arxiv: v1 [math.nt] 17 Sep 2016

Σχετικά έγγραφα
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

On Generating Relations of Some Triple. Hypergeometric Functions


n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Presentation of complex number in Cartesian and polar coordinate system

1. For each of the following power series, find the interval of convergence and the radius of convergence:

On Inclusion Relation of Absolute Summability

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A study on generalized absolute summability factors for a triangular matrix

2 Composition. Invertible Mappings

CRASH COURSE IN PRECALCULUS

Ψηφιακή Επεξεργασία Εικόνας

α β

The Heisenberg Uncertainty Principle

Homework 4.1 Solutions Math 5110/6830

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

IIT JEE (2013) (Trigonomtery 1) Solutions

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

Degenerate Perturbation Theory

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Homework 3 Solutions

Matrices and Determinants

Certain Sequences Involving Product of k-bessel Function

Homework for 1/27 Due 2/5

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Solve the difference equation

1. Matrix Algebra and Linear Economic Models

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Concrete Mathematics Exercises from 30 September 2016

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Congruence Classes of Invertible Matrices of Order 3 over F 2

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

F19MC2 Solutions 9 Complex Analysis

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

A Note on Intuitionistic Fuzzy. Equivalence Relation

Example Sheet 3 Solutions

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Homomorphism in Intuitionistic Fuzzy Automata

Tridiagonal matrices. Gérard MEURANT. October, 2008

EE512: Error Control Coding

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 8 Model Solution Section

Bessel function for complex variable

B.A. (PROGRAMME) 1 YEAR

A General Note on δ-quasi Monotone and Increasing Sequence

Gauss Radau formulae for Jacobi and Laguerre weight functions

Intuitionistic Fuzzy Ideals of Near Rings

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

derivation of the Laplacian from rectangular to spherical coordinates

Fractional Colorings and Zykov Products of graphs

Statistical Inference I Locally most powerful tests

Trigonometric Formula Sheet

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

Commutative Monoids in Intuitionistic Fuzzy Sets


Lecture 13 - Root Space Decomposition II

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Problem Set 3: Solutions

Section 8.3 Trigonometric Equations

Solutions: Homework 3

Quadratic Expressions

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Srednicki Chapter 55

( y) Partial Differential Equations

The Neutrix Product of the Distributions r. x λ

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

SPECIAL FUNCTIONS and POLYNOMIALS

Areas and Lengths in Polar Coordinates

Differentiation exercise show differential equation

LAD Estimation for Time Series Models With Finite and Infinite Variance

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ST5224: Advanced Statistical Theory II

Solutions to Exercise Sheet 5

B.A. (PROGRAMME) 1 YEAR

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Solution Series 9. i=1 x i and i=1 x i.

Identities of Generalized Fibonacci-Like Sequence

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Transcript:

arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Itroductio Covolutio idetities for various types of umbers or polyomials have bee studied, with or without biomial coefficiets, icludig Beroulli, Euler, Geocchi, Catala, Cauchy, Stirlig, Fiboacci ad Triboacci umbers [,, 3, 4, 5, 6, 7, 8, 9, 0, ].Tetraacci sequece has bee studied i [, 3, 4]. Tetraacci umbers T are defied by the recurrece relatio T = T +T +T 3 +T 4 4 with T 0 = 0, T = T =, T 3 = ad their sequece is give by {T } 0 = 0,,,,4,8,5,9,56,08,08,... [5, A000078]. The geeratig fuctio without factorials is give by x Tx := x x x 3 x 4 = T x =0 because of the recurrece relatio. O the other had, the geeratig fuctio with biomial coefficiets is give by tx := c e αx +c e βx +c 3 e γx +c 4 e δx x = T!, 3 =0

