ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΚΕΦΑΛΑΙΟΥ ΟΜΟΙΟΤΗΤΑ

Σχετικά έγγραφα
Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

2ηέκδοση 20Ιανουαρίου2015

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Aν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ


ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

1 ο Αχαρνών 197 Αγ. Νικόλαος ο Αγγ. Σικελιανού 43 Περισσός

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

Επαναληπτικές Ασκήσεις

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Τάξη A Μάθημα: Γεωμετρία

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΕ = ΑΓ από τα δεδομένα ΒΑΕ=Α+ΓΑΕ=Α+ΒΑ = ο φυλλάδιο ΛΥΣΕΙΣ (Version )

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

= π 3 και a = 2, β =2 2. a, β

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE

Ασκήσεις - Πυθαγόρειο Θεώρηµα


1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

Ημερομηνία: Τρίτη 17 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Επαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο Γ ΓΥΜΝΑΣΙΟΥ

ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Θέµατα Γεωµετρίας Γενικής Παιδείας Β Λυκείου 1999

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

Transcript:

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΚΕΦΑΛΑΙΟΥ ΟΜΟΙΟΤΗΤΑ «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.» ΑΣΚΗΣΗ 1 η Από το V βιβλίο των στοιχείων του Ευκλείδη Οι μη παράλληλες πλευρές ΑΔ και ΒΓ τραπεζίου ΑΒΓΔ τέμνονται στο σημείο Ο. Αν είναι ΑΒ = 12cm, ΓΔ = ΑΔ = 4cm και ΒΓ = 8cm, να υπολογίσετε τα μήκη των ευθυγράμμων τμημάτων ΟΔ και ΟΓ. Τα τρίγωνα ΟΓΔ και ΟΑΒ έχουν την γωνία Ο κοινή και λόγω των παραλλήλων πλευρών του τραπεζίου, επομένως είναι όμοια οπότε: 4 1 ή ή 4 8 12 3 επομένως έχουμε: 1 4 3ΟΔ = ΟΔ + 4 ΟΔ = 2cm. και 3 1 8 3ΟΓ = ΟΓ + 8 ΟΓ = 4cm. 3 ΑΣΚΗΣΗ 2η Δίνεται κύκλος κέντρου Ο και σημείο Ρ εξωτερικό του κύκλου. Από το σημείο Ρ φέρνουμε μια εφαπτόμενη του κύκλου ΡΑ και μια τέμνουσα ΡΒΓ. Να αποδείξετε ότι: 2 AB ΡΒ AΓ 2 ΡΓ

Τα τρίγωνα ΡΑΒ και ΡΑΓ έχουν την γωνία Ρ κοινή και επομένως είναι όμοια, οπότε: ή (1) και (2) με πολλαπλασιασμό των σχέσεων (1) και (2) έχουμε: 2 2 ΑΣΚΗΣΗ 3 η ( χορδή και εφαπτομένη) Σε τρίγωνο ΑΒΓ είναι B 2. Να προεκτείνεται την ΑΒ κατά τμήμα ΒΔ = ΒΓ. Να δείξετε ότι: α) Τα τρίγωνα ΑΒΓ και ΓΑΔ είναι όμοια. β) 2 ( ). α) Τα τρίγωνα ΑΒΓ και ΑΓΔ είναι όμοια γιατί έχουν: τη γωνία Α κοινή και

ˆ ˆ ˆB AB 2 β) Από την παραπάνω ομοιότητα έχουμε: B AB A 2 ( ). ΑΣΚΗΣΗ 4 η Σε τραπέζιο ΑΒΓΔ οι μη παράλληλες πλευρές του ΑΔ και ΒΓ τέμνονται σε σημείο Κ. Από το σημείο Κ φέρνουμε ευθεία παράλληλη προς τις βάσεις του τραπεζίου, που τέμνει τις προεκτάσεις των διαγωνίων του τραπεζίου ΒΔ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να δείξετε ότι: BΓ ΔΓ α) ΒΚ ΕΚ β) ΕΚ = ΚΖ α) Τα τρίγωνα ΒΓΔ και ΒΕΚ έχουν την γωνία B1 κοινή και EBK λόγω των παραλλήλων ευθειών (ε) και ΓΔ. Συνεπώς είναι όμοια άρα β) Ανάλογα με το πρώτο ερώτημα και τα τρίγωνα ΑΔΓ και ΑΚΖ είναι όμοια A οπότε επειδή λόγω των παραλλήλων ευθειών (ε), ΓΔ και ΑΒ ισχύει, από τις προηγούμενες σχέσεις προκύπτει ότι, άρα είναι ΕΚ = ΚΖ.

ΑΣΚΗΣΗ 5 η Δίνεται τρίγωνο ΑΒΓ και Μ τυχαίο σημείο της πλευράς του ΒΓ. Έστω Δ, Ε τα μέσα των πλευρών του ΑΒ και ΑΓ αντίστοιχα. Η ευθεία ΕΜ τέμνει την ΑΒ στο σημείο Λ και η ευθεία ΜΔ την ΑΓ στο σημείο Κ. Αν είναι ΑΘ//ΔΕ τότε να αποδείξετε ότι: KA BM α) KE ΔΕ β) ΑΜ//ΚΛ α) Τα Δ και Ε είναι τα μέσα των πλευρών του τριγώνου ΑΒΓ συνεπώς ΔΕ//ΒΓ. Αφού ΑΘ//ΔΕ τότε θα είναι και ΑΘ//ΒΓ άρα A1 B ως εντός εναλλάξ γωνίες, 1 2 ως κατακορυφή γωνίες και ΑΔ = ΒΔ, συνεπώς τα τρίγωνα ΑΘΔ και ΒΔΜ είναι ίσα. KA Τα τρίγωνα ΚΑΘ και ΚΔΕ είναι όμοια τότε A και από την ισότητα των τριγώνων KE KA ΑΘΔ και ΔΒΜ είναι ΑΘ = ΒΜ, οπότε η σχέση γίνεται KE β) Από την ομοιότητα των τριγώνων ΛΒΜ και ΛΔΕ έχουμε KA και με βάση το α) ερώτημα έχουμε οπότε από το Θεώρημα του Θαλή είναι KE ΑΜ//ΚΛ

