The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Σχετικά έγγραφα
Particle Physics: Introduction to the Standard Model

Non-Abelian Gauge Fields

Solar Neutrinos: Fluxes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Quantum Electrodynamics

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Space-Time Symmetries

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Symmetric Stress-Energy Tensor

Index , 332, 335, 338 equivalence principle, , 356

Matrices and Determinants

UV fixed-point structure of the 3d Thirring model

Questions on Particle Physics

Ο Maxwell ενοποίησε τις Ηλεκτρικές με τις Μαγνητικές δυνάμεις στον

Introduction to the Standard Model of Particle Physics

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Hartree-Fock Theory. Solving electronic structure problem on computers

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

MODIFIED COUPLINGS FOR A LIGHT COMPOSITE HIGGS. Roberto Contino Università di Roma La Sapienza

Neutrino emissivities in quark matter

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Chapter 9 Ginzburg-Landau theory

Three coupled amplitudes for the πη, K K and πη channels without data

Section 8.3 Trigonometric Equations

Differential equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Review Exercises for Chapter 7

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Color Superconductivity: CFL and 2SC phases

Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης

Paul Langacker. The Standard Model and Beyond, Second Edition Answers to Selected Problems

Dirac s Observables for the SU(3)xSU(2)xU(1) Standard Model. Abstract

MathCity.org Merging man and maths

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The scalar sector of the SU(3) c SU(3) L U(1) X model

Errata 18/05/2018. Chapter 1. Chapter 2

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Section 7.6 Double and Half Angle Formulas

Chapter 6 BLM Answers

Section 9: Quantum Electrodynamics

Finite Field Problems: Solutions

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΠΕΡΙΕΧΟΜΕΝΑ Χαρακτηριστικά - Ιδιότητες W Πρότυπο Weinberg Salam: Σχέση m z m Σχέση m, m t, m H Μέτρηση m Επιταχυντές pp (pp bar Επιταχυντές e - e + ba

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

PARTIAL NOTES for 6.1 Trigonometric Identities

Study on the discovery of new heavy, neutral gauge bosons with the ATLAS experiment. PhD Thesis

Neutrino experiments and nonstandard interactions

Η ανακάλυψη του Μποζονίου Higgs στο CERN

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Geometric Lagrangians. for. massive higher-spin fields

Particle Physics Formula Sheet

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Homework 8 Model Solution Section

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Example 1: THE ELECTRIC DIPOLE

D Alembert s Solution to the Wave Equation

If we restrict the domain of y = sin x to [ π 2, π 2

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

Physics of CP Violation (III)

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2 The Wess-Zumino Model

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Βαρύτητα και Ισχυρή Δύναμη: Ενα ημικλασικό μοντέλο τύπου Bohr χωρίς άγνωστες παραμέτρους για την δομή των πρωτονίων και των νετρονίων

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Antonio Pich. IFIC, CSIC Univ. Valencia.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

8.324 Relativistic Quantum Field Theory II

CRASH COURSE IN PRECALCULUS

Trigonometric Formula Sheet

APPLICATIONS OF FLUID DYNAMICS BASED ON GAUGE FIELD THEORY APPROACH

( N m 2 /C 2 )( C)( C) J

derivation of the Laplacian from rectangular to spherical coordinates

Thirring Model. Brian Williams. April 13, 2010

Νετρίνο το σωματίδιο φάντασμα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Rigid and local Lorentz symmetry.

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Areas and Lengths in Polar Coordinates

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Large β 0 corrections to the energy levels and wave function at N 3 LO

Numerical Analysis FMN011

Note: Please use the actual date you accessed this material in your citation.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία

Transcript:

http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour Dynamics L U() Y Taer de Atas Energías (TAE) 00 Barceona, Spain, August September 00

Quarks Leptons Bosons up down eectron neutrino e e photon guon charm strange muon neutrino Z 0 ± τ top beauty tau neutrino τ Higgs The Standard Mode A. Pich - TAE 00

FREE Dirac ermion: = ψ ( iγ m) ψ Phase Invariance: ψ ψ = ψ ; ψ ψ = ψ e iqθ Absoute phases are not observabe in Quantum Mechanics GAUGE PRINCIPLE: θ = Phase Invariance shoud hod LOCALLY θ( x) e iqθ BUT e iq θ θ ψ ( + iq ) ψ SOLUTION: Covariant Derivative D ( i A ) e iq θ ψ + eq ψ D ψ One needs a spin- ied A satisying A A e θ The Standard Mode A. Pich - TAE 00

= ψ ( iγ D m) ψ = ψ ( iγ m) ψ e QA ( ψγ ψ) γ ψ e Q ψ Kinetic term: K = Fν F ν 4 Mass term: M = m A A γ = eq ( ψγ ψ) Maxwe F ν Not Gauge Invariant m γ = 0 ν 8 [exp: m < 0 ev ] γ Gauge Symmetry QED Dynamics The Standard Mode A. Pich - TAE 00

e Successu Theory γ e + + Anomaous Magnetic Moment g e m a ( g ) a e = ( 59 65 80.85 ± 0.76) 0 α = ± 7.05 999 70 0.000 000 096 th a = (65988 ± 0) 0 0 0 [ Exp: ( 659 08.0 ± 6.) 0 ] The Standard Mode A. Pich - TAE 00

FREE QUARKS: = q [ iγ m] q q q q q N C = SU() Coour Symmetry: q U q ; q q U ; det ; exp i λ = = = = θ a UU UU U U a Gauge Principe: Loca Symmetry θ = θ ( ) D μ q ( I + i G ) q U g s The Standard Mode A. Pich - TAE 00 μ Dq i D U D U ; G U G U + ( U) U g ( a α β λ ) α β Ga [ ] ( x ) a a x G 8 Guon Fieds s

