On homeomorphisms and C 1 maps

Σχετικά έγγραφα
The one-dimensional periodic Schrödinger equation

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Every set of first-order formulas is equivalent to an independent set

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Multi-dimensional Central Limit Theorem

A Class of Orthohomological Triangles

2 Composition. Invertible Mappings

Multi-dimensional Central Limit Theorem

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and Determinants

Example Sheet 3 Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Commutative Monoids in Intuitionistic Fuzzy Sets

5. Choice under Uncertainty

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Fractional Colorings and Zykov Products of graphs

Finite Field Problems: Solutions

New bounds for spherical two-distance sets and equiangular lines

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Statistical Inference I Locally most powerful tests

C.S. 430 Assignment 6, Sample Solutions

F19MC2 Solutions 9 Complex Analysis

4.6 Autoregressive Moving Average Model ARMA(1,1)

Parametrized Surfaces

1. Introduction and Preliminaries.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Oscillatory integrals

IV и. е ые и Си АДИ, ы 5 (51),

A Note on Intuitionistic Fuzzy. Equivalence Relation

Uniform Convergence of Fourier Series Michael Taylor

Homomorphism in Intuitionistic Fuzzy Automata

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

SOME PROPERTIES OF FUZZY REAL NUMBERS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

TMA4115 Matematikk 3

Lecture 2. Soundness and completeness of propositional logic

w o = R 1 p. (1) R = p =. = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Solution Series 9. i=1 x i and i=1 x i.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

F A S C I C U L I M A T H E M A T I C I

Fuzzifying Tritopological Spaces

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Reminders: linear functions

12. Radon-Nikodym Theorem

CRASH COURSE IN PRECALCULUS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Chap. 6 Pushdown Automata

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Strain gauge and rosettes

Approximation of distance between locations on earth given by latitude and longitude

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Generalized Normal Type-2. Triangular Fuzzy Number

Approximation of the Lerch zeta-function

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Section 8.3 Trigonometric Equations

ST5224: Advanced Statistical Theory II

Intuitionistic Fuzzy Ideals of Near Rings

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

α & β spatial orbitals in

Differentiation exercise show differential equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homework 3 Solutions

Cyclic or elementary abelian Covers of K 4

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Second Order RLC Filters

Derivation of Optical-Bloch Equations

Space-Time Symmetries

Homework 8 Model Solution Section

arxiv: v3 [math.ra] 24 Nov 2017

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

de Rham Theorem May 10, 2016

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Trigonometric Formula Sheet

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Knaster-Reichbach Theorem for 2 κ

Transcript:

arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose n hs arcle s frs, followng [8], o prove ha f α, β are any pons of he open un dsc D0;1 n he complex plane C and r, s are any posve real numbers such ha Dα;r D0;1 and Dβ;s D0;1, hen here exs 0,1 and a homeomorphsm h [: D0;1 ] D0;1 such ha Dα;r D0;, Dβ;s D0;, h Dα; r = Dβ;s and h = d on D0;1 \ D0;, and second, followng [9], o prove ha f q N \ {0,1} and B0;1 s he open un ball n R q, whle for any > 0, we se f x = x 1+ 1 x, whenever x B0;1, hen f d n C 1 B0;1,R q as 1 +. Mahemacs Subjec Classfcaon: 03E65, 37E30, 54C35. 1 Inroducon Our purpose n hs arcle s o prove n ZF - Axom of Foundaon + Axom of Counable Choce one heorem regardng homeomorphsms of he closed un dsc D0;1 n he complex plane C and one heorem regardng maps n C 1 B0;1,R q, where B0;1 s he he closed un ball n R q and q N \ {0,1}. For he defnon of a homeomorphsm beween merc spaces Dedcaed o he memory ofmy grandparensnkolaosand Alexandra, and Konsannos and Elen. AΣMA : 130/543/94 1