where α, β, γ ad δ are the roots of x 4 x 3 x x = 0 ad Notice that β +γ +δ+βγ +γδ +δβ c : = α βα γα δ = α 3 +6α, α+γ +δ+αγ +γδ +δα c : = β αβ γβ δ = β 3 +6β, α+β +δ+αβ +βδ +δα c 3 : = γ αγ βγ δ = γ 3 +6γ, α+β +γ+αβ +βγ +γα c 4 : = δ αδ βδ γ = δ 3 +6δ. because t has a Biet-type formula: c +c +c 3 +c 4 = 0, c α+c β +c 3 γ +c 4 δ =, c α +c β +c 3 γ +c 4 δ =, c α 3 +c β 3 +c 3 γ 3 +c 4 δ 3 =, T = c α +c β +c 3 γ +c 4 γ 0. I this paper, we give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Covolutio idetities without biomial coefficiets By, we have Hece, T x = +x +x 3 +3x 4 x x x 3 x 4. +x +x 3 +3x 4 Tx = x T x. 4

The left-had side of 4 is +x +x 3 +3x 4 T T x =0 =0 = T T x + T T x = = 3 4 + T T 3 x +3 T T 4 x =3 =4 4 t T +T +T 3 +3T 4 x =4 + T +T +3T 3 x +x +x 3. =4 The right-had side of 4 is x +T + x = T x. =0 = Therefore, we get the followig result. Theorem. For 4, we have 4 T T +T +T 3 +3T 4 = T T 3T 3. The idetity 4 ca be writte as Sice Tx = x +x +x 3 +3x 4T x. 5 +x +x 3 +3x 4 = l x l +x+3x l = = l=0 l x l l=0 m=0 3j+ m j+4 m j, i+j+=l i,j, 0 m j l i x j 3x i,j, + m j m j m j j 3 x m, j,j, 3

ad T x = +T + x, =0 the right-had side of 5 is x A l+t l+ x l = x where A = B = C = m=0 3j+ m j+4 m j, 3j+ l j+4 l j, 3j+ l j+4 l j, l=0 m j l j l j Sice the left-had side of 5 is = =0 l=0 Bl+T l+ x Cl+T l+ x, = l=0 + m j + l j + l j =0 T T x, m j m j j 3 x m, j,j, l j l 3j 4 j 3,,j, l j l 3j 4 j 3.,j, comparig the coefficiets o both sides, we obtai the followig result without biomial coefficiet. Theorem. For, where D = 3j+ l j+4 l j, T T = l+t l+ D, l j l=0 + l j 3 Some prelimiary lemmas l j l 3j 4 j 3.,j, For coveiece, we shall itroduce modified Tetraacci umbers T s0,s,s,s3, satisfyig the recurrece relatio T s0,s,s,s3 = T s0,s,s,s3 +T s0,s,s,s3 +T s0,s,s,s3 3 +T s0,s,s,s3 4 4 4

with give iitial values T s0,s,s,s3 0 = s 0, T s0,s,s,s3 = s, T s0,s,s,s3 s,ad T s0,s,s,s3 3 = s 3. Hece, T = T 0,,, are ordiary Tetraacci umbers. First, we shall prove the followig four lemmata. Lemma. We have c e αx +c e βx +c 3e γx +c 4e δx = =0 = T 40,64,5,344 x!. Proof. For Tetraacci-type umbers s, satisfyig the recurrece relatio s = s +s +s 3 +s 4 4 with give iitial values s 0, s, s ad s 3, we have d e αx +d e βx +d 3 e γx +d 4 e δx x = s!. 6 =0 Sice d, d, d 3 ad d 4 satisfy the system of the equatios d +d +d 3 +d 4 = s 0, d α+d β +d 3 γ +d 4 γ = s, d α +d β +d 3 γ +d 4 γ = s, d α 3 +d β 3 +d 3 γ 3 +d 4 γ 3 = s 3, we have s 0 s β γ δ s β γ δ s 3 β 3 γ 3 δ 3 d = α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 d = s 0 α s γ δ α s γ δ α 3 s 3 γ 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0βγδ +s β +γ +δ s 3 s βγ +βδ +γδ β αγ αδ α = s 0γδα+s γ +δ +α s 3 s γδ +γα+δα γ βδ βα β,, 5