Ininitesima SU() Transormation: a α λ q a β abc = i δθ q ; Ga ( ) = δθ s a δθ b G g δ δ αβ c Non Abeian Group: a b c λ λ abc λ, = i δ G a depends on Universa g s G a No Coour Charges The Standard Mode A. Pich - TAE 00

Kinetic Term: i G ν [ D, D ν ] = G ν ν G + igs[ G, G ν ] U G ν U g G s a ν ν ν ν ν c ν λ abc Ga ; Ga = Ga Ga gs Gb G K Tr ( G G ) 4 ν a ν Ga ν Gν = = Mass Term: M = mg Ga G a Not Gauge Invariant m G = 0 Massess Guons The Standard Mode A. Pich - TAE 00

QCD = Tr ( G ν G ) [ i m ] ν + q γ D q q a a ( a a ) ( ) = G ν ν G G G + q [ iγ mq ] q 4 q a a α αβ β g [ q ( λ ) γ q ] G s ν ν α α q + g g G G G G 4 a a d e s abc ( G G ) G b G ν ν ν ν c s abc ad e b c ν Guon Se interactions g s 4 G,G Universa Couping (No Coour Charges) The Standard Mode A. Pich - TAE 00

Three Famiies νe u ν c ντ t,, e d s τ b Famiy Structure ν qu ν q u,( ν ) R, R ;,( qu) R,( qd ) R q d q L d L Charged Currents Neutra currents ± γ, Z Let handed Fermions ony Favour Changing: ν, qu q Favour Conserving d Universaity (Famiy Independent Coupings) ( )? R ν The Standard Mode A. Pich - TAE 00

The Standard Mode A. Pich - TAE 00

SU() L U() Y Fieds ψ ( x) ψ ( x) ψ ( x) Quarks Leptons q q u d ν L L ( q ) ( q ) u R d ( ν ) ( ) R R R Free Lagrangian or Massess Fermions: 0 = i ψ j γ ψ j j SU () U () L { } Y Favour Symmetry: L exp i σ U α iy β iy β iy β e e e UL ; ; ψ ψ ψ ψ ψ ψ i y β i y β i y β e e e UL ; ; ψ ψ ψ ψ ψ ψ 4 Massess Gauge Bosons ± 0,, B The Standard Mode A. Pich - TAE 00

Gauge Principe: α = α ( x), β = β ( x) D ( ) e iy β x ψ + ig ( x) + ig y B ( x) ψ U () x D ψ L D i y k β ( x) ψk + ig yk B ( x) ψk e ψ k = D B ( x) B ( x) β ( x) g i ( x) UL( x) ( x) UL( x) + UL(x) UL( x) g ( k,) { } i ( ) exp ( ) ; ( ) ( ) ; i ijk j k x i σ α x x σ U x δ = ( δα ) ε δ α g 4 Massess Gauge Bosons ± 0,, B The Standard Mode A. Pich - TAE 00

CHARGED CURRENTS i ψ j γ D ψ j g ψγ ψ g B yj ψ j γ ψ j j j σ ; = i + ( ) = g q u γ ( γ ) qd + ν γ ( γ ) + h.c. CC 5 5 Quark / Lepton Universaity Let Handed Interaction The Standard Mode A. Pich - TAE 00

NEUTRAL CURRENTS NC σ = ψγ ψ j ψ jγ ψ j j g g B y Massess Fieds Arbitrary Combination cos θ sin θ Z B sin θ cos θ A A has the QED Interaction IF g sin θ = g cos θ = e y = Q u = d ; u ; Q + y = Q y = Q d NC Q = ea ψ j γ Q j ψ j + j Qu 0 = ; Q = Qu ; Q = 0 Q d Q d Z NC The Standard Mode A. Pich - TAE 00

Z NC = sinθ e cosθ Z σ ψγ ψ sin θ ψ j γ Q j ψ j j = sinθ cosθ e Z γ [ γ ] v a 5 qu qd ν v 8 sin θ 4 + s in θ + 4 sin θ a ν R IF do exist: yv ( R ) = Qv = 0 No R Sterie Neutrinos v Interactions The Standard Mode A. Pich - TAE 00

γ NEUTRAL Z CURRENTS eq a = T = ± ( sin ) v = T 4 Q θ e s c θ θ ( a γ 5) v CHARGED g ( γ ) / 5 ν CURRENTS qd g ( γ ) / 5 qu yv ( R ) = Qv = 0 No R v Interactions Sterie The Standard Mode A. Pich - TAE 00 Neutrinos

i, σ ; g D D U U L L ν B B B B ν ν ν ν ν ν ν i i i i jk j k ν = ν ν g ε ν K ν Tr( ν = B B ) B B ν ν ν = ν ν ν = kin + + 4 4 4 = ν ν ν ν ν ν {( ) ν ν ν Z } ie cot θ Z ( ) Z + ( Z ) ν ν {( ) ( ) ( )} ν ν ν ν ν ν ν + ie A A + A A {( ) } ν e cot { ν Z Z Z ν ν θ ν ν Z } e = sin θ { ν ν ν } { ν ν ν ν ν ν ν } e cotθ Z A Z A A Z e A A A A The Standard Mode A. Pich - TAE 00

+ GAUGE SELF-INTERACTIONS γ,z + + + γ,z γ,z The Standard Mode A. Pich - TAE 00

Gauge Symmetry m γ = 0 M = M = Z 0 Good Bad! M M Z = = 80.40 GeV 9.9 GeV Moreover m L R R L m = m ( + ) Aso Forbidden by Gauge Symmetry m 0 = A Partices Massess The Standard Mode A. Pich - TAE 00