Singuläre Störungsrechnung und ihre Anwendung in der Aerodynamik. Stefan Braun

Σχετικά έγγραφα
Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Linearized Lifting Surface Theory Thin-Wing Theory

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Chapter 9 Ginzburg-Landau theory

Discretization of Generalized Convection-Diffusion

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Markov chains model reduction

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Η Ρευστομηχανική από τον Αρχιμήδη μέχρι σήμερα. μια σύντομη ιστορική αναδρομή

D Alembert s Solution to the Wave Equation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Α Ρ Ι Θ Μ Ο Σ : 6.913

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Graded Refractive-Index

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

L p approach to free boundary problems of the Navier-Stokes equation

Higher Derivative Gravity Theories

Finite difference method for 2-D heat equation

High order interpolation function for surface contact problem

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

VISCOUS FLUID FLOWS Mechanical Engineering

Oscillatory Gap Damping

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Consolidated Drained

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

6.4 Superposition of Linear Plane Progressive Waves

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Ροη αέρα σε Επίπεδη Πλάκα

Wavelet based matrix compression for boundary integral equations on complex geometries

NTC Thermistor:SCK Series

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

3-dimensional motion simulation of a ship in waves using composite grid method

Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow

Local Approximation with Kernels

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Self-Gravitating Lattice Gas

Example Sheet 3 Solutions

About the controllability of y t εy xx + My x = 0 w.r.t. ε

Computing the Macdonald function for complex orders

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Strain gauge and rosettes

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Non-Gaussianity from Lifshitz Scalar

Thick Film Array Chip Resistor

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model


1 String with massive end-points

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

1/10. 10dB. Jacob (7)

YJM-L Series Chip Varistor

Εισαγωγή στις πλεγματικές μεθόδους Υπολογιστικής Ρευστομηχανικής

Mellin transforms and asymptotics: Harmonic sums

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation


Lifting Entry (continued)

UV fixed-point structure of the 3d Thirring model

Areas and Lengths in Polar Coordinates

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Temperature Correction Schemes

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

3.5 - Boundary Conditions for Potential Flow

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

Approximation of dynamic boundary condition: The Allen Cahn equation

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Hydrologic Process in Wetland

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ

Forced Pendulum Numerical approach

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Areas and Lengths in Polar Coordinates

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Polymer PTC Resettable Fuse: KMC Series

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

TUNING FORK TUNES. exploring new scanning probe applications

On the Galois Group of Linear Difference-Differential Equations

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Part 4 RAYLEIGH AND LAMB WAVES

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α'

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

Design Method of Ball Mill by Discrete Element Method

Transcript:

Singuläre Störungsrechnung und ihre Anwendung in der Aerodynamik Stefan Braun Institut für Strömungsmechanik und Wärmeübertragung Seminarvortrag TU Graz, 3. Nov. 211

method of matched asymptotic expansions ODE example: ε y +y +y =, y() =, y(1) = 1, < ε 1 exact solution: 3 y(x; ε) 2.5 2.1.1 1.5.1 1.5 ε = 1.2.4.6.8 x 1 boundary layer : y 1, δ 1 : ε δ 2 + 1 δ + 1 δ ε

ε y + y + y =, y() =, y(1) = 1 outer region: x = O(1), ε (singular perturbation) regular expansion: y(x; ε) = y (x) + εy 1 (x) + O(ε 2 ), y, y 1 = O(1) y + y + ε(y 1 + y 1 + y ) + O(ε2 ) = O(1) : y + y =, y () =, y (1) = 1 y = e e x 3 e 2.5 y(x; ε) 2 inner region: x ε 1.5 1 y outer region: x 1.5.2.4.6.8 x 1

ε y + y + y =, y() =, y(1) = 1 inner region: X = x/ε = O(1), ε (stretching) local expansion: y(x; ε) = Y (X) + εy 1 (X) + O(ε 2 ), Y, Y 1 = O(1) 1 (Y ε + Y ) + Y 1 + Y 1 + Y + O(ε) = O(ε 1 ) : Y + Y =, Y () = Y = c (1 e X ) Van Dyke s matching rule: E { y (εx) + } = E {Y (x/ε) + } E n { }... expand its argument in powers of ε up to and including O(ε n ) keeping x, X fixed E {e e εx } = E {c (1 e x/ε )} e = c

