Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities

Σχετικά έγγραφα
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Resilient static output feedback robust H control for controlled positive systems


Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1

Power allocation under per-antenna power constraints in multiuser MIMO systems

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Quantum annealing inversion and its implementation

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Stochastic Finite Element Analysis for Composite Pressure Vessel

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,

Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Generalized Linear Model [GLM]

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

b,% SIR 2 MOTDPC (CDMA 6 ) Aein CDMA Journal of Nonlinear Systems in Elect. Eng., Vol. 1, No 2, Fall 2013

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Motion analysis and simulation of a stratospheric airship

Control Theory & Applications PID (, )

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

Adaptive grouping difference variation wolf pack algorithm

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

Approximation Expressions for the Temperature Integral

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun %

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Discriminative Language Modeling Based on Risk Minimization Training

Robust Robot Monte Carlo Localization

New conditions for exponential stability of sampled-data systems under aperiodic sampling

35 90% %

High order interpolation function for surface contact problem

!",! ## $% ( )) ( ( )!*

EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE

Solution Series 9. i=1 x i and i=1 x i.

Aerodynamic Design Optimization of Aeroengine Compressor Rotor

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Research on real-time inverse kinematics algorithms for 6R robots

Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network

Probabilistic Approach to Robust Optimization

Robust resource allocation algorithm for cognitive radio system

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention


A summation formula ramified with hypergeometric function and involving recurrence relation

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Statistical Inference I Locally most powerful tests

Trajectory tracking of quadrotor based on disturbance rejection control

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Phasor Diagram of an RC Circuit V R


A research on the influence of dummy activity on float in an AOA network and its amendments

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

Research on model of early2warning of enterprise crisis based on entropy

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

8.323 Relativistic Quantum Field Theory I

Συγκριτική Αξιολόγηση των Μεθόδων Βελτιστοποίησης των Αρδευτικών Δικτύων

A Class of Orthohomological Triangles

CAP A CAP

Congruence Classes of Invertible Matrices of Order 3 over F 2

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

Sydney 2052, Australia.

Fragility analysis for control systems

Homomorphism in Intuitionistic Fuzzy Automata

SHUILI XUEBAO km. Honolulu Weatcart Contractor Giggs. Home J. M. U. Jucson

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Global Optimization of Thermal Power System Based on Structure Theory of Thermoeconomics

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

!"#$%&'(!"# ! O == N N !"#$% PROGRESSUS INQUISITIONES DE MUTATIONE CLIMATIS

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

製品系列統合化設計における最適性と最適化法に関する Title研究 ( 第 3 報, システム属性とモジュール組合せの同時最適化法 ) Citation 日本機械学会論文集 C 編. 68(668) P.1329-P

A System Dynamics Model on Multiple2Echelon Control

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Note: Please use the actual date you accessed this material in your citation.

Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.

CorV CVAC. CorV TU317. 1

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Transcript:

33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan jump systems wth tme-varyng delays and randomly occurrng nonlneartes REN We-jan 1 WANG Chun-le 1 LU Yang 2 (1. College of Electrc and Informaton Engneerng Northeast Petroleum Unversty Daqng Helongjang 163318 Chna; 2. College of Informaton Technology Helongjang Bay Agrcultural Unversty Daqng Helongjang 163318 Chna) Abstract: Ths paper s concerned wth the fault detecton problem for a class of dscrete-tme Markovan jump systems wth multple tme-varyng stochastc delays and randomly occurrng nonlneartes. Accordng to the stochastc characterstc of multple tme-varyng delays an ndvdual Bernoull dstrbuton s used to descrbe ths phenomenon. Furthermore a knd of stochastc nonlnear dsturbance s also consdered n the fault detecton research by means of a Bernoull dstrbuted whte sequence. The man purpose of ths paper s to desgn a fault detecton flter such that the resdual system s mean square exponental stable and the relevant H performance s satsfed. Through Lyapunov stablty theory and stochastc analyss technology suffcent condtons are set up for the desred exponental stablty and H dsturbance attenuaton a convex optmzaton problem s solved by the semdefnte programmng technque the gan characterstc of the fault detecton flter s obtaned. Fnally a smulaton example s provded to llustrate the usefulness and effectveness of the proposed desgn approach. Key words: fault detecton; Markovan jump system; stochastc tme-varyng delays; randomly occurrng nonlneartes 1 (Introducton)... [1. (Markovan jump systems MJSs) [2. MJSs. MJSs [3 4 [5 11 [12. MJSs. 2016 01 07; 2016 06 08.. E-mal: wangcl001@163.com; Tel.: +86 15845859180.. (61374127) (LBH Q12143) (QC2013C066). Supported by Natonal Natural Scence Foundaton of Chna (61374127) Helongjang Postdoctoral Research Foundaton (LBH Q12143) Helongjang Youth Foundaton (QC2013C066).

