Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Σχετικά έγγραφα
HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Presentation of complex number in Cartesian and polar coordinate system

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

On Generating Relations of Some Triple. Hypergeometric Functions

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

IIT JEE (2013) (Trigonomtery 1) Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solve the difference equation

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Homework for 1/27 Due 2/5

Homework 3 Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics


Example Sheet 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Areas and Lengths in Polar Coordinates

RF series Ultra High Q & Low ESR capacitor series

Areas and Lengths in Polar Coordinates

Trigonometric Formula Sheet

LAD Estimation for Time Series Models With Finite and Infinite Variance

Bessel function for complex variable

On Inclusion Relation of Absolute Summability

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Second Order RLC Filters

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CRASH COURSE IN PRECALCULUS

2 Composition. Invertible Mappings

Section 8.3 Trigonometric Equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inverse trigonometric functions & General Solution of Trigonometric Equations

If we restrict the domain of y = sin x to [ π 2, π 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

The Simply Typed Lambda Calculus

Statistical Inference I Locally most powerful tests

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fractional Colorings and Zykov Products of graphs

Tridiagonal matrices. Gérard MEURANT. October, 2008

Degenerate Perturbation Theory

Approximation of distance between locations on earth given by latitude and longitude

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

SPECIAL FUNCTIONS and POLYNOMIALS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

A study on generalized absolute summability factors for a triangular matrix

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 8 Model Solution Section

EN40: Dynamics and Vibrations

Exercises to Statistics of Material Fatigue No. 5

Matrices and Determinants

Finite Field Problems: Solutions

Commutative Monoids in Intuitionistic Fuzzy Sets

Trigonometry Functions (5B) Young Won Lim 7/24/14

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

PARTIAL NOTES for 6.1 Trigonometric Identities

α β

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Thin Film Chip Resistors

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

A Hierarchy of Theta Bodies for Polynomial Systems

Congruence Classes of Invertible Matrices of Order 3 over F 2

Uniform Convergence of Fourier Series Michael Taylor

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

derivation of the Laplacian from rectangular to spherical coordinates

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

physicsandmathstutor.com

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

A summation formula ramified with hypergeometric function and involving recurrence relation

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Every set of first-order formulas is equivalent to an independent set

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

Ψηφιακή Επεξεργασία Εικόνας

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

The Equivalence Theorem in Optimal Design

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

F19MC2 Solutions 9 Complex Analysis

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Transcript:

Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q ; p q p q k 06.0.0.0004.0 p q q k p k q q p q ; p q p q Values at fixed poits 06.0.0.0005.0 06.0.0.0006.0 0 06.0.0.0007.0

http://fuctios.wolfram.com 6 06.0.0.0008.0 06.0.0.0009.0 06.0.0.000.0 06.0.0.00.0 4 4 06.0.0.00.0 5 0 06.0.0.00.0 6 70 06.0.0.004.0 7 5040 06.0.0.005.0 8 40 0 06.0.0.006.0 9 6 880 06.0.0.007.0 0 68 800 Values at ifiities 06.0.0.008.0 06.0.0.009.0 06.0.0.000.0 0 06.0.0.00.0 0 06.0.0.00.0 Geeral characteristics Domai ad aalyticity is a aalytical fuctio of which is defied i the whole complex -plae with the exceptio of coutably may poits k ; k. is a etire fuctio. 06.0.04.000.0

http://fuctios.wolfram.com Symmetries ad periodicities Mirror symmetry 06.0.04.000.0 Periodicity No periodicity Poles ad essetial sigularities The fuctio has a ifiite set of sigular poits: a) k ; k are the simple poles with residues k k b) is the poit of covergece of poles, which is a essetial sigular poit. ; 06.0.04.000.0 ig k, ; k,, 06.0.04.0004.0 res k k ; k k Brach poits The fuctio does ot have brach poits. 06.0.04.0005.0 Brach cuts The fuctio does ot have brach cuts. 06.0.04.0006.0 Series represetatios Geeralized power series Expasios at 0 ; 0 m 06.0.06.000.0 0 Ψ 0 0 Ψ 0 Ψ 0 0 6 Ψ 0 Ψ 0 Ψ 0 Ψ 0 0 ; 0 0