ΑΣΚΗΣΗ 6η Δίνεται τρίγωνο ΑΒΓ και Μ το μέσο της πλευράς του ΒΓ. Από το σημείο Μ φέρνουμε τυχαία ευθεία (ε) που τέμνει τις ΑΒ και ΑΓ στα σημεία Ρ και Κ αντίστοιχα και από το σημείο Α ευθεία (η) παράλληλη της πλευράς ΒΓ του τριγώνου που τέμνει την ευθεία (ε) στο σημείο Ν. Να αποδείξετε ότι: α) Τα τρίγωνα ΡΑΝ και ΡΒΜ είναι όμοια β) ΡΝΚΜ = ΡΜΚΝ α) Τα τρίγωνα ΡΑΝ και ΡΒΜ έχουν την γωνία P κοινή και 2 λόγω των παραλλήλων PN AN (η) και ΒΓ, επομένως είναι όμοια, άρα PM BM β) Τα τρίγωνα ΚΑΝ και ΚΜΓ έχουν K1 K2 (ως κατακορυφή γωνίες) και N M 1 KN AN επομένως είναι όμοια, άρα KM M αλλά ΜΒ = ΜΓ αφού το Μ είναι μέσο της πλευράς ΒΓ, οπότε η παραπάνω σχέση γράφεται: KN AN KM BM Τέλος από την παραπάνω σχέση και από το (α) ερώτημα έχουμε: PN KN ΡΝΚΜ = ΡΜΚΝ PM KM

ΑΣΚΗΣΗ 7 η Δύο κύκλοι με κέντρα Κ και Λ τέμνονται στα σημεία Α και Β. Αν το τμήμα ΚΑ τέμνει τον ένα κύκλο στο σημείο Γ και το τμήμα ΛΑ τον άλλο κύκλο στο σημείο Δ και οι ΓΔ και ΚΛ τέμνονται στο σημείο Μ, τότε: α) Να αποδείξετε ότι τα τρίγωνα ΑΚΔ και ΑΓΛ είναι όμοια. β) Να αποδείξετε ότι το τετράπλευρο ΚΓΔΛ είναι εγγράψιμο. γ) Αν είναι ΚΛ = 10, ΓΔ = 4 και ΔΜ = 8 να υπολογίσετε το μήκος του τμήματος ΛΜ. α) Τα τρίγωνα ΑΚΔ και ΑΓΛ είναι ισοσκελή γιατί ΑΚ = ΚΔ ως ακτίνες του ίδιου κύκλου και ΑΛ = ΓΛ για τον ίδιο λόγο. Επιπλέον τα ισοσκελή τρίγωνα έχουν την γωνία Α κοινή, επομένως έχουν δύο γωνίες ίσες άρα είναι όμοια. β) Από την ομοιότητα των παραπάνω τριγώνων έχουμε την αναλογία A όπου προκύπτει ότι ΑΔΑΛ = ΑΓΑΚ, συνεπώς το τετράπλευρο ΚΓΔΛ είναι εγγράψιμο. από γ) Από το εγγράψιμο τετράπλευρο ΚΓΔΛ έχουμε ότι: ΜΔΜΓ = ΜΛΜΚ και αν ονομάσουμε την ΜΛ = x, από την προηγούμενη ισότητα προκύπτει ότι: 812 = x(x + 10) x 2 +10x 96 = 0 x = 6

ΑΣΚΗΣΗ 8 η Δίνεται τρίγωνο ΑΒΓ και Μ τυχαίο σημείο της πλευράς του ΒΓ. Έστω Δ, Ε τα μέσα των πλευρών του ΑΒ και ΑΓ αντίστοιχα. Η ευθεία ΕΜ τέμνει την ΑΒ στο σημείο Λ και η ευθεία ΜΔ την ΑΓ στο σημείο Κ. Αν είναι ΑΘ//ΔΕ τότε να αποδείξετε ότι: KA BM α) KE ΔΕ γ) ΑΜ//ΚΛ ΛΥΣΗ α) Τα Δ και Ε είναι τα μέσα των πλευρών του τριγώνου ΑΒΓ συνεπώς ΔΕ//ΒΓ. Αφού ΑΘ//ΔΕ τότε θα είναι και ΑΘ // ΒΓ άρα A1 B ως εντός εναλλάξ γωνίες, 1 2 ως κατακορυφή γωνίες και ΑΔ = ΒΔ, συνεπώς τα τρίγωνα ΑΘΔ και ΒΔΜ είναι ίσα. Τα τρίγωνα ΚΑΘ και ΚΔΕ είναι όμοια τότε KA A και από την ισότητα των τριγώνων ΑΘΔ και ΔΒΜ είναι KE KA ΑΘ = ΒΜ, οπότε η σχέση γίνεται KE β) Από την ομοιότητα των τριγώνων ΛΒΜ και ΛΔΕ έχουμε και με βάση το α) ερώτημα έχουμε KA οπότε από το Θεώρημα του Θαλή είναι ΑΜ//ΚΛ KE