arxiv:609.057v [math.nt] 7 Sep 06 Covolutio idetities for Tetraacci umbers Ruse Li School of Mathematics ad Statistics Wuha Uiversity Wuha 43007 Chia limajiashe@whu.edu.c Abstract We give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Itroductio Covolutio idetities for various types of umbers or polyomials have bee studied, with or without biomial coefficiets, icludig Beroulli, Euler, Geocchi, Catala, Cauchy, Stirlig, Fiboacci ad Triboacci umbers [,, 3, 4, 5, 6, 7, 8, 9, 0, ].Tetraacci sequece has bee studied i [, 3, 4]. Tetraacci umbers T are defied by the recurrece relatio T = T +T +T 3 +T 4 4 with T 0 = 0, T = T =, T 3 = ad their sequece is give by {T } 0 = 0,,,,4,8,5,9,56,08,08,... [5, A000078]. The geeratig fuctio without factorials is give by x Tx := x x x 3 x 4 = T x =0 because of the recurrece relatio. O the other had, the geeratig fuctio with biomial coefficiets is give by tx := c e αx +c e βx +c 3 e γx +c 4 e δx x = T!, 3 =0
where α, β, γ ad δ are the roots of x 4 x 3 x x = 0 ad Notice that β +γ +δ+βγ +γδ +δβ c : = α βα γα δ = α 3 +6α, α+γ +δ+αγ +γδ +δα c : = β αβ γβ δ = β 3 +6β, α+β +δ+αβ +βδ +δα c 3 : = γ αγ βγ δ = γ 3 +6γ, α+β +γ+αβ +βγ +γα c 4 : = δ αδ βδ γ = δ 3 +6δ. because t has a Biet-type formula: c +c +c 3 +c 4 = 0, c α+c β +c 3 γ +c 4 δ =, c α +c β +c 3 γ +c 4 δ =, c α 3 +c β 3 +c 3 γ 3 +c 4 δ 3 =, T = c α +c β +c 3 γ +c 4 γ 0. I this paper, we give covolutio idetities without biomial coefficiets for Tetraacci umbers ad covolutio idetities with biomial coefficiets for Tetraacci ad Tetraacci-type umbers. Covolutio idetities without biomial coefficiets By, we have Hece, T x = +x +x 3 +3x 4 x x x 3 x 4. +x +x 3 +3x 4 Tx = x T x. 4
The left-had side of 4 is +x +x 3 +3x 4 T T x =0 =0 = T T x + T T x = = 3 4 + T T 3 x +3 T T 4 x =3 =4 4 t T +T +T 3 +3T 4 x =4 + T +T +3T 3 x +x +x 3. =4 The right-had side of 4 is x +T + x = T x. =0 = Therefore, we get the followig result. Theorem. For 4, we have 4 T T +T +T 3 +3T 4 = T T 3T 3. The idetity 4 ca be writte as Sice Tx = x +x +x 3 +3x 4T x. 5 +x +x 3 +3x 4 = l x l +x+3x l = = l=0 l x l l=0 m=0 3j+ m j+4 m j, i+j+=l i,j, 0 m j l i x j 3x i,j, + m j m j m j j 3 x m, j,j, 3
ad T x = +T + x, =0 the right-had side of 5 is x A l+t l+ x l = x where A = B = C = m=0 3j+ m j+4 m j, 3j+ l j+4 l j, 3j+ l j+4 l j, l=0 m j l j l j Sice the left-had side of 5 is = =0 l=0 Bl+T l+ x Cl+T l+ x, = l=0 + m j + l j + l j =0 T T x, m j m j j 3 x m, j,j, l j l 3j 4 j 3,,j, l j l 3j 4 j 3.,j, comparig the coefficiets o both sides, we obtai the followig result without biomial coefficiet. Theorem. For, where D = 3j+ l j+4 l j, T T = l+t l+ D, l j l=0 + l j 3 Some prelimiary lemmas l j l 3j 4 j 3.,j, For coveiece, we shall itroduce modified Tetraacci umbers T s0,s,s,s3, satisfyig the recurrece relatio T s0,s,s,s3 = T s0,s,s,s3 +T s0,s,s,s3 +T s0,s,s,s3 3 +T s0,s,s,s3 4 4 4