d 3 = s 0 α β s δ α β s δ α 3 β 3 s 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0δαβ +s δ +α+β s 3 s δα+δβ +αβ δ γα γβ γ, d 4 = s 0 α β γ s α β γ s α 3 β 3 γ 3 s 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0αβγ +s α+β +γ s 3 s αβ +αγ +βγ α δβ δγ δ. Whe s 0 = 40, s = 64, s = 5 ad s 3 = 344, by α + β + γ + δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α,αβγδ = adα 4 = α 3 +α +α+, we have d = 40βγδ +5β +γ +δ 344 64βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c, d 3 = c 3 ad d 4 = c 4. Lemma. We have =0 t x! = c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, = c. where Proof. Sice t = T T T40,64,5,344. c e αx +c e βx +c 3 e γx +c 4 e δx = c eαx +c eβx +c 3 eγx +c 4 eδx +c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, 6

we ca obtai the followig idetity: =0 x T =! =0 = =0 x T T! T 40,64,5,344 x! + =0 t x!. Comparig the coefficiets o both sides, we get the desired result. Lemma 3. We have c c 3 c 4 e αx +c 3 c 4 c e βx +c 4 c c e γx +c c c 3 e δx = =0 T 5,,3,3 x!. Proof. I the proof of Lemma, we put s 0 = 5, s =, s = 3 ad s 3 = 3, istead. We have d = 5βγδ+3β +γ +δ 3 βγ +βδ +γδ β αγ αδ α = c c 3 c 4.. Similarly, we have d = c 3 c 4 c, d 3 = c 4 c c ad d 4 = c c c 3. Lemma 4. We have c c c 3 c 4 =. Proof. By α+β+γ+δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α, αβγδ = ad α 4 = α 3 +α +α+, we have c c c 3 c 4 α = α βα γα δ β αβ γβ δ γ γ αγ βγ δ δ αδ βδ γ α β γ δ = α β α γ α δ β γ γ β β δ = 4α 3 3α α 39α 3 58α 3α 3 =. β δ 7

4 Covolutio idetities for three ad four Tetraacci umbers Before givig more covolutio idetities,we shall give some elemetary algebraic idetities i symmetric form.it is ot so difficult to determie the relatios amog coefficiets. Lemma 5. The followig equality holds: a+b+c+d 3 = Aa 3 +b 3 +c 3 +d 3 +Babc+abd+acd+bcd +Ca +b +c +d a+b+c+d +Dab+ac+ad+bc+bd+cda+b+c+d, where A = D, B = 3D+6, C = D+3. Lemma 6. The followig equality holds: a+b+c+d 4 = Aa 4 +b 4 +c 4 +d 4 +Babcd+Ca 3 +b 3 +c 3 +d 4 a+b+c+d +Da +b +c +d +Ea +b +c +d ab+ac+ad+bc+bd+cd +Fab+ac+ad+bc+bd+cd +Ga +b +c +d a+b+c+d +Hab+ac+ad+bc+bd+cda+b+c +Iabca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Jabc+abd+bcd+acda+b+c+d, where A = D+E +G+H 3, B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J. Lemma 7. The followig equality holds: a+b+c+d 5 = Aa 5 +b 5 +c 5 +d 5 +Babcab+bc+ca+abdab+bd+ad+acdac+ad+cd+bcdbc+bd+cd +Cabca +b +c +abdb +c +d +acda +c +d +bcdb +c +d +Dabca+b+c +abda+b+d +acda+c+d +bcdb+c+d +Ea 4 +b 4 +c 4 +d 4 a+b+c+d+fa+b+c+dabcd +Ga+b+c+d abca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Ha 3 +b 3 +c 3 +d 3 a +b +c +d 8