1148 33 3 [13 [14 ; [15. [16 17. [18 20.... [21 23... [24.. 1). 2). 3). 4) Lyapunov H. 2 ; 3 Lyapunov LMI ; 4 ; 5. 1. M T M ; R n n R n m n m ; Z ; I 0 ; l 2 ([0 ); R n ) n [0 ) ; P>0 P ; E{x} x ; x x ; dag{a 1 A 2 A n } A 1 A 2 A n *. 2 (Problem formulaton) x(k +1)=A(θ k )x(k)+γ(k)g(θ k x(k))+ A d1 (θ k ) q α r (k)x (k τ r (k)) + D 1 (θ k )ω(k)+g(θ k )f(k) y(k) =C(θ k )x(k)+d 2 (θ k )ω(k)+ E(θ k )f(k) x(k) =ψ(k) k Z (1) x(k) R n ; y(k) R m ; ω(k) R p l 2 [0 ) ; ( f(k) l ) 2 [0 );R l. A(θ k ) A d1 (θ k ) G(θ k ) C(θ k ) D 1 (θ k ) D 2 (θ k ) E(θ k ). τ r (k)(r =1 2 q) ; ψ(k) ; θ k S = {1 2 N} p j =P{θ k+1 = j θ k = } N θ j =1. j=1 g(θ k x(k)) g(θ k 0) = 0 g(θ k x(k)+δ(k)) g(θ k x(k)) B 1 (θ k )δ(k) (2) B 1 (θ k ) δ(k). α r (k)(r =1 2 q) γ(k) 0 1 (RONs) P{α r (k) =1} =ᾱ r P{α r (k) =0} =1 ᾱ r (3) P{γ(k) =1} = γ P{γ(k) =0} =1 γ ᾱ r [0 1 γ [0 1. 2 g(θ k x(k)). γ(k) g(θ k x(k)) (RONs) RONs. τ r (k)(r =1 2 q)

9 1149 d m τ r (k) d M d m d M. 3 1) 3 ; 2).. A(θ k )=A A d1 (θ k )=A d1 g(θ k x(k)) = g (x(k)) G(θ k )=G C(θ k )=C D 1 (θ k ) = D 1 D 2 (θ k )=D 2 E(θ k )=E B 1 (θ k )=B 1. ˆx(k +1)=A F (θ k )ˆx(k)+B F (θ k )y(k) (4) r(k) =C F (θ k )ˆx(k)+D F (θ k )y(k) ˆx k R n r(k) R l A F (θ k ) B F (θ k ) C F (θ k ) D F (θ k ). A F (θ k )= A F B F (θ k )=B F C F (θ k )=C F D F (θ k )=D F. (1) (4) x(k +1)=Ā(θ k) x(k)+ q (Ādr(θ k )+ à dr (θ k )) x(k τ r (k))+ ( γ + γ(k))zg(θ k x(k))+ (5) D(θ k )v(k) r(k) = C(θ k ) x(k)+ D F (θ k )v(k) x(k) = [ x T (k) ˆx T (k) T r(k) =r(k) f(k) v(k)= [ ω T (k) f T (k) [ T A 0 Ā(θk )= B F C A F [ᾱr A d1 0 [ αr (k)a d1 0 Ā dr (θ k )= à dr (θ k )= D1 G D(θ k )=[ Z=[I 0 T B F D 2 B F E C(θ k )=[D F C C F D F (θ k )=[D F D 2 D F E I α r (k) =α r (k) ᾱ r γ(k)=γ(k) γ. E{ α r (k)} =0 E{ α r(k)} 2 =ᾱ r (1 ᾱ r ) E{ γ(k)} =0 E{ γ 2 (k)} = γ(1 γ). Ā(θ k)=ā Ā dr (θ k )=Ādr à dr (θ k ) = Ãdr D(θk )= D C(θ k )= C D F (θ k )= D F. 1 v(k) =0 δ >0 0 <κ<1 E{ x(k) 2 } δ k κ sup Z E{ ψ() 2 } k 0 (5).. (4) A F B F C F D F a) (5). b) γ > 0 v(k) r(k) E{ r(k) 2 } γ 2 E{ v(k) 2 } (6) γ >0 (6). J(k) J th : J(k) ={ L r T (h)r(h)} 1 2 h=0 (7) J th = sup E{J(k)} ω k l 2f k =0 L. (7). J(k) >J th J(k) J th. 3 (Man results) Lyapunov (1).. 1 ( Schur [25.) S 1 S 2 S 3 S 1 = S1 T 0 <S 2 = S2 T S 1 + S3 T S 1 2 S 3 < 0 [ [ S1 S3 T S2 S 3 < 0 < 0. (8) S 3 S 2 S3 T S 1 2 x R n y R n Q >0 x T Qy + y T Qx x T Qx + y T Qy. (6). 1 (5) H γ >0 P > 0( N) Q r > 0(r =1 2 3 q) ρ >0