with give iitial values T s0,s,s,s3 0 = s 0, T s0,s,s,s3 = s, T s0,s,s,s3 s,ad T s0,s,s,s3 3 = s 3. Hece, T = T 0,,, are ordiary Tetraacci umbers. First, we shall prove the followig four lemmata. Lemma. We have c e αx +c e βx +c 3e γx +c 4e δx = =0 = T 40,64,5,344 x!. Proof. For Tetraacci-type umbers s, satisfyig the recurrece relatio s = s +s +s 3 +s 4 4 with give iitial values s 0, s, s ad s 3, we have d e αx +d e βx +d 3 e γx +d 4 e δx x = s!. 6 =0 Sice d, d, d 3 ad d 4 satisfy the system of the equatios d +d +d 3 +d 4 = s 0, d α+d β +d 3 γ +d 4 γ = s, d α +d β +d 3 γ +d 4 γ = s, d α 3 +d β 3 +d 3 γ 3 +d 4 γ 3 = s 3, we have s 0 s β γ δ s β γ δ s 3 β 3 γ 3 δ 3 d = α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 d = s 0 α s γ δ α s γ δ α 3 s 3 γ 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0βγδ +s β +γ +δ s 3 s βγ +βδ +γδ β αγ αδ α = s 0γδα+s γ +δ +α s 3 s γδ +γα+δα γ βδ βα β,, 5
d 3 = s 0 α β s δ α β s δ α 3 β 3 s 3 δ 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0δαβ +s δ +α+β s 3 s δα+δβ +αβ δ γα γβ γ, d 4 = s 0 α β γ s α β γ s α 3 β 3 γ 3 s 3 α β γ δ α β γ δ α 3 β 3 γ 3 δ 3 = s 0αβγ +s α+β +γ s 3 s αβ +αγ +βγ α δβ δγ δ. Whe s 0 = 40, s = 64, s = 5 ad s 3 = 344, by α + β + γ + δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α,αβγδ = adα 4 = α 3 +α +α+, we have d = 40βγδ +5β +γ +δ 344 64βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c, d 3 = c 3 ad d 4 = c 4. Lemma. We have =0 t x! = c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, = c. where Proof. Sice t = T T T40,64,5,344. c e αx +c e βx +c 3 e γx +c 4 e δx = c eαx +c eβx +c 3 eγx +c 4 eδx +c c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx, 6
we ca obtai the followig idetity: =0 x T =! =0 = =0 x T T! T 40,64,5,344 x! + =0 t x!. Comparig the coefficiets o both sides, we get the desired result. Lemma 3. We have c c 3 c 4 e αx +c 3 c 4 c e βx +c 4 c c e γx +c c c 3 e δx = =0 T 5,,3,3 x!. Proof. I the proof of Lemma, we put s 0 = 5, s =, s = 3 ad s 3 = 3, istead. We have d = 5βγδ+3β +γ +δ 3 βγ +βδ +γδ β αγ αδ α = c c 3 c 4.. Similarly, we have d = c 3 c 4 c, d 3 = c 4 c c ad d 4 = c c c 3. Lemma 4. We have c c c 3 c 4 =. Proof. By α+β+γ+δ =, βγ+βδ+γδ = αβ+αγ+αδ = α α, αβγδ = ad α 4 = α 3 +α +α+, we have c c c 3 c 4 α = α βα γα δ β αβ γβ δ γ γ αγ βγ δ δ αδ βδ γ α β γ δ = α β α γ α δ β γ γ β β δ = 4α 3 3α α 39α 3 58α 3α 3 =. β δ 7
4 Covolutio idetities for three ad four Tetraacci umbers Before givig more covolutio idetities,we shall give some elemetary algebraic idetities i symmetric form.it is ot so difficult to determie the relatios amog coefficiets. Lemma 5. The followig equality holds: a+b+c+d 3 = Aa 3 +b 3 +c 3 +d 3 +Babc+abd+acd+bcd +Ca +b +c +d a+b+c+d +Dab+ac+ad+bc+bd+cda+b+c+d, where A = D, B = 3D+6, C = D+3. Lemma 6. The followig equality holds: a+b+c+d 4 = Aa 4 +b 4 +c 4 +d 4 +Babcd+Ca 3 +b 3 +c 3 +d 4 a+b+c+d +Da +b +c +d +Ea +b +c +d ab+ac+ad+bc+bd+cd +Fab+ac+ad+bc+bd+cd +Ga +b +c +d a+b+c+d +Hab+ac+ad+bc+bd+cda+b+c +Iabca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Jabc+abd+bcd+acda+b+c+d, where A = D+E +G+H 3, B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J. Lemma 7. The followig equality holds: a+b+c+d 5 = Aa 5 +b 5 +c 5 +d 5 +Babcab+bc+ca+abdab+bd+ad+acdac+ad+cd+bcdbc+bd+cd +Cabca +b +c +abdb +c +d +acda +c +d +bcdb +c +d +Dabca+b+c +abda+b+d +acda+c+d +bcdb+c+d +Ea 4 +b 4 +c 4 +d 4 a+b+c+d+fa+b+c+dabcd +Ga+b+c+d abca+b+c+abda+b+d+bcdb+c+d+acda+c+d +Ha 3 +b 3 +c 3 +d 3 a +b +c +d 8
+Ia 3 +b 3 +c 3 +d 3 ab+ac+ad+bc+bd+cd +Jabc+abd+acd+bcda +b +c +d +Kabc+abd+acd+bcdab+ac+ad+bc+bd+cd +La 3 +b 3 +c 3 +d 3 a+b+c+d +Mabc+abd+acd+bcda+b+c+d +Na +b +c +d a+b+c+d +Pab+ac+ad+bc+bd+cd a+b+c+d +Qa +b +c +d ab+ac+ad+bc+bd+cda+b+c+d +Ra +b +c +d a+b+c+d 3 +Sab+ac+ad+bc+bd+cda+b+c+d 3, where A = I +L+N +P +Q+6R+4S 4, B = D G K M N 5P Q 6R S +30, C = D G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0. Now, let us cosider the sum of three products with triomial coefficiets. Lemma 8. We have c 3 e αx +c 3 e βx +c 3 3e γx +c 3 4e δx = =0 T 5,7,48,07 x!. Proof. I the proof of Lemma, we put s 0 = 5, s = 7, s = 48 ad s 3 = 07, istead. We ca obtai that d = 5βγδ +48β +γ +δ 07 7βγ +βδ +γδ β αγ αδ α. Similarly, we have d = c 3, d 3 = c 3 3 ad d 4 = c 3 4. By usig Lemmata,, 3, 5 ad 8, we get the followig result. = c 3. 9
Theorem 3. For 0, T T T 3,, 3 + + 3 =,, 3 0 = A 3 T 5,7,48,07 B + C T 40,64,5,344 T +D T 5,,3,3 T t. where A = D, B = 3D+6, C = D+3, t = T T T40,64,5,344. Remar. If we tae D = 0, we have for 0, T T T 3,, 3 + + 3 =,, 3 0 = 3 T 5,7,48,07 6 + 3 T 40,64,5,344 T. Proof. First, by Lemmata,, 3, 5 ad 8, we have c e αx +c e βx +c 3 e γx +c 4 e δx 3 = Ac 3 e 3αx +c 3 e 3βx +c 3 3e 3γx +c 3 4e 3δx T 5,,3,3 +Bc c c 3 e α+β+γx +c c 3 c 4 e β+γ+δx +c c c 4 e α+β+δx +c c 3 c 4 e α+γ+δx +Cc e αx +c e βx +c 3e γx +c 4e δx c e αx +c e βx +c 3 e γx +c 4 e δx +Dc c e α+βx +c c 3 e α+γx +c c 4 e α+δx +c c 3 e β+γx +c c 4 e β+δx +c 3 c 4 e γ+δx c e αx +c e βx +c 3 e γx +c 4 e δx = A T 5,7,48,07 3x B! =0 + C =0 O the other had, 3 x T =! =0 =0 T 40,64,5,344 x T + + 3 =,, 3 0! +D T 5,,3,3 x! =0 x T t!. x T T T 3,, 3!. 0
Comparig the coefficiets o both sides, we get the desired result. Next, we shall cosider the sum of the products of four tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 9. We have c 4 e αx +c 4 e βx +c 4 3e γx +c 4 4e δx = =0 T 305,4658,8804,645 x!. By usig Lemmata,, 3, 6, 8, ad 9,lettig I = 0 i Lemma 6, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 4. For 0, T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 = A 4 T 305,4658,8804,645 B + C + D + E + G +H J T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t +F + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D + E + G + H 3, B = 4D + 4E + 4G + 4H, C = E G H +4,F = D G H +6, J = 4D E +G H, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, the by A = 3, B =, C = 4, F = 6