+Ia 3 +b 3 +c 3 +d 3 ab+ac+ad+bc+bd+cd +Jabc+abd+acd+bcda +b +c +d +Kabc+abd+acd+bcdab+ac+ad+bc+bd+cd +La 3 +b 3 +c 3 +d 3 a+b+c+d +Mabc+abd+acd+bcda+b+c+d +Na +b +c +d a+b+c+d +Pab+ac+ad+bc+bd+cd a+b+c+d +Qa +b +c +d ab+ac+ad+bc+bd+cda+b+c+d +Ra +b +c +d a+b+c+d 3 +Sab+ac+ad+bc+bd+cda+b+c+d 3, where A = I +L+N +P +Q+6R+4S 4, B = D G K M N 5P Q 6R S +30, C = D G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0. Now, let us cosider the sum of three products with triomial coefficiets. Lemma 8. We have c 3 e αx +c 3 e βx +c 3 3e γx +c 3 4e δx = =0 T 5,7,48,07 x!. Proof. I the proof of Lemma, we put s 0 = 5, s = 7, s = 48 ad s 3 = 07, istead. We ca obtai that d = 5βγδ +48β +γ +δ 07 7βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c 3, d 3 = c 3 3 ad d 4 = c 3 4. By usig Lemmata,, 3, 5 ad 8, we get the followig result. = c 3. 9

Theorem 3. For 0, T T T 3,, 3 + + 3 =,, 3 0 = A 3 T 5,7,48,07 B + C T 40,64,5,344 T +D T 5,,3,3 T t. where A = D, B = 3D+6, C = D+3, t = T T T40,64,5,344. Remar. If we tae D = 0, we have for 0, T T T 3,, 3 + + 3 =,, 3 0 = 3 T 5,7,48,07 6 + 3 T 40,64,5,344 T. Proof. First, by Lemmata,, 3, 5 ad 8, we have c e αx +c e βx +c 3 e γx +c 4 e δx 3 = Ac 3 e 3αx +c 3 e 3βx +c 3 3e 3γx +c 3 4e 3δx T 5,,3,3 +Bc c c 3 e α+β+γx +c c 3 c 4 e β+γ+δx +c c c 4 e α+β+δx +c c 3 c 4 e α+γ+δx +Cc e αx +c e βx +c 3e γx +c 4e δx c e αx +c e βx +c 3 e γx +c 4 e δx +Dc c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx c e αx +c e βx +c 3 e γx +c 4 e δx = A T 5,7,48,07 3x B! =0 + C =0 O the other had, 3 x T =! =0 =0 T 40,64,5,344 x T + + 3 =,, 3 0! +D T 5,,3,3 x! =0 x T t!. x T T T 3,, 3!. 0

Comparig the coefficiets o both sides, we get the desired result. Next, we shall cosider the sum of the products of four tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 9. We have c 4 e αx +c 4 e βx +c 4 3e γx +c 4 4e δx = =0 T 305,4658,8804,645 x!. By usig Lemmata,, 3, 6, 8, ad 9,lettig I = 0 i Lemma 6, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 4. For 0, T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 = A 4 T 305,4658,8804,645 B + C + D + E + G +H J T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t +F + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D + E + G + H 3, B = 4D + 4E + 4G + 4H, C = E G H +4,F = D G H +6, J = 4D E +G H, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, the by A = 3, B =, C = 4, F = 6

ad J = 0, we have for 0, T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 = 3 4 T 305,4658,8804,645 + + 4 +6 t t, =0 Let t x! 3 T 5,7,48,07 T = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx +c c c 4 e α+β+δx c e αx +c e βx +c 4 e δx +c c 3 c 4 e α+γ+δx c e αx +c 3 e γx +c 4 e δx. By usig Lemmata,, 3, 6, 8, ad 9, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 5. For 0,I 0 It =,, 3, 4 + + 3 + 4 =,, 3, 4 0 T T T 3 T 4 A 4 T 305,4658,8804,645 + B C D E G H + J + + 3 =,, 3 0 + + 3 =,, 3 0 T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t F + + 3 =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D+E +G+H 3, B = D+G 4J,

C = E G H+4, F = D G H+6, I = 4D E+G H J, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, J =, the by A = 3, B = 8, C = 4, F = 6 ad I =, we have for 0, t = T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 + 3 4 T 305,4658,8804,645 8 4 3 T 5,7,48,07 T 6 t t T 5,,3,3,, T. 3 + + 3 =,, 3 0 5 Covolutio idetities for five Tetraacci umbers We shall cosider the sum of the products of five tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 0. c 5 eαx +c 5 eβx +c 5 3 eγx +c 5 4 eδx = =0 T 500,43,598,4986 x!. By usig Lemmata,, 3, 7, 8, 9 ad 0, comparig the coefficiets o both sides, we ca get the followig theorems. 5. Let B = C = D = 0, we ca obtai the followig theorem. Theorem 6. For 0, T T 5,..., 5 + + 5 =,..., 5 0 = A 5 T 500,43,598,4986 + E F T +G t T + H 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 3