ε y + y + y =, y() =, y(1) = 1 inner region: X = x/ε = O(1), ε (stretching) local expansion: y(x; ε) = Y (X) + εy 1 (X) + O(ε 2 ), Y, Y 1 = O(1) 1 (Y ε + Y ) + Y 1 + Y 1 + Y + O(ε) = O(ε 1 ) : Y + Y =, Y () = Y = c (1 e X ) Van Dyke s matching rule: E { y (εx) + } = E {Y (x/ε) + } E n { }... expand its argument in powers of ε up to and including O(ε n ) keeping x, X fixed E {e e εx } = E {c (1 e x/ε )} e = c

Sky and Water I, woodcut by M.C. Escher, 1938

uniformly valid approximation (composite expansion): y(x; ε) = y +Y e+o(ε) e e x +e (1 e X ) e e (e x e x/ε ) 3 e 2.5 y(x; ε) 2 y Y exact 1.5 composite solution 1.5 ε =.1.2.4.6.8 x 1

Prandtl s hierarchical boundary layer concept LE L inviscid BL TE α ũ, ν D L u =, (u ) u = p + 1 Re u, ũ L Re = = L 1 ν lν far field: u 1, p, no slip condition: u = on P outer region: x, y = O(1), ε = Re 1/2 u = u (x, y) + ε u 1 (x, y) +, p = p (x, y) + ε p 1 (x, y) + inner region: x, Y = y/ε = O(1) u = U (x, Y) + ε U 1 (x, Y) +, p = P (x, Y) + ε P 1 (x, Y) +, v = ε V (x, Y) + ε 2 V 1 (x, Y) +

Prandtl s hierarchical boundary layer concept LE L inviscid BL TE α ũ, ν D L u =, (u ) u = p + 1 Re u, ũ L Re = = L 1 ν lν far field: u 1, p, no slip condition: u = on P outer region: x, y = O(1), ε = Re 1/2 u = u (x, y) + ε u 1 (x, y) +, p = p (x, y) + ε p 1 (x, y) + inner region: x, Y = y/ε = O(1) u = U (x, Y) + ε U 1 (x, Y) +, p = P (x, Y) + ε P 1 (x, Y) +, v = ε V (x, Y) + ε 2 V 1 (x, Y) +

Prandtl s hierarchical boundary layer concept LE L inviscid BL TE α ũ, ν D L u =, (u ) u = p + 1 Re u, ũ L Re = = L 1 ν lν far field: u 1, p, no slip condition: u = on P outer region: x, y = O(1), ε = Re 1/2 u = u (x, y) + ε u 1 (x, y) +, p = p (x, y) + ε p 1 (x, y) + inner region: x, Y = y/ε = O(1) u = U (x, Y) + ε U 1 (x, Y) +, p = P (x, Y) + ε P 1 (x, Y) +, v = ε V (x, Y) + ε 2 V 1 (x, Y) +

outer region: potential flow, determine slip u (x, ) = u w (x) inner region: classical Prandtl s boundary layer U x + V Y =, U U x + V U Y = u wu w + 2 U Y 2 x = : initial cond., Y = : U = V =, U (x, ) = u w (x) boundary layer characteristics: wall shear τ w (x) = U Y displacement thickness δ (x) = b.c. for outer flow correction: v 1 (x, ) = ( Y= 1 U (x, Y) u w (x) ( ) δ (x)u w (x) ) dy

outer region: potential flow, determine slip u (x, ) = u w (x) inner region: classical Prandtl s boundary layer U x + V Y =, U U x + V U Y = u wu w + 2 U Y 2 x = : initial cond., Y = : U = V =, U (x, ) = u w (x) boundary layer characteristics: wall shear τ w (x) = U Y displacement thickness δ (x) = b.c. for outer flow correction: v 1 (x, ) = ( Y= 1 U (x, Y) u w (x) ( ) δ (x)u w (x) ) dy

hierarchical structure: u, v, p u 1, v 1, p 1 u 2, v 2, p 2 U, V U 1, V 1

hierarchical structure: u, v, p u 1, v 1, p 1 u 2, v 2, p 2 U, V U 1, V 1 breakdown I: abrupt change of boundary conditions example 1: trailing edge flow no slip symmetry condition v 1 p 1, u 1 x