ad J = 0, we have for 0, T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 = 3 4 T 305,4658,8804,645 + + 4 +6 t t, =0 Let t x! 3 T 5,7,48,07 T = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx +c c c 4 e α+β+δx c e αx +c e βx +c 4 e δx +c c 3 c 4 e α+γ+δx c e αx +c 3 e γx +c 4 e δx. By usig Lemmata,, 3, 6, 8, ad 9, comparig the coefficiets o both sides, we ca get the followig theorem. Theorem 5. For 0,I 0 It =,, 3, 4 + + 3 + 4 =,, 3, 4 0 T T T 3 T 4 A 4 T 305,4658,8804,645 + B C D E G H + J + + 3 =,, 3 0 + + 3 =,, 3 0 T 40,64,5,344 T 40,64,5,344 T 40,64,5,344 t F + + 3 =,, 3 0,, 3,, 3 3 T 5,7,48,07 T t t T 40,64,5,344 T T 3 t T T 3 T 5,,3,3,, T, 3 where A = D+E +G+H 3, B = D+G 4J,
C = E G H+4, F = D G H+6, I = 4D E+G H J, t = T T T40,64,5,344. Remar. If D = E = G = H = 0, J =, the by A = 3, B = 8, C = 4, F = 6 ad I =, we have for 0, t = T T T 3 T 4,, 3, 4 + + 3 + 4 =,, 3, 4 0 + 3 4 T 305,4658,8804,645 8 4 3 T 5,7,48,07 T 6 t t T 5,,3,3,, T. 3 + + 3 =,, 3 0 5 Covolutio idetities for five Tetraacci umbers We shall cosider the sum of the products of five tetraacci umbers. We eed the followig supplemetary result. The proof is similar to that of Lemma 8 ad omitted. Lemma 0. c 5 eαx +c 5 eβx +c 5 3 eγx +c 5 4 eδx = =0 T 500,43,598,4986 x!. By usig Lemmata,, 3, 7, 8, 9 ad 0, comparig the coefficiets o both sides, we ca get the followig theorems. 5. Let B = C = D = 0, we ca obtai the followig theorem. Theorem 6. For 0, T T 5,..., 5 + + 5 =,..., 5 0 = A 5 T 500,43,598,4986 + E F T +G t T + H 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 3
+ I J K + L M + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0 3 T 5,7,48,07 t + + 3 + 4 =,, 3, 4 0 + N +P + Q + R +S + + 3 =,, 3 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3,, 3,, 3 T 5,,3,3 T 40,64,5,344 T 5,,3,3 t 3 T 5,7,48,07 T T 3 T 5,,3,3,, 3, T T 3 4,, 3,, 3 + + 3 + 4 =,, 3, 4 0 + + 3 + 4 =,, 3, 4 0,, 3 T 40,64,5,344 T 40,64,5,344 t t T 3 T 40,64,5,344 t T 3 T 40,64,5,344,, 3, T T 3 T 4 4,, 3, 4 t T T 3 T 4, T 3 where A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = L = M = N = P = Q = R = S = 0, the by A = 4, 4
E = 5, F = 50, H = 0, J = 0 ad K = 30, we have for 0, T T 5,..., 5 5. + + 5 =,..., 5 0 = 4 5 T 500,43,598,4986 + 5 + 50 0 30 T + 0 + + 3 =,, 3 0 + + 3 =,, 3 0,, 3 4 T 305,4658,8804,645 T 3 T 5,7,48,07 T 40,64,5,344 T 5,,3,3 T 40,64,5,344 T 5,,3,3,, t. 3 Let B 0, C = D = 0, we ca obtai the followig theorem. Let t x! =0 = c c c 3 e α+β+γx c c e α+βx +c c 3 e β+γx +c 3 c e γ+αx + +c c 3 c 4 e β+γ+δx c c 3 e β+γx +c 3 c 4 e γ+δx +c 4 c e δ+βx. Theorem 7. For 0, Bt =,..., 5 where + + 5 =,..., 5 0 S + + 3 + 4 =,, 3, 4 0 T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = G J M +N P Q 3S +6, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t ad t are same as those i theorem ad theorem 5, respectively. 5