1150 33 Φ 1 + C T C 2 γ x T Φ = Ẑ T P Zg (x(k))+ P Ā Φ 2 < 0 q D T P Ā + D F T C x DT P Ẑ Φ (k τ r (k))ãt P dr à dr x(k τ r (k))+ 3 (9) 2( q Ā dr x(k τ r (k))) T P D v(k)+ Z T P Z ρi (10) v T (k) P D v(k)+ (6) 2 γ( q Ā dr x T (k τ r (k))) T P Zg (x(k))+ P = N p j P j γg T (x(k))z T P Zg (x(k)) j=1 (12) Φ 1 =2ĀT P Ā + q (d M d m +1)Q r P + ρ B dr à dr } = Φ 2 =dag{ Q 1 + Ã1 Q 2 + Ã2 Q q + [ T [ αr (k)a d1 0 αr (k)a d1 0 à q } +2ẐT P Ẑ E{ P } = Φ 3 =2 D T P D + D T D F F γ 2 I [ T [ à r =ᾱ r (1 ᾱ r )ÂT P Ad1 0 Ad1 0 d1  d1 2 q ᾱ r (1 ᾱ r ) P = Ẑ =[Ād1 Ā d2 Ā dq ᾱ B =dag{(3 γ 2 + γ)b T r (1 ᾱ r B 0} d1  d1. (13) 2  d1 =dag{a d1 0}. 2 γ x T P Zg (x(k)) η(k) := [ x T (k) x T (k τ 1 (k)) x T (k τ q (k)) T x T. P Ā x(k)+ γ 2 g T (x(k))z T P Zg (x(k)) (14) θ k = N 2 γg T (x(k))z T P D v(k) Lyapunov-Krasovsk γ 2 g T (x(k))z T P Zg (x(k)) + v T (k) D T P D v(k) V ( x(k)θ k )= (15) V 1 ( x(k)θ k )+V 2 ( x(k)θ k )+V 3 ( x(k)θ k ) (11) 2 γ( q Ā dr x(k τ r (k))) T P Zg (x(k)) ( q Ā dr x(k τ r (k))) T P ( q Ā dr x(k τ r (k)))+ V 1 ( x(k)θ k )= x T (k)p (θ k ) x(k) V 2 ( x(k)θ k )= q k 1 x T (l)q r x(l) V 3 ( x(k)θ k )= q l=k τ r (k) d m k 1 m= d M+1 l=k+m x T (l)q r x(l). ΔV 1 ( x(k)θ k )= E {V 1 ( x(k +1)θ k+1 ) x(k)θ k = } V 1 ( x(k)θ k )= N p j x T (k +1)P j x(k +1) x T (k)p x(k) = j=1 x T (k)(āt P Ā P ) x(k)+ 2 x T (k)āt P ( q Ā dr x(k τ r (k)))+ 2 x T (k)āt P D v(k)+2 γg T (x(k))z T P D v(k)+ ( q Ā dr x(k τ r (k))) T P ( q Ā dr x(k τ r (k)))+ γ 2 g T (x(k))z T P Zg (x(k)). (16) (2) g T (x(k))(3 γ 2 + γ)z T P Zg (x(k)) x T (k)(3 γ 2 + γ)ρb T B x(k) = x T (k)ρ B x(k) (12) (17) ΔV 1 ( x(k)θ k )= E {V 1 ( x(k +1)θ k+1 ) x(k)θ k = } V 1 ( x(k)θ k ) x T (k)(2āt P Ā P + ρ B ) x(k)+ 2 x T (k)āt P ( q Ā dr x(k τ r (k)))+ 2 x T (k)āt (17) P D v(k)+2( q Ā dr x(k τ r (k))) T