example 2: shock-boundary layer interaction color streak photo: DLR

breakdown II: (regular) adverse pressure gradient p w = u w u w > boundary layer separation at x : τ w (x) a (x x) + b (x x) 2 +, a, b > massive sep. δ marginal sep.: a = τ w 111111111111111111x x Goldstein 1948, Stewartson 197, Ruban & Stewartson et al. 1981

viscous-inviscid interaction I: Re = ũ L ν drag of finite flat plate triple deck inviscid BL ũ, ν L Ψ y Ψ yx Ψ x Ψ yy = P +Ψ yyy, P(x) = 1 π A (ξ) x ξ dξ, δ δ Re 1/8 A+ c d 1.1 Blasius exp. N.-S. calc. triple deck.1 1 1 1 Re Stewartson & Messiter 1969/7

viscous-inviscid interaction I: Re = ũ L ν drag of finite flat plate triple deck inviscid BL ũ, ν L Ψ y Ψ yx Ψ x Ψ yy = P +Ψ yyy, P(x) = 1 π A (ξ) x ξ dξ, δ δ Re 1/8 A+ c d 1 exp. N.-S. calc..1 c d.1 Blasius triple deck Re c turbulent.1 1 1 1 Re.1 1 1e+6 1e+7 1e+8 1e+9 1e+1 Re Stewartson & Messiter 1969/7

viscous-inviscid interaction II: massive separation outer (potential) region: Helmholtz-Kirchhoff free streamline flows k =, Brillouin Villat k < 55 125.49... k mixing layer curvature: κ(x) = + κ w (x ) + O( x x ) x x p w (x) = k x x + 16 k 2 + O( x x ), 3, x x ±

viscous-inviscid interaction II: massive separation outer (potential) region: Helmholtz-Kirchhoff free streamline flows k =, Brillouin Villat k < 55 125.49... k mixing layer curvature: κ(x) = + κ w (x ) + O( x x ) x x p w (x) = k x x + 16 k 2 + O( x x ), 3, x x ± interaction region: k = O(Re 1/16 ) Sychev 1972

circular cylinder, Re = ũ d ν triple deck laminar k = O(Re 1/16 ) S Sychev 1972 ũ, ν d turbulent k = O(1) S Scheichl, Kluwick & Smith 211 outer/inner interaction

viscous-inviscid interaction III: leading edge separation Re = ũ L ν, Re R = Re R L }{{} τ 2 1 c l = α ũ, ν, ρ LE L ρũ 2 L/2 O(α α ), c d = L D L inviscid BL D ρũ 2 L/2 TE O(Re 1/2 )... lam. O(ln 2 Re)... turb.

laminar separation bubble Eppler 387 airfoil, α = 2, Re = 1 5 : inviscid u w(x) y U δ BL laminar separation incipient bubble bursting coherent Λ-vortex structure vortex disintegration 1111 111111111111111 111111111111111111111111 11111111111111111111111111111111 111111111111111111111111111111111111 11111111111111111111111111111111111 11111111111111111111111111111111111 11111111111111111111111111111111111 1111111111111111111111111111111111 111111111111111111111111111111111 111111111111111111111111111111111 11111111111111111111111111111111 1111111111111111111111111111111 11111111111111111111111111111 11111111111111111111111111111 11111111111111111111111111 1111111111111111111 1111111111111 111111 x smoke flow visualization: Cole, Mueller

classical boundary layer theory outer (potential) region: τ = d/ L =.1, α = 5.1 y.5 -.5-1 -1.5-2 -2.5 -.5-3 -3.5 -.1 -.2.2.4.6.8 1 1.2 x 1 c.5 p -4 -.2.2.4.6.8 1 1.2 x c p = p p ρũ 2 O(1) /2

inner (viscous) region: 1 τ w 1 1.1.1 5 4 α = 3 3.3 3.35 3.38 3.36 3.37 3.373 α c = 3.3735.1 -.2 -.1.1.2.3.4.5.6 -.2 -.1.1.2.3.4.5 x.6 τ w = U Y x.6 δ.5.4.3.2.1 δ = Y= α c 4 α = 3 5 LE ( 1 U ) dy u w (x) v 1 (x, ) = (u w δ ) x