Remar. If G = J = K = L = M = N = P = Q = R = S = 0, the by A = 6, B = 30, E = 5, F = 60, H = 0 ad I = 0, we have for 0, 30t = T T 5 6,..., 5 5 T 500,43,598,4986 5.3 + + 5 =,..., 5 0 + 5 0 4 T 305,4658,8804,645 T + 60 3 T 5,7,48,07 T 40,64,5,344 0 Let C 0, B = D = 0, we ca obtai the followig theorem. Let =0 t 3 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3e γx + Theorem 8. For 0, Ct 3 =,..., 5 where + + 5 =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3e γx +c 4e δx. + + 3 + 4 =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, 3 T 5,7,48,07 t. t ad t are same as those i theorem ad theorem 5, respectively. Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by 6
A = 4, C = 0, E = 5, F = 30, H = 0 ad K = 30, we have for 0, 0t 3 = T T 5 + 4,..., 5 5 T 500,43,598,4986 5.4 + + 5 =,..., 5 0 5 0 + 30 + + 3 =,, 3 0 4 T 305,4658,8804,645 T + 30 3 T 5,7,48,07 T 40,64,5,344,, 3 T 5,,3,3 t. Let D 0, B = C = 0, we ca obtai the followig theorem. Let =0 t 4 x! = c c c 3 e α+β+γx c e αx +c e βx +c 3 e γx + Theorem 9. For 0, Dt 4 =,..., 5 where + + 5 =,..., 5 0 S +c c 3 c 4 e β+γ+δx c e βx +c 3 e γx +c 4 e δx. + + 3 + 4 =,, 3, 4 0 T T T 5 A 5 T 500,43,598,4986 t T T 3 T 4,,, 3, 4 A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t ad t are same as those i theorem ad theorem 5, respectively. 7
Remar. If G = I = J = L = M = N = P = Q = R = S = 0, the by A = 4, D = 0, E = 5, F = 90, H = 0 ad K = 0, we have for 0, 0t 4 = T T 5 + 4,..., 5 5 T 500,43,598,4986 + + 5 =,..., 5 0 5 0 0 + + 3 =,, 3 0 4 T 305,4658,8804,645 T + 90 3 T 5,7,48,07 T 40,64,5,344,, 3 6 More geeral results T 5,,3,3 t. T We shall cosider the geeralcase of Lemmata, 8 ad 9. Similarly to the proof of Lemma, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 4 with give iitial values s,0, s,, s, ad s,3, we have the form d eαx +d eβx +d 3 eγx +d 4 eδx = Theorem 0. For, we have c e αx +c e βx +c 3e γx +c 4e δx = A s x,!. T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: x!, s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0, b, b, b 3, M, N ad P are determied i the proof. 8
Proof. By d = A c, d = A c, d = s,0 c = βγδ +s, β +γ +δ s,3 s, βγ +βδ +γδ, β αγ αδ α β +γ +δ+βγ +γδ +δβ α βα γα δ α = α βα γα δ = α 3 +6α, we ca obtai the followig recurrece relatio: A = 3s, s, +s,3, B = 5s, +5s, 5s,3, C = 5s, s, +s,3, D = 5s, s, +s,3, E = s,0 s,, F = 5s,0, G = s,0 +6s,, H = s,0 s,, I = 4s, +6s,, J = 3s, 5s,, K = s, +s,, L = s, +s,, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MKA CI+LA DI, P = BN +CM +D, BI JA A M = a, N = a, P = a 3, with gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, 4s,3 3s, s, s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 Next we shall cosider the geeral case of Lemma 3. Similarly to the proof of Lemma 3, for tetraacci-type umbers s,, satisfyig the recurrece relatio s, = s, + s, + s, 3 + s, 4 s,, s,, we have the form ad s,3 r eαx +r eβx +r 3 e γx +r 4 e δx = 9 4 with give iitial values s,0, s x,!,