see page 39 of [1] or page 84 of [] or page 18 of [3] or page 45 of [4] or page 144 of [6], whle he merc of C 1 B0;1,R q s easly deduced from pages 7-8 of [7] and pages 648-649 of [5], snce f = f 1,...,f q C 1 B0;1,R q, f and only f for any {1,...,q}, we have ha f C 1 B0;1,R. A parcular homeomorphsm of D0; 1.1. Defnon. Leα D0;1bearbrarybufxedandleρ > 0besuch ha Dα;ρ D0;1 or equvalenly α + ρ < 1,.e., 0 < ρ < 1 α. Fnally, le 0 be such ha Dα;ρ+ D0;1 or equvalenly α +ρ+ < 1,.e., 0 < α ρ. Then, followng page 5 of [8], we se ψ α;ρ; α+re = α+ ρ+ ρ re f 0 r ρ, 0 < π α+ r ρ +ρ+ e f ρ r ρ+, 0 < π α+re oherwse whenever α + re D0;1, where r 0 and 0 < π. An almos verbam repeon of he argumen on page 5 of [8] proves ha he map [ 0, α ρ ψ α;ρ; HD0;1 s connuous, whle ψ α;ρ; = d on he un crcle... Defnon. Le a R and le 0 b < 1, whle 0 ǫ < 1 b. We se rexpθ+a f 0 r b, 0 θ < π σ a;b;ǫ re θ = rexp θ ar ǫ b+a f b r b+ǫ, 0 θ < π re θ f b+ǫ r 1, 0 θ < π I s no dffcul o verfy ha σ a;b;ǫ : D0;1 D0;1 consues a homeomorphsm whch s he deny on D0;1\D0;b+ǫ and roaon by a

on D0;b. Moreover, s no dffcul o verfy ha f 0 < < ǫ < 1 b, hen for any z D0;1, we have ha σ a;b;ǫ z σ a;b; z < ǫ..3. Defnon. Le 0 u < 1 be arbrary bu fxed and le > 0 be such ha [,u+] [,] D0;1. We consruc a homeomorphsm τ u; : D0;1 D0;1 whch s he deny on D0,1\,u+, and ranslaon by u on [u,u+] [,],.e., ranslaes [u,u+] [,] o [,]. We proceed by defnng τ u; on [,u+] [,]. If for any j {1,}, we se pr j : R x 1,x x j R, hen we dsngush he followng hree cases: y. If y x y, hen we se pr τ u; x,y = y, whle pr 1 τ u; x,y s defned as follows: a If u+ x u+, hen pr 1 τ u; x,y = 1 u+ y + u+ x u + u y +. b If u x u+, hen pr 1 τ u; x,y = x+ u y u. c If x u, hen pr 1 τ u; x,y = 1 u+ y + u+ x+. y. If y x y, hen we se pr τ u; x,y = y, whle u+x u + f u+ x u+ pr 1 τ u; x,y = x u f u x u+ u+ x+ f x u y. If y x y,henwesepr τ u; x,y = y, whle pr 1 τ u; x,y s defned as follows: 3

a If u+ x u+, hen pr 1 τ u; x,y = 1 u+ y ++ u+ x u + uy ++. b If u x u+, hen pr 1 τ u; x,y = x+ u y + u. c If x u, hen pr 1 τ u; x,y = 1 u+ y ++ u+ x+..4. Theorem. If α, β are any pons of D0;1 and r, s are any posve real numbers such ha Dα;r D0;1 and Dβ;s D0;1, hen here exs 0,1 and a homeomorphsm h : D0;1 D0;1 such ha Dα;r D0;, Dβ;s D0;, h [ Dα;r ] = Dβ;s and h = d on D0;1\D0;. Proof. If 0 < ǫ < 1 mn{ α,1 α, β,1 β }, hen s no dffcul 4 o verfy ha [ ] ψ α;r;ǫ r/ Dα;r f 0 < r < ǫ Dα;ǫ = [ ] ψ 1 α;ǫ;r ǫ/ Dα;r f 0 < ǫ < r and [ ] ψ β;s;ǫ s/ Dβ;s Dβ;ǫ = [ ] ψ 1 β;ǫ;s ǫ/ Dβ;s f 0 < s < ǫ f 0 < ǫ < s whle f 0 a < π and 0 b < π are such ha α = α e a and β = β e b, hen snce Dα;ǫ D0; α + ǫ and Dβ;ǫ D0; β + ǫ, s no dffcul o verfy ha [ f 0 < ] η < mn{1 α ǫ,1[ β ] ǫ}, hen D α ;ǫ = σ a; α +ǫ;η Dα;ǫ and D β ;ǫ = σ b; β +ǫ;η Dβ;ǫ. Therefore, he clam follows from he fac ha f ǫ s small enough for boh [ ǫ, α +ǫ] [ ǫ,ǫ], [ ] [ ǫ, β +ǫ] [ ǫ,ǫ] [ ] obeconanednd0;1, hen τ α ;ǫ D α ;ǫ = D0;ǫ = τ β ;ǫ D β ;ǫ. 4