9 1151 P ( q Ā dr x(k τ r (k)))+ k d m l=k d M+1 x T (l)q r x(l)) (21) q x T (k τ r (k))ãt P dr à dr x(k τ r (k))+ v(k) =0 2( q E{ΔV ( x(k)θ k )} η T (k)φ η(k) (22) Ā dr x(k τ r (k))) T P D v(k)+ 2v T (k) D [ T P D v(k) (18) Φ1 Φ =. ΔV 2 ( x(k)θ k )= Ẑ T P Ā Φ 2 E {V 2 ( x(k +1)θ k+1 ) x(k)θ k = } V 2 ( x(k)θ k )= 1 Φ < 0. (5). N p j ( q k x T (5) H (l)q r x(l) j=1 l=k τ r (k)+1 q k 1 x T (l)q r x(l)) J N =E [ r T (k) r(k) β 2 v T (k)v(k) = l=k τ r(k) q ( x T E [ r (k)q r x(k) (k) r(k)+δv( x(k)θ k ) x T β 2 v T (k)v(k) E {V (k τ r (k))q r x(k τ r (k))+ k+1 ( x(k+1)θ k+1 )} k d m E [ r T (k) r(k) β 2 v T (k)v(k)+ x T (l)q r x(l)) (19) l=k d M +1 ΔV ( x(k)θ k ) ΔV 3 ( x(k)θ k )= E {V 3 ( x(k +1)θ k+1 ) x(k)θ k = } η T (k)φη(k) < 0. V 3 ( x(k)θ k )= q ((d M d m ) x T (k)q r x(k) E{ r(k) 2 } γ 2 E{ v(k) 2 }. k d m x T (l)q r x(l)). (20). l=k d M +1. (18) (20) 2 ΔV ( x(k)θ k ) x T (k)(2āt P Ā P + ρ B ) x(k)+. H γ >0. P > 0( N) Q r > 0 2 x T (k)āt P ( q (r =1 2 3 q) ρ>0 X K Ā dr x(k τ r (k)))+ 2 x T (k)āt P D v(k)+2( q Ā dr x(k τ r (k))) T Y = ˆΓ P ( q 11 Ā dr x(k τ r (k)))+ 0 γ 2 I q x T (k τ r (k))ãt P ˆΓ dr à dr x(k τ r (k))+ 31 P ˆD0 + X ˆR2 P < 0 ˆΓ 41 P 2( q ˆΓ Ā dr x(k τ r (k))) T 51 ˆΓ52 ˆP P D v(k)+ (23) 2v T (k) D T P D v(k)+ q ( x T (k)q r x(k) Z T P Z ρi (24) x T (4) (k τ r (k))q r x(k τ r (k))+. k d m l=k d M +1 x T (l)q r x(l))+ q ((d M d m ) x T (k)q r x(k) ˆΓ 11 =dag{γ 11 Γ 22 } ˆΓ 31 =[ P  0 + X ˆR1 P Ẑ ˆΓ 41 =dag{ P  0 + X ˆR1 P Ẑ }