where r, r, r 3 ad r 4 are determied by solvig the system of the equatios. Theorem. c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = A T s,0,s,,s,,s,3, where s,0, s,, s,, s,3 ad A satisfy the recurrece relatios: s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0, b,b, b 3, M, N ad P are determied i the proof. Proof. By r = A c c 3c 4, we ca obtai the followig recurrece relatio: A = 6s,0 6s, +58s, 7s,3, B = 03s,0 +03s, 43s, +70s,3, C = 57s,0 57s, 09s, +83s,3, D = 0s,0 0s, 4s, +6s,3, E = 3s,0 +6s, 330s, +57s,3, F = 06s,0 03s, +365s, 3s,3, G = 34s,0 +57s, +35s, 54s,3, H = 0s,0 +0s, +6s, 3s,3, I = 3s, 36s, +0s,3, J = 06s, +9s, +6s,3, K = 34s, +69s, 3s,3, L = 0s, 304s, +47s,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a, N = a, P = a 3, gcda i,b i =, b b b 3 s,0 = ±lcmb,b,b 3, s, = Ms,0, s, = Ns,0, s,3 = Ps,0, A = A s, s,3 6s,3 +03s, 57s, 0s,0. We choose the symbol of s,0 such that for some 0, 0, T s, is positive.,0,s,,s,,s,3 x!, 0
As applicatio, we compute some values of s,0, s,, s,, A for some. For =, we have A = 70, B = 8, C = 360, D = 36, E = 606, F = 377, G = 48, H = 888, I = 84, J = 963, K = 09, L = 79, M = 34, N = 6, P = 44 5 5, s,0 = 5, s, = 34, s, = 90, s,3 = 44, A =, c c 3 c 4 eαx +c c 3 c 4 eβx +c c c 4 eγx +c c c 3 eδx = T 5,34,90,44 x,!. For = 3, we have A = 079, B = 6833, C = 374, D = 86, E = 78, F = 6674, G = 04, H = 4508, I = 7, J = 450, K = 94, L = 0, M = 353 75, N = 5, P = 38 5, s 3,0 = 75, s3, = 353, s3, = 47, s3,3 = 66, A3 = 3, c 3 c3 3 c3 4 eαx +c 3 c3 3 c3 4 eβx +c 3 c3 c3 4 eγx +c 3 c3 c3 3 eδx = 3 T 75,353, 47,66 x,!. We ca obtai more covolutio idetities for ay fixed, but we oly some of the results.the proof of ext eight theorems are similar to the proofs of theorem lemma, 3, 4, 5, 6, 7, 8 ad 9, ad omitted. Let c c e α+βx + +c 3c 4e γ+δx = t x,!, the by previous algebraic idetities,we ca obtai the followig theorems. Theorem. For m 0,, where t,m = A c c eα+βx + +c 3 c 4 eγ+δx = m m T s,0,s,,s,,s,3, T s,m t x m,m m!,,0,s,,s,,s,3 m A T s,0,s,,s,,s,3,m.
Theorem 3. For m 0,, m,, 3 A 3 = A A 3 + where + + 3 =m,, 3 0 3 m T s3,0,s3,,s3,,s3,3,m + B C m A A + D A m m T s,0,s,,s,,s,3, T s,0,s,,s,,s,3, T s, 3 A m m T s,0,s,,s,,s,3, m T s T s,0,s,,s,,s,3, t t,m is determied i theorem.,m, m T s,0,s,,s,,s,3,,0,s,,s,,s,3,m A = D, B = 3D+6, C = D+3, Theorem 4. For m 0,, m,, 3, 4 A 4 = A A 4 + + + 3 + 4 =m,, 3, 4 0 A + E A + 4 m T s4,0,,s4,3,m +B + D m m m T s,0,,s,3 m m m T s,0,,s,3,m G A A + H A + J A A + + 3 =m,, 3 0 + + 3 =m,, 3 0 + + 3 =m,, 3 0 T s,0,s,,s,,s,3, T s C A 3 A m, T s,0,,s,3,m m m,, 3 m,, 3,, 3 t t,m +F m,0,s,,s,,s,3, 4 m 3 m T s3,m m t, t,m T s,0,,s,3, T s, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, T s,0,,s,3,,,0,s,,s,,s,3,0,,s3,3 T s,0,,s,3,,0,,s,3, T s,0,,s,3, 3 where A = D+E +G+H 3, B = 4D+4E +4G+4H, C = E G H +4, F = D G H +6, J = 4D E +G H, is determied i theorem. t,m
