4`, q69d 2 `lq, BJA AH :h, + *D{ 8 6 a Ti C X $ U8, 61 2 ` lq s q69 m *4 L a 2! 6, F 6 x 1 Q ^ 1 a s q p J s q, BJ R D2w n) 1 a h ` 5 A H, H G Y 5 B & "G, oul> sq PZ 3Vg%. 2. [% 3 5 TiC - >5 + h, TiC 0> 5 a γ Ni xq l 8 xqg R, 12wn) M 2 Z6x 1 QT ) H 8 # 8 xqgu Cr Re, TiC -gu3e0.!u, sq ^
2 ¼Ñ : ¼ÙÐ³Ã Ú»Ç NiCrBSi TiC Ê ³ Ó 227 Ó 9 Ѻ«Æ Đ» Fig.9 Schematic diagram of fluid stratosphere by vibratory force and high pressure gas (1 Laser head, 2 Send powder pipe, 3 High pressure argon gas, 4 Composite coating, 5 Fixture, 6 Substrate, 7 Vibrating direction, 8 Vibrator countertop) (a) flow direction of molten pool without mechanical vibration (b) stratosphere diagram with mechanical vibration L 2 = γ Ni+TiC blocky +(TiC+γ Ni) eutectic (3) Ó 10 TiC-Ni ¾Í [10] Fig.10 TiC Ni binary phase diagram [10] ÜÕ Í Cr Õ Ò (± 4).  һ¾ À Õ Đ, ÜÕ ÄÖ, Ì. ÜÕ ÄÖ ÜÕ Çà Õ, ½ Cr Ø ÜÕ ÊØ ¹ Ä É Æ, Cr Đ TiC Å» ÅÄ µ È.  TiC (5%, Ù) Ñ Õµ À«TiC ¹, «Đ Ti C Ø À, µâ TiC ²Ä ÐÕ Å È. «Î ±«Ø ÐÕ À Ö, Ý ± È Í «ÐÕ ¼ Ê. Î ± 2 ÐÕ Đ, Ó» γ Ni ÕÐ ÐÕ TiC Ñ 2 È, «Ý ¾. ÐÕ ¼ Ä : L = γ Ni primary +L 1 (1) L 1 = γ Ni primary +(TiC+γ Ni) eutectic +L 2 (2) ÐÕ ¼, Ì L, L Õ γ Ni Ä Çà L 1, ½ Ï, L 1 Ð È Ä γ Ni ÐÕ TiC, Çà L 2., Çà L 2 Ë Ò± È TiC,» ÜÕ. Õ, µà«º γ Ni Õ ÐÕ TiC γ Ni, TiC Þ Æ. «, γ Ni Ñ ÜØ µà Æ», Ó¼ (Fe, Ni) Õ Đ. ÜÕÐÆÜÕ TiC µ, ÜÕ Đ TiC. Ä γ Ni ÜÕ ÄÉ, ¹ Ð ÐÕ TiC ² ÄÉ, Å «Ö TiC γ Ni ÜÕÐ, Đ È Ì É. ÐÕ ¼ ÐÕ Ä : L = γ Ni primary +L 1 (4) L 1 = γ Ni primary +TiC primary +L 2 (5) L 2 = γ Ni+TiC blocky + (TiC+γ Ni) eutectic (6) Õ «È Ä γ Ni µâ ±. Õ ²«, ÐÕ 1307 Í, L 1 «Ä TiC ÅÎ ÅÉ. Ï, ½ «L 2 Đ ÐÕ TiC ½ ÄÉ,» É γ Ni ÜÕÐ Ö TiC ¹ (± 8a). Õ ½ ÅÆ (Fe, Ni) Õ, TiC, ÐÕ TiC γ Ni º. ½ Õ 2 «,» ÜÕ L 2 Í Cr, ½ Cr C º M 23 C 6 Đ Æ, TiC ÕÅ Å Æ, ½ TiC M 23 C 6 Đ Æ Å» É. «, ÜÕ Cr Ô
228 Ò Å 49, ÕÅÐ C Ë M 23 C 6 Đ ÆÕÚ Î, Æ Åß Ti TiC, ½ Ï, TiC ÅßÄÉ. Ü 1 «, C, Ti Cr ÙĐ ÐÌ ¼Î, ÜÕ Đ TiC ¹ (± 6a «B1) «, C, Ti Cr Ù 1 0.58 0.09, ½± 6b B2 «1 0.97 0.22. Þ, ¾ÛÒµ ¹ «Ti Cr µ 63% 127%.  Cr M 23 C 6 Đ Æ Î, ÜÕ Çà «ÜÕ TiC ¹ ÐÕÐ TiC ¹ Å µ È. º TiC ¹Ð Ê Î (± 7) Î ĐÞ, Õ «Cr, Ni, Fe Si ÆÄÉ«TiC Đ Î, Õ «TiC Õ¹ Ì, Æ Ý TiC Ã, Ü ¼¾ Î, TiC ¹ Ó (Ti, Cr, Ni, Fe, Si)C. 3 (1) ܽÉÌ µà (Fe, Ni) Õ, M 23 C 6 Đ Æ, TiC, CrB B(Fe, Si) 3 º. ¾ ÛÒµ ¹,, Õ Ò» ; ¾ÛÒµ¾ ÜÕ Í Cr Ò. (2) TiC ¹Đ ÐÄ ÄÉ, Ë Ä M 23 C 6 Đ Æ¾ Å», Cr Ô Þ, ÕÅ C Ti TiC, Ö Î ÄÉ, Äɾ ÑÄÉ. (3) Õ «¹ Ì, «ÔÎ Ti, Ó (Ti, Cr, Ni, Fe, Si)C. ØÝ [1] Sun R L, Mao J F, Yang D Z. Surf Coat Technol, 2002; 155: 203 [2] Lei Y W, Sun R L, Tang Y, Niu W. Opt Laser Technol, 