marginal separation theory Ruban & Stewartson et al 1981-83 X Re 1/5 (x x ), Γ Re 2/5 (α α c ), x x, α α c A 2 X 2 +Γ = λ X 2 (A h)/ ξ 2 X dξ γ (ξ X) 1/2 (A h)/ T X dξ γ (X ξ) 1/4 v w dξ (X ξ) 1/4 δ δ (x )+Re 1/5 [c 1 A(X, T)+c 2 X]+, τ w Re 1/5 c 3 A(X, T)+ Hackmüller, Kluwick 199: flow control devices h(x, T), v w(x, T) h v w

marginal separation theory Ruban & Stewartson et al 1981-83 X Re 1/5 (x x ), Γ Re 2/5 (α α c ), x x, α α c A 2 X 2 +Γ = λ X 2 (A h)/ ξ 2 X dξ γ (ξ X) 1/2 (A h)/ T X dξ γ (X ξ) 1/4 v w dξ (X ξ) 1/4 δ δ (x )+Re 1/5 [c 1 A(X, T)+c 2 X]+, τ w Re 1/5 c 3 A(X, T)+ Hackmüller, Kluwick 199: flow control devices h(x, T), v w(x, T) 6 A(X) 5 4 3 2 1 Γ = 3-1 -2-3 2-4 -2 2 4 X

marginal separation theory Ruban & Stewartson et al 1981-83 X Re 1/5 (x x ), Γ Re 2/5 (α α c ), x x, α α c A 2 X 2 +Γ = λ X 2 (A h)/ ξ 2 X dξ γ (ξ X) 1/2 (A h)/ T X dξ γ (X ξ) 1/4 v w dξ (X ξ) 1/4 δ δ (x )+Re 1/5 [c 1 A(X, T)+c 2 X]+, τ w Re 1/5 c 3 A(X, T)+ Hackmüller, Kluwick 199: flow control devices h(x, T), v w(x, T) 6 A(X) 5 4 3 Γ = 3 2 A() 1.5 1 2 1.5-1 -2 2 -.5 Γ c -3-4 -2 2 4 X -1-3 -2-1 1 2 3 Γ

near critical flows: Γ Γ c perturb. amp. Strouhal-number 4 3.5 h c = v wc = A() Γ c Re 1/1 Γ 3 2.5 2 1.5 A c b saddle-node bifurcation 1.5 -.5-1 -4-3 -2-1 1 2 3 4 X A A c (X) + Γ Γ c b(x)c s [2u(t) 1] + [h, v w ] [h c, v wc ](X) + Γ Γ c [h 1, v w1 ](X, t) Γ Γ c

flow control: suction slot optimization suction rate: V = LV = const v wc V L V X c X 6 Γ5.5 c 5 4.5 4 3.5 3 V = 1 V = L V = 2 L = 8 4 2 1 2.5-4 -2 2 X c 4

near critical perturbed 2D flow Γ < Γ c : du dt = u u 2 + a sin(ωt) 2 u(t) 1 a = (1.44, 1.5) 1.6 a c(ω) 1.4 1.2 parametric resonance -1-2 sin(2t) 1.8.6.4 t.2 a c(ω ) 5 1 15 2 25 3 t.5 1 1.5 2 ω

finite time blow up 2 v w 1 X v w T s 2 4 6 8 T 4 A(X, T) A(X, ) = A(X; Γ = 2) 2-2 -4-6 T = 7-8 X s -1-2 -1 1 2 3 4 X blow-up asymptotics: Smith 1982 A(X, T) ε 2/3Â(ˆX) +, X X s = ε 4/9 ˆX, ε = T s T unique blow up profile Â(ˆX)! Scheichl, Braun, Kluwick 28

finite time blow up 2 v w 1 X v w T s 2 4 6 8 T 4 A(X, T) A(X, ) = A(X; Γ = 2) 2-2 -4-6 -8 T = 7-1 X s -4 ε 2/3 A(X, T) 2 1-1 -2-3 T = 7 Â(ˆX) -2-1 1 2 3 4 X -1-5 5 1 ε 4/9 (X X s) blow-up asymptotics: Smith 1982 A(X, T) ε 2/3Â(ˆX) +, X X s = ε 4/9 ˆX, ε = T s T unique blow up profile Â(ˆX)! Scheichl, Braun, Kluwick 28

bypass transition - asymptotic view marginal separation inviscid triple deck stage Euler stage turbulent b.l. boundary layer 1111111111111111111111111111111