Let t x,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3c 4e α+γ+δx c e αx +c 3e γx +c 4e δx. Theorem 5. For m 0,,I 0, It,m = m A 4,, 3, 4 A A 4 J A A + + 3 + 4 =m,, 3, 4 0 4 m T s4,m,0,,s4,3 + + 3 =m,, 3 0 m,, 3 T s,0,,s,3, T s T s,0,,s,3,0,,s,3, 4, T s,0,,s,3,, where A = D+E +G+H 3,B = D+G 4J, C = E G H+4, F = D G H+6, I = 4D E+G H J, is determied i theorem. t,m Lemma 7 will be discussed i four cases. Case : B = C = D = 0. Theorem 6. For m 0,, m T s,0,,s,3,,, T s, 5 5 A 5 = A A 5 + + 5 =m,, 5 0 5 m T s5 +F + H,0,,s5,3,m + m m m A 3 A m + I A 3 J + A A m E A 4 A T s,0,,s,3 m m, + G,0,,s,3 m 4 m T s4,m m m t A 3 m T s3,0,,s3,3 3 T s3,0,,s3,3 + + 3 =m,, 3 0,m, t,m,0,,s4,3 T s,0,,s,3, Ts,0,,s,3,,m T s,0,,s,3, m T s,0,,s,3,,, T s, 3,0,,s,3 3
+ K A + + + + + 3 =m,, 3 0 L A 3 A M A A N A A + P A + + + where Q A A + + 3 =m,, 3 0 R A A 3 S A 3 m,, 3 + + 3 =m,, 3 0 + + 3 + 4 =m,, 3, 4 0 + + 3 =m,, 3 0 m + + 3 =m,, 3 0 T s m,, 3 m,, 3 m,, 3, 4,, 3 m + + 3 + 4 =m,, 3, 4 0 + + 3 + 4 =m,, 3, 4 0 t, t,, 3,0,,s,3, t, 3 T s3,0,,s3,3, T s,0,,s,3, T s,0,,s,3, 3 T s T s,0,,s,3, T s, T s,0,,s,3, 3 T s,0,,s,3 m,, 3, 4 m,, 3, 4, t t,0,,s,3, T s,0,,s,3, T s,0,,s,3, 3,0,,s,3, T s,0,,s,3, 3, T s,0,,s,3, 3 T s,0,,s,3 A = I +L+N +P +Q+6R+4S 4, E = I L N Q 3R S +5,, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 4G+I +L+6N +5P +6Q+8R+6S 50, H = L N P Q 4R 3S +0, J = G I L M P 3Q 6R 7S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case : B 0, C = D = 0. Let t x 3,! = c c c 3 eα+β+γx c c eα+βx +c c 3 eβ+γx +c 3 c eγ+αx + +c c 3 c 4 eβ+γ+δx c c 3 eβ+γx +c 3 c 4 eγ+δx +c 4 c eδ+βx. 4
Theorem 7. For m 0,, Bt 3,m = m A 5,, 5 A where A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = G J M +N P Q 3S +6,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, B = G K M N 5P Q 6R S +30, E = G+J +M N +P +Q+3R+6S 5, F = 3G J 3K 7M P 3Q 6R 7S +60, H = L N P Q 4R 3S +0, I = G J L M P 3Q 6R 7S +0, t,m ad t,m are determied i theorem ad 5, respectively. Case 3: C 0, B = D = 0. Let t x 4,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 8. For m 0,, Ct 4,m = m A 5,, 5 A A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, 5
where A = I +L+N +P +Q+6R+4S 4, C = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5, F = 3G J M +6N +3P +3Q+R+9S 30, H = L N P Q 4R 3S +0, K = G M N 5P Q 6R S +30, t,m ad t,m are determied i theorem ad 5, respectively. Case 4: D 0, B = C = 0. Let t x 5,! = c c c 3 eα+β+γx c eαx +c eβx +c 3 eγx + +c c 3 c 4 eβ+γ+δx c eβx +c 3 eγx +c 4 eδx. Theorem 9. For m 0,, Dt 5,m = m A 5,, 5 A where A 5 S A 3 + + 5 =m,, 5 0 5 m T s5,m,0,,s5,3 + + 3 + 4 =m,, 3, 4 0 m,, 3, 4 T s,0,,s,3, T s t A = I +L+N +P +Q+6R+4S 4, D = G I J L M P 3Q 6R 7S +0, E = I L N Q 3R S +5,,0,,s,3, 5, T s,0,,s,3, T s,0,,s,3, 3 T s,0,,s,3, 4, F = 3G 6I 7J 7M +6N L 9P 5Q 4R 33S +90, H = L N P Q 4R 3S +0, K = I +J N +4L P +4Q+6R+S 0, t,m ad t,m are determied i theorem ad 5, respectively. 6