+ I J K + L M + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0 3 T 5,7,48,07 t + + 3 + 4 =,, 3, 4 0 + N +P + Q + R +S + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3,, 3,, 3 T 5,,3,3 T 40,64,5,344 T 5,,3,3 t 3 T 5,7,48,07 T T 3 T 5,,3,3,, 3, T T 3 4,, 3,, 3 + + 3 + 4 =,, 3, 4 0 + + 3 + 4 =,, 3, 4 0,, 3 T 40,64,5,344 T 40,64,5,344 t t T 3 T 40,64,5,344 t T 3 T 40,64,5,344,, 3, T T 3 T 4 4,, 3, 4 t T T 3 T 4, T 3 where A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = L = M = N = P = Q = R = S = 0, the by A = 4, 4

E = 5, F = 50, H = 0, J = 0 ad K = 30, we have for 0, T T 5,..., 5 5. + + 5 =,..., 5 0 = 4 5 T 500,43,598,4986 + 5 + 50 0 30 T + 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 T 5,,3,3 T 40,64,5,344 T 5,,3,3,, t. 3 Let B 0, C = D = 0, we ca obtai the followig theorem. Let t x! =0 = c c c 3 e α+β+γx c c e α+βx +c c 3 e β+γx +c 3 c e γ+αx + +c c 3 c 4 e β+γ+δx c c 3 e β+γx +c 3 c 4 e γ+δx +c 4 c e δ+βx. Theorem 7. For 0, Bt =,..., 5 where + + 5 =,..., 5 0 S + + 3 + 4 =,, 3, 4 0 T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = G J M +N P Q 3S +6, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t ad t are same as those i theorem ad theorem 5, respectively. 5

Remar. If G = J = K = L = M = N = P = Q = R = S = 0, the by A = 6, B = 30, E = 5, F = 60, H = 0 ad I = 0, we have for 0, 30t = T T 5 6,..., 5 5 T 500,43,598,4986 5.3 + + 5 =,..., 5 0 + 5 0 4 T 305,4658,8804,645 T + 60 3 T 5,7,48,07 T 40,64,5,344 0 Let C 0, B = D = 0, we ca obtai the followig theorem. Let =0 t 3 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3e γx + Theorem 8. For 0, Ct 3 =,..., 5 where + + 5 =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3e γx +c 4e δx. + + 3 + 4 =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, 3 T 5,7,48,07 t. t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by 6

A = 4, C = 0, E = 5, F = 30, H = 0 ad K = 30, we have for 0, 0t 3 = T T 5 + 4,..., 5 5 T 500,43,598,4986 5.4 + + 5 =,..., 5 0 5 0 + 30 + + 3 =,, 3 0 4 T 305,4658,8804,645 T + 30 3 T 5,7,48,07 T 40,64,5,344,, 3 T 5,,3,3 t. Let D 0, B = C = 0, we ca obtai the followig theorem. Let =0 t 4 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx + Theorem 9. For 0, Dt 4 =,..., 5 where + + 5 =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx. + + 3 + 4 =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t ad t are same as those i theorem ad theorem 5, respectively. 7

Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by A = 4, D = 0, E = 5, F = 90, H = 0 ad K = 0, we have for 0, 0t 4 = T T 5 + 4,..., 5 5 T 500,43,598,4986 + + 5 =,..., 5 0 5 0 0 + + 3 =,, 3 0 4 T 305,4658,8804,645 T + 90 3 T 5,7,48,07 T 40,64,5,344,, 3 6 More geeral results T 5,,3,3 t. T We shall cosider the geeralcase of Lemmata, 8 ad 9. Similarly to the proof of Lemma, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 4 with give iitial values s,0, s,, s, ad s,3, we have the form d eαx +d eβx +d 3 eγx +d 4 eδx = Theorem 0. For, we have c e αx +c e βx +c 3e γx +c 4e δx = A s x,!. T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: x!, s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0, b, b, b 3, M, N ad P are determied i the proof. 8