1152 33 Γ 11 = ρ B + q (d M d m +1)Q r P. Γ 22 =dag{ Q 1 + Ã1 Q 2 + Ã2 [ Q q + [ Ãq} 0.2 0.8 ˆΨ =. 0.3 0.7 ˆΓ 51 = K ˆR1 0 [ [ P ˆD0 + X ˆR2 0n n ˆΓ 52 = Ê = [ [ K ˆR2 ÊT 1 I n n 0.6 0.2 0.2 0.5 P =dag { P P } ˆP =dag { P I } A 1 = A 2 =.7.5 [ Ê 1 =[0 l p I l p T Ê 2 =[0 m n I m n T 0.03 0 A [ [ d11 = 0.02 0.03 A 0 D1 G [ Â 0 = ˆD0 = 0.05 0 A [ [ d12 = 0.04 0.05 0 I [ [ ˆR 1 = ˆR2 =. C 0 D 2 E 0.8 0 0.4 0 D 11 = D 12 =.3.4 (P Q r X K ρ) (23) (24) (4) C 1 = C 2 =[0.2 0.1 H 1 = H 2 =0.9 D 21 =[0.6 0.1 D 22 =[0.5 0.1 [A F B F =[ÊT P Ê 1 Ê T X G (25) 1 =[ 0.1 0.2 T G 2 =[ 0.1 0.2 T. [C F D F =K. 2 τ r (k) 6(r =1 2) P Q r 1. ᾱ 1 =E{α 1 (k)} =0.9 Ā = Â0 + ÊK ˆR 1 1 ᾱ 2 =E{α 2 (k)} =0.7 D = ˆD 0 + ÊK ˆR 1 2 (26) γ =E{γ(k)} =0.8. C = K ˆR1 D F = K ˆR2 ÊT 1 K 1 =[A F B F. Shur (9) ˆΓ 11 0 γ 2 I ˆΓ 31 ˆD0 +ÊK ˆR 1 2 P 1 1 ˆΓ 41 P ˆΓ 51 ˆΓ52 ˆP 1 ˆΓ 31 =[Â0 + ÊK ˆR 1 1 Ẑ ˆΓ 41 =dag{â0 + ÊK ˆR 1 1 [ Ẑ} ˆD0 + ˆΓ 52 = ÊK ˆR 1 2. K ˆR2 ÊT 1 <0 (27) 1 X = P ÊK 1 (23). 4 (Numercal example) g 1 (x(k)) = g 2 (x(k)) = 0.5x 1 (k)sn(x 2 (k)) ε(k) =1 B(k) =dag{0.2 0.15} (2). 2 (25) [ 0.0025 0.0410 A F1 = B F1 = 0.0237 0.0021 [ C F1 = 2.255.1310 D F1 =0.5039 [ 0.0019 0.0162 A F2 = B F2 = 0.0022 0.0106 [ 0.0005 0.0288 [ 0.0015 0.0065 C F2 =[ 0.0013 0.0033 D F2 =0.7791. k =0 1 150 f(k) { 1 40 k 80 f(k) = 0. ˆΨ θ(0) = 1 θ(k) 1.

9 1153 { [rand[0 1 1.2rand[0 1 T 0 k 50 ω(k) = 0 1 Fg. 1 Modes evoluton ω(k) =0 r(k) J(k) 2 3. rand [0 1. r(k) J(k) 4 5. J th =sup f=0 r T (s)r(s)} 1/2 E{ 150 s=0 200 J th 1.1129. 5 0.9469=J(40)<J th <J(41) = 1.3016 1.. 4 Fg. 4 Resdual sgnal wth dsturbance 2 Fg. 2 Resdual sgnal wthout dsturbance 5 Fg. 5 Resdual evaluaton functon wth dsturbance 3 Fg. 3 Resdual evaluaton functon wthout dsturbance 5 (Conclusons)..