2012; 44: 1141 [3] Fernández E, Cadenas M, González R, Navas C, Fernández R, Damborenea J D. Wear, 2005; 259: 870 [4] Ma H B, Zhang W P. Rare Met Mater Eng, 2010; 39: 2189 (à ¹, Đ. Ë Ó Å, 2010; 39: 2189) [5] Wu C F, Ma M X, Wu A P, Liu W J, Zhong M L, Zhang W M, Zhang H J. Acta Metall Sin, 2009; 45: 1091 (ÂË, Ã,  Đ,, Æ,,. Ó, 2009; 45: 1091) [6] Lü X W, Lin X, Cao Y Q, Hu J, Gao B, Huang W D. Rare Met Mater Eng, 2011; 40: 714 ( Õ,,, Ì, ¼, ±. Ë Ó Å, 2011; 40: 714) [7] Yang S, Zhong M L, Liu W J. J Aero Mater, 2002; 22(1): 26 (, Æ,., 2002; 22(1): 26) [8] Yang S, Liu W J, Zhong M L, Wang Z J. Mater Lett, 2004; 58: 2958 [9] Wang X H, Zhang M, Zou Z D, Qu S Y. Chin J Mech Eng, 2003; 39: 37 (½Ü,, µ,. ½Ú, 2003; 39: 37) [10] Cui C Y, Guo Z X, Wang H Y, Hu J D. J Mater Process Technol, 2007; 183: 380 [11] Sun R L, Guo L X, Dong S L, Yang D Z. Chin J Lasers, 2001; 28: 275 ( ¹, Ü, ²,. ÅÐ Û, 2001; 28: 275) [12] Sun R L, Yang D Z, Guo L X, Dong S L. Surf Coat Technol, 2001; 135: 307 [13] Wang C Q, Liu H X, Zhou R, Zhang X W, Zeng W H, Jiang Y H. Trans Mater Heat Treat, 2011; 32(7): 145 (½Ò, Ì, ¹, Õ,, Í. ³ ±, 2011; 32(7): 145) [14] Zhang H, Shi Y, Kutsuna M, Xu G J. Nucl Eng Des, 2010; 240: 2691 [15] Guo C, Zhou J S, Chen J M, Zhao J R, Yu Y J, Zhou H D. Wear, 2011; 270: 492 [16] Wu X L, Chen G N. Acta Metall Sin, 1998; 34: 1284 (ÃÕ, ÎÛ. Ó, 1998; 34: 1284) [17] Wang Z K, Zheng Q G, Tao Z Y, Ye H Q, Chen Q M. Acta Metall Sin, 1999; 35: 1027 (½, ÙÅÛ, Æ ½, «, Î. Ó, 1999; 35: 1027) [18] Hu C, Barnard L, Mridha S, Baker T N. J Mater Process Technol, 1996; 58: 87 [19] Sun R L, Lü W X, Yang X J. J Chin Ceram Soc, 2005; 33: 1448 ( ¹,,. ß, 2005; 33: 1448) [20] Pei Y T. Acta Metall Sin, 1998; 34: 987 (ÛÇ. Ó, 1998; 34: 987) [21] Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification. Beijing: Higher Education Press, 2010: 28 (Kurz W, Fisher D J, ³ÊÐ,. ÖÔϱ. Ö: Ë À, 2010: 28) [22] Wang H M, Zhang J H, Tang Y J, Hu Z Q, Yukawa N, Morinaga M, Murata Y. Mater Sci Eng, 1992; A156: 109 [23] Chen Y, Wang H M. Rare Met Mater Eng, 2003; 32: 569 (Î, ½. Ë Ó Å, 2003; 32: 569) [24] Fernandez R, Lecomte J C, Kattamis T Z. Metall Mater Trans, 1978; 9A: 1381 [25] Jackson K A. Mater Sci Eng, 1984; 65: 7 [26] Zhang S, Zhang C H, Kang Y P, Wu W T, Wang M C, Wen X Z. Chin J Nonferrous Met, 2001; 11: 1026 ( Ð,, Đ, Â, ½Å,. ÅÐ Ó, 2001; 11: 1026) [27] Li Y X, Bai P K, Wang Y M, Hu J D, Guo Z X. Mater Des, 2009; 30: 140 ( Æ : )