Proof. By d = A c, d = A c, d = s,0 c = βγδ +s, β +γ +δ s,3 s, βγ +βδ +γδ, β αγ αδ α β +γ +δ+βγ +γδ +δβ α βα γα δ α = α βα γα δ = α 3 +6α, we ca obtai the followig recurrece relatio: A = 3s, s, +s,3, B = 5s, +5s, 5s,3, C = 5s, s, +s,3, D = 5s, s, +s,3, E = s,0 s,, F = 5s,0, G = s,0 +6s,, H = s,0 s,, I = 4s, +6s,, J = 3s, 5s,, K = s, +s,, L = s, +s,, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MKA CI+LA DI, P = BN +CM +D, BI JA A M = a, N = a, P = a 3, with gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 Next we shall cosider the geeral case of Lemma 3. Similarly to the proof of Lemma 3, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 s,, s,, we have the form ad s,3 r eαx +r eβx +r 3 e γx +r 4 e δx = 9 4 with give iitial values s,0, s x,!,

where r, r, r 3 ad r 4 are determied by solvig the system of the equatios. Theorem. c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = A T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0, b,b, b 3, M, N ad P are determied i the proof. Proof. By r = A c c 3c 4, we ca obtai the followig recurrece relatio: A = 6s,0 6s, +58s, 7s,3, B = 03s,0 +03s, 43s, +70s,3, C = 57s,0 57s, 09s, +83s,3, D = 0s,0 0s, 4s, +6s,3, E = 3s,0 +6s, 330s, +57s,3, F = 06s,0 03s, +365s, 3s,3, G = 34s,0 +57s, +35s, 54s,3, H = 0s,0 +0s, +6s, 3s,3, I = 3s, 36s, +0s,3, J = 06s, +9s, +6s,3, K = 34s, +69s, 3s,3, L = 0s, 304s, +47s,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a, N = a, P = a 3, gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 x!, 0

As applicatio, we compute some values of s,0, s,, s,, A for some. For =, we have A = 70, B = 8, C = 360, D = 36, E = 606, F = 377, G = 48, H = 888, I = 84, J = 963, K = 09, L = 79, M = 34, N = 6, P = 44 5 5, s,0 = 5, s, = 34, s, = 90, s,3 = 44, A =, c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = T 5,34,90,44 x,!. For = 3, we have A = 079, B = 6833, C = 374, D = 86, E = 78, F = 6674, G = 04, H = 4508, I = 7, J = 450, K = 94, L = 0, M = 353 75, N = 5, P = 38 5, s 3,0 = 75, s3, = 353, s3, = 47, s3,3 = 66, A3 = 3, c 3 c3 3 c3 4 eαx +c 3 c3 3 c3 4 eβx +c 3 c3 c3 4 eγx +c 3 c3 c3 3 eδx = 3 T 75,353, 47,66 x,!. We ca obtai more covolutio idetities for ay fixed, but we oly some of the results.the proof of ext eight theorems are similar to the proofs of theorem lemma, 3, 4, 5, 6, 7, 8 ad 9, ad omitted. Let c c e α+βx + +c 3c 4e γ+δx = t x,!, the by previous algebraic idetities,we ca obtai the followig theorems. Theorem. For m 0,, where t,m = A c c eα+βx + +c 3 c 4 eγ+δx = m m T s,0,s,,s,,s,3, T s,m t x m,m m!,,0,s,,s,,s,3 m A T s,0,s,,s,,s,3,m.