3 Parcular maps n C 1 B0;1,R q 3.1. Defnon. If > 0, hen we se f x =.e., f f = f 1,...,f q, hen f x 1,...,x q = x 1+ 1 x, x 1+ 1 x 1 +...+x q whenever 1 q and x = x 1,...,x q B0;1. For q =, hs funcon s nroduced on page 1 of [9]. We remark ha f 1 = d, whle for any value of he parameer, a sraghforward compuaon shows ha f x j = x 1 +...+x q whenever he ndces, j are dsnc, and f x = x x j, 1+ 1 x 1 +...+xq 1+ 1 x 1 x x 1+ 1 x, for any ndex, where s no dffcul o prove ha he orgn consues a removable sngulary and of dsnc ndces, j. f x j x=0 3.. Lemma. f d 0 as 1. = 0 and f x x=0, =, for any par Proof. Gven any > 0 and any x B0;1, a sraghforward compuaon shows ha and hence max f x x = max f x x = 1 x x 1+ 1 x 1 x x 1+ 1 x 5 ss = 1 max 0 s 1 1+ 1s.

If > 1, hen obvously max 0 s 1 ss 1+ 1s max 0 s 1 ss = 1 and f d 1 0 as 1 +. So le us assume ha 0 < < 1. Then, a sraghforward compuaon shows ha d ss = s s+1 ds 1+ 1s 1+ 1s, where he roos of s s+1 = 0 are and 1+. Hence, snce follows mmedaely ha 0 < < 1 < 1+, d ds ss 1+ 1s and consequenly max 0 s 1 whch mples ha > 0 on [ 0, ss 1+ 1s = and d ss ds 1+ 1s < 0 on,1], 1+ 1 =, f d = = + 0 as 1 and he clam follows. 3.3. Lemma. For any ndex, f 1 x 0 as 1 +. Proof. If > 1, hen 6

f 1 x = max 1 x 1+ 1 x x 1+ 1 x + 1 max 1 x 1+ 1 x x 1+ 1 x max max 1+ 1 x 1 + 1 max 1+ 1 x 1 + 1 max 1+ 1 x 1 + 1 max max 1+ 1 max x 1+ 1 = 1 x x 1+ 1 x x x 1+ 1 x x 1+ 1 x and he clam follows. 3.4. Lemma. For any par of dsnc ndces, j, we have ha f 0 as 1 +. x j Proof. If > 1, hen f = max x j x x j x 1 +...+x q 1+ 1 x 1 +...+x q x = max x j x 1+ 1 x = 1 max x x j x 1+ 1 x 7

= 1 max = 1 max = 1 max x 1 x x x 1+ 1 x x 1+ 1 x and he clam follows. 3.5. Theorem. f d n C 1 B0;1,R q as 1 +. Proof. I s an mmedae consequence of he prevous hree lemmas. References [1] C. D. Alprans and O. Burknshaw, Prncples of real analyss, Thrd Edon, Academc Press, 1998. [] T. M. Aposol, Mahemacal analyss, Second Edon, Addson Wesley, 1974. [3] Yu. Borsovch, N. Blznyakov, Ya. Izralevch, T. Fomenko, Inroducon o opology, Mr Publshers, Moscow, 1985. [4] J. Deudonné, Foundaons of modern analyss, Academc Press, New York and London, 1960. [5] K. Io, Edor, Encyclopedc dconary of mahemacs, Volume II, Second Edon, The MIT Press, Cambrdge, 1987. [6] H. L. Royden, Real analyss, Thrd Edon, Macmllan Publshng Company, New York, 1988. [7] N. E. Sofronds, Lecures on ndusral and appled mahemacs, Smmera Publcaons, 014. [8] N. E. Sofronds, Fxed pon free homeomorphsms of he complex plane, arxv, 9 Augus 016. 8

[9] N. E. Sofronds, Dffeomorphsms of he closed un dsc convergng o he deny, arxv, 10 July 017. 9