1154 33 H. Lyapunov H.... (References): [1 WANG Yongqang YE Hao WANG Guzeng. Recent development of fault detecton technques for networked control systems [J. Control Theory and Applcatons 2009 26(4): 400 409. (. [J. 2009 26(4): 400 409.) [2 DONG H L WANG Z D HO DWCetal.RobustH flterng for Markovan jump systems wth randomly occurrng nonlneartes and sensor saturaton: the fnte-horzon case [J. IEEE Transactons on Sgnal Processng 2011 59(7): 3048 3057. [3 WANG G L ZHANG Q L YANG C Y. Stablzaton of sngular Markovan jump systems wth tme-varyng swtchngs [J. Informaton Scences 2015 297(1): 254 270. [4 LIU X H XI H S. Stochastc stablty for uncertan neutral Markovan jump systems wth nonlnear perturbatons [J. Journal of Dynamcal and Control Systems 2015 21(2): 285 305. [5 ZHANG Y Q LIU C X SONG Y D. Fnte-tme H flterng for dscrete-tme Markovan jump systems [J. Journal of the Frankln Insttute 2013 350(6): 1579 1595. [6 ZHANG B Y LI Y M. Exponental flterng for dstrbuted delay systems wth Markovan jumpng parameters [J. Sgnal Processng 2013 93(1): 206 216. [7 ZHUANG G M SONG G F XU S Y. H flterng for Markovan jump delay systems wth parameter uncertantes and lmted communcaton capacty [J. Control Theory and Applcatons 2014 8(14): 1337 1353. [8 TERRA M H ISHIHARA J Y JUNIOR A P. Array algorthm for flterng of dscrete-tme Markovan jump lnear systems [J. IEEE Transactons on Automatc Control 2007 52(7): 1293 1296. [9 LI Z C YU Z D. Further result on H flter desgn for contnuoustme Markovan jump systems wth tme-varyng delay [J. Journal of the Frankln Insttute 2014 351(9): 4619 4635. [10 ZHUANG G M LU J W ZHANG M S. Robust H flter desgn for uncertan stochastc Markovan jump Hopfeld neural networks wth mode-dependent tme-varyng delays [J. Neurocomputng 2014 127(1): 181 189. [11 LONG S H ZHONG S M LIU Z J. H flterng for a class of sngular Markovan jump systems wth tme-varyng delay [J. Sgnal Processng 2012 92(11): 2759 2768. [12 LAM J. Robust H control of descrptor dscrete-tme Markovan jump systems [J. Internatonal Journal of Control 2007 80(3): 374 385. [13 LIU M HO DWC NIUYG. RobustStablzaton of Markovan jump lnear system over networks wth random communcaton delay [J. Automatca 2009 45(2): 416 421. [14 WANG Hongru WANG Changhong GAO Hujun. Robust fault detecton for dscrete-tme Markovan jump systems wth tmedelays [J. Control and Decson 2006 21(7): 796 800. (. [J. 2006 21(7): 796 800.) [15 WANG H R WANG C H MOU S S et al. Robust fault detecton for dscrete tme Markovan jump systems wth mode-dependent tmedelays [J. Journal of Control Theory and Applcatons 2007 5(2): 139 144. [16 OUALI A MAKHLOUF A B HAMMAMI M A et al. State feedback control law for a class of nonlnear tme-varyng system under unknown tme-varyng delay [J. Nonlnear Dynamcs 2015 82(1/2): 349 355. [17 PHAT V N NIAMSUP P. Global stablzaton of lnear tme-varyng delay systems wth bounded controls [J. Appled Mathematcs Letters 2015 46(1): 11 16. [18 HU J WANG Z D GAO H J et al. Extended Kalman flterng wth stochastc nonlneartes and multple mssng measurements [J. Automatca 2012 48(9): 2007 2015. [19 SHEN B WANG Z D HUNG Y S. Dstrbuted consensus H flterng n sensor networks wth multple mssng measurements: the fnte-horzon case [J. Automatca 2010 46(10): 1682 1688. [20 YANG F W WANG Z D HUNG Y S et al. H control for networked systems wth random communcaton delays [J. IEEE Transacton on Automatc Control 2006 51(3): 511 518. [21 DING D R WANG Z D SHEN B et al. Envelope-constraned H flterng wth fadng measurements and randomly occurrng nonlneartes: the fnte horzon case [J. Automatca 2015 55(1): 37 45. [22 DONG H L WANG Z D DING S X et al. Event-based H flter desgn for a class of nonlnear tme-varyng systems wth fadng channels and multplcatve noses [J. IEEE Transactons on Sgnal Processng 2015 63(14): 3387 3395. [23 DONG H L WANG Z D GAO H J. On desgn of quantzed fault detecton flters wth randomly occurrng nonlneartes and mxed tme-delays [J. Sgnal Processng 2015 92(4): 1117 1125. [24 ZHANG J H SHI P QIU J Q. Non-fragle guaranteed cost control for uncertan stochastc nonlnear tme-delay systems [J. Journal of the Frankln Insttute 2009 346(7): 676 690. [25 BOYD S GHAOUI L E FERON E et al. Lnear Matrx Inequaltes n System and Control Theory [M. Phladelpha: SIAM 1994. (1963 ) E-mal: renwj@126.com; (1991 ) E-mal: wangcl001@163.com; (1976 ) E-mal: luyanga@sna.com.