Theorem 3. For m 0,, m,, 3 A 3 = A A 3 + where + + 3 =m,, 3 0 3 m T s3,0,s3,,s3,,s3,3,m + B C m A A + D A m m T s,0,s,,s,,s,3, T s,0,s,,s,,s,3, T s, 3 A m m T s,0,s,,s,,s,3, m T s T s,0,s,,s,,s,3, t t,m is determied i theorem.,m, m T s,0,s,,s,,s,3,,0,s,,s,,s,3,m A = D, B = 3D+6, C = D+3, Theorem 4. For m 0,, m,, 3, 4 A 4 = A A 4 + + + 3 + 4 =m,, 3, 4 0 A + E A + 4 m T s4,0,,s4,3,m +B + D m m m T s,0,,s,3 m m m T s,0,,s,3,m G A A + H A + J A A + + 3 =m,, 3 0 + + 3 =m,, 3 0 + + 3 =m,, 3 0 T s,0,s,,s,,s,3, T s C A 3 A m, T s,0,,s,3,m m m,, 3 m,, 3,, 3 t t,m +F m,0,s,,s,,s,3, 4 m 3 m T s3,m m t, t,m T s,0,,s,3, T s, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, T s,0,,s,3,,,0,s,,s,,s,3,0,,s3,3 T s,0,,s,3,,0,,s,3, T s,0,,s,3, 3 where A = D+E +G+H 3, B = 4D+4E +4G+4H, C = E G H +4, F = D G H +6, J = 4D E +G H, is determied i theorem. t,m

Let t x,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3c 4e α+γ+δx c e αx +c 3e γx +c 4e δx. Theorem 5. For m 0,,I 0, It,m = m A 4,, 3, 4 A A 4 J A A + + 3 + 4 =m,, 3, 4 0 4 m T s4,m,0,,s4,3 + + 3 =m,, 3 0 m,, 3 T s,0,,s,3, T s T s,0,,s,3,0,,s,3, 4, T s,0,,s,3,, where A = D+E +G+H 3,B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J, is determied i theorem. t,m Lemma 7 will be discussed i four cases. Case : B = C = D = 0. Theorem 6. For m 0,, m T s,0,,s,3,,, T s, 5 5 A 5 = A A 5 + + 5 =m,, 5 0 5 m T s5 +F + H,0,,s5,3,m + m m m A 3 A m + I A 3 J + A A m E A 4 A T s,0,,s,3 m m, + G,0,,s,3 m 4 m T s4,m m m t A 3 m T s3,0,,s3,3 3 T s3,0,,s3,3 + + 3 =m,, 3 0,m, t,m,0,,s4,3 T s,0,,s,3, Ts,0,,s,3,,m T s,0,,s,3, m T s,0,,s,3,,, T s, 3,0,,s,3 3

+ K A + + + + + 3 =m,, 3 0 L A 3 A M A A N A A + P A + + + where Q A A + + 3 =m,, 3 0 R A A 3 S A 3 m,, 3 + + 3 =m,, 3 0 + + 3 + 4 =m,, 3, 4 0 + + 3 =m,, 3 0 m + + 3 =m,, 3 0 T s m,, 3 m,, 3 m,, 3, 4,, 3 m + + 3 + 4 =m,, 3, 4 0 + + 3 + 4 =m,, 3, 4 0 t, t,, 3,0,,s,3, t, 3 T s3,0,,s3,3, T s,0,,s,3, T s,0,,s,3, 3 T s T s,0,,s,3, T s, T s,0,,s,3, 3 T s,0,,s,3 m,, 3, 4 m,, 3, 4, t t,0,,s,3, T s,0,,s,3, T s,0,,s,3, 3,0,,s,3, T s,0,,s,3, 3, T s,0,,s,3, 3 T s,0,,s,3 A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5,, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case : B 0, C = D = 0. Let t x 3,! = c c c 3 eα+β+γx c c eα+βx +c c 3 eβ+γx +c 3 c eγ+αx + +c c 3 c 4 eβ+γ+δx c c 3 eβ+γx +c 3 c 4 eγ+δx +c 4 c eδ+βx. 4

Theorem 7. For m 0,, Bt 3,m = m A 5,, 5 A where A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = G J M +N P Q 3S +6,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t,m ad t,m are determied i theorem ad 5, respectively. Case 3: C 0, B = D = 0. Let t x 4,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 8. For m 0,, Ct 4,m = m A 5,, 5 A A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, 5

where A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case 4: D 0, B = C = 0. Let t x 5,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 9. For m 0,, Dt 5,m = m A 5,, 5 A where A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t,m ad t,m are determied i theorem ad 5, respectively. 6