7 Some more iterestig geeral expressios We shall give some more iterestig geeral expressios. Lemma. For, we have Theorem 0. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = T 46,46,58,080 x!. c c 3 +c 3 c 4 +c 4 c e αx +c 3 c 4 +c 4 c +c c 3 e βx +c c +c c 4 +c 4 c e γx +c c +c c 3 +c c 3 e δx = A T s 3,0,s 3,,s 3,,s 3,3 x 3, 3!, where s 3,0, s 3,, s 3,, s 3,3 ad A 3 satisfy the recurrece relatios: s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 b,b, b 3, M, N ad P are determied i the proof. 3,0 Proof. Similarly to the proof of Theorem, we cosider the form h eαx +h eβx +h 3 eγx +h 4 eδx =. s x 3,!. By h = A 3 c c 3 + c 3 c 4 + c 4 c, we ca obtai the followig recurrece relatio: A = 650s 3,0 +385s 3, +854s 3, 664s 3,3, B = 86s 3,0 +3s 3, 67s 3, +78s 3,3, C = 00s 3,0 380s 3, 47s 3, +5s 3,3, D = 6s 3,0 5s 3, 70s 3, +48s 3,3, E = 98s 3,0 083s 3, 906s 3, +368s 3,3, F = 434s 3,0 +84s 3, +3473s 3, 769s 3,3, 7
G = 988s 3,0 +935s 3, 757s 3, 933s 3,3, H = 58s 3,0 +80s 3, +90s 3, 834s 3,3, I = 68s 3,0 +86s 3, 3s 3, 6s 3,3, J = 303s 3,0 690s 3, +46s 3, +666s 3,3, K = 3980s 3,0 373s 3, +638s 3, +60s 3,3, L = 0s 3,0 869s 3, 490s 3, +6s 3,3, M = LA DIFA BE HA DEJA BI GA CEJA BI KA CIFA BE, N = MGA CE+HA DE, P = BN +CM +D, BE FA A M = a b, N = a b, P = a 3 b 3, gcda i,b i =, s 3,0 = ±lcmb,b,b 3, s 3, = Ms 3,0, s 3, = Ns 3,0, s 3,3 = Ps 3,0, A 3 = A 6s 3,3 +03s 3, 57s 3, 0s 3 8s 3,3 +0s 3, +7s 3, 6s 3,0 3,0 We choose the symbol of s 3,0 such that for some 0, 0, T s 3, is positive.. 3,0,s 3,,s 3,,s 3,3 Refereces [] T. Agoh ad K. Dilcher, Covolutio idetities ad lacuary recurreces for Beroulli umbers, J. Number Theory. 4 007, 05. [] T. Agoh ad K. Dilcher, Higher-order recurreces for Beroulli umbers, J. Number Theory. 9 009, 837 847. [3] T. Agoh ad K. Dilcher, Higher-order covolutios for Beroulli ad Euler polyomials, J. Math. Aal. Appl. 49 04, 35 47. [4] K. Dae Sa ad K. Taeyu Some idetities ivolvig Geocchi polyomials ad umbers, Ars Combi. 05, 403 4. [5] Su, ZhiWei, Biomial coefficiets, Catala umbers ad Lucas quotiets, Sci. Chia Math.53 00, 473 488. [6] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers of the secod id, Proc. Jagjeo Math. Soc. 8 05, 369 383. 8
[7] T. Komatsu, Higher-order covolutio idetities for Cauchy umbers, Toyo J. Math. 39 06. 5 39. [8] T. Komatsu ad Y. Simse, Third ad higher order covolutio idetities for Cauchy umbers, Filomat. 30 06, 053 060. [9] K. Doha ad Lee, Eu Gu Relatioship amog biomial coefficiets, Beroulli umbers ad Stirlig umbers, Ars Combi. 5 06, 33 337. [0] T. Komatsu, Z. Masaova ad E. Pelatova, Higher-order idetities for Fiboacci umbers, Fiboacci Quart. 5, 04, o.5, 50 63. [] E. Kili, Triboacci sequeces with certai idices ad their sums, Ars Comb. 86, 008, 3. [] W. Marcellus E, The Tetraacci sequece ad geeralizatios, Fiboacci Quart. 30 99, o., 9 0. [3] W. Marcellus E, Some properties of the Tetraacci sequece modulo m, Fiboacci Quart. 30 99, o.3, 3C-38. [4] G. Carlos Alexis ad L. Floria Power of two-classes i -geeralized Fiboacci sequeces, Rev. Colombiaa Mat. 48 04, o., 9C-34. [5] N. J. A. Sloae, The O-Lie Ecyclopedia of Iteger Sequeces, available olie at http://oeis.org. 9