7 Some more iterestig geeral expressios We shall give some more iterestig geeral expressios. Lemma. For, we have Theorem 0. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = T 46,46,58,080 x!. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = A T s 3,0,s 3,,s 3,,s 3,3 x 3, 3!, where s 3,0, s 3,, s 3,, s 3,3 ad A 3 satisfy the recurrece relatios: s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 b,b, b 3, M, N ad P are determied i the proof. 3,0 Proof. Similarly to the proof of Theorem, we cosider the form h eαx +h eβx +h 3 eγx +h 4 eδx =. s x 3,!. By h = A 3 c c 3 + c 3 c 4 + c 4 c, we ca obtai the followig recurrece relatio: A = 650s 3,0 +385s 3, +854s 3, 664s 3,3, B = 86s 3,0 +3s 3, 67s 3, +78s 3,3, C = 00s 3,0 380s 3, 47s 3, +5s 3,3, D = 6s 3,0 5s 3, 70s 3, +48s 3,3, E = 98s 3,0 083s 3, 906s 3, +368s 3,3, F = 434s 3,0 +84s 3, +3473s 3, 769s 3,3, 7

G = 988s 3,0 +935s 3, 757s 3, 933s 3,3, H = 58s 3,0 +80s 3, +90s 3, 834s 3,3, I = 68s 3,0 +86s 3, 3s 3, 6s 3,3, J = 303s 3,0 690s 3, +46s 3, +666s 3,3, K = 3980s 3,0 373s 3, +638s 3, +60s 3,3, L = 0s 3,0 869s 3, 490s 3, +6s 3,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a b, N = a b, P = a 3 b 3, gcda i,b i =, s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 3,0 We choose the symbol of s 3,0 such that for some 0, 0, T s 3, is positive.. 3,0,s 3,,s 3,,s 3,3 Refereces [] T. Agoh ad K. Dilcher, Covolutio idetities ad lacuary recurreces for Beroulli umbers, J. Number Theory. 4 007, 05. [] T. Agoh ad K. Dilcher, Higher-order recurreces for Beroulli umbers, J. Number Theory. 9 009, 837 847. [3] T. Agoh ad K. Dilcher, Higher-order covolutios for Beroulli ad Euler polyomials, J. Math. Aal. Appl. 49 04, 35 47. [4] K. Dae Sa ad K. Taeyu Some idetities ivolvig Geocchi polyomials ad umbers, Ars Combi. 05, 403 4. [5] Su, ZhiWei, Biomial coefficiets, Catala umbers ad Lucas quotiets, Sci. Chia Math.53 00, 473 488. [6] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers of the secod id, Proc. Jagjeo Math. Soc. 8 05, 369 383. 8

[7] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers, Toyo J. Math. 39 06. 5 39. [8] T. Komatsu ad Y. Simse, Third ad higher order covolutio idetities for Cauchy umbers, Filomat. 30 06, 053 060. [9] K. Doha ad Lee, Eu Gu Relatioship amog biomial coefficiets, Beroulli umbers ad Stirlig umbers, Ars Combi. 5 06, 33 337. [0] T. Komatsu, Z. Masaova ad E. Pelatova, Higher-order idetities for Fiboacci umbers, Fiboacci Quart. 5, 04, o.5, 50 63. [] E. Kili, Triboacci sequeces with certai idices ad their sums, Ars Comb. 86, 008, 3. [] W. Marcellus E, The Tetraacci sequece ad geeralizatios, Fiboacci Quart. 30 99, o., 9 0. [3] W. Marcellus E, Some properties of the Tetraacci sequece modulo m, Fiboacci Quart. 30 99, o.3, 3C-38. [4] G. Carlos Alexis ad L. Floria Power of two-classes i -geeralized Fiboacci sequeces, Rev. Colombiaa Mat. 48 04, o., 9C-34. [5] N. J. A. Sloae, The O-Lie Ecyclopedia of Iteger Sequeces, available olie at http://oeis.org. 9