http://fuctios.wolfram.com 4 06.0.06.000.0 k 0 0 k ; 0 0 k 06.0.06.000.0 0 Ψ 0 0 O 0 ; 0 0 Expasios at m 06.0.06.0004.0 m O m ; m m m m 06.0.06.0005.0 m m m m Ψm m 06.0.06.0006.0 m m m m m O m ; m m Ψm 6 Ψm Π Ψ m m 6 Ψm Π Ψ m Ψm Ψ m m 60 5 Ψm4 Π Ψ m Ψm 4 Ψ m Ψm Ψ m Π Ψ m 7 Π 4 5 Ψ m m O m 4 ; m m Asymptotic series expasios 06.0.06.0007.0 Π ; Stirlig's formula 06.0.06.0008.0 Π 88 9 5 840 57 488 0 4 6 879 09 08 880 5 5 46 89 75 46 796 800 6 54 70 5 4 48 59 4 6 9 6 7 O 90 96 56 600 7 86 684 09 9 600 8 54 904 800 886 784 000 9 06.0.06.0009.0 Π k j P j k, j k jk j k k j arg Π Pm, j m m Pm, j Pm, j P0, 0 Pm, m Pm, j 0 ; m j 06.0.06.000.0 ; 0 ; arg Π Π O ; arg Π

http://fuctios.wolfram.com 5 a 06.0.06.00.0 b ab k b a k Bk, a b, a k k t Α t z ; arga Π B, Α, z t t Α 06.0.06.00.0 a b a b a b ab O ; arga Π Product represetatios 06.0.08.000.0 k ; k 06.0.08.000.0 k k k 06.0.08.000.0 k k Π k 06.0.08.0004.0 siπ k ; k Ζ k exp k 06.0.08.0005.0 exp k Ζk k k k Limit represetatios lim x 06.0.09.000.0 x k x k 06.0.09.000.0 m m lim m m 06.0.09.000.0 lim m m, m 06.0.09.0004.0 ; w lim w F ; ; w

http://fuctios.wolfram.com 6 lim m 0 06.0.09.0005.0 m t m m t t ; Re Trasformatios Trasformatios ad argumet simplificatios Argumet ivolvig basic arithmetic operatios 06.0.6.000.0 Π cscπ 06.0.6.000.0 06.0.6.000.0 m m 06.0.6.0004.0 06.0.6.0005.0 m m ; m m Multiple argumets 06.0.6.0006.0 Π 06.0.6.0007.0 Π 06.0.6.0008.0 m m m Π m m k ; m m Products, sums, ad powers of the direct fuctio Products of the direct fuctio 06.0.6.0009.0 Π siπ 06.0.6.000.0 Π csc Π

http://fuctios.wolfram.com 7 06.0.6.00.0 Π csc Π 06.0.6.00.0 Π csc Π 06.0.6.00.0 m m m 06.0.6.004.0 m m m 06.0.6.005.0 m m m 06.0.6.006.0 m m m 06.0.6.007.0 m m, m 06.0.6.008.0 m m m, m Idetities Recurrece idetities Cosecutive eighbors 06.0.7.000.0 06.0.7.000.0 Distat eighbors 06.0.7.000.0 m m 06.0.7.0004.0 m m m ; m Fuctioal idetities

http://fuctios.wolfram.com 8 Relatios of special kid 06.0.7.0005.0 f f ; f g g g f is the uique ozero solutio of the fuctioal equatio f f which is logarithmically covex for all real 0; that is, for which log f is a covex fuctio for 0. Differetiatio Low-order differetiatio 06.0.0.000.0 Ψ 06.0.0.000.0 Ψ Ψ Symbolic differetiatio 06.0.0.000.0 m z Rm, ; Rm, z Ψz Rm, z m R0, m, z R0, z m 06.0.0.0004.0 m m t log m t t t m m mf m z, z,, z m ; z, z,, z m ; ; m z z z m m Fractioal itegro-differetiatio Α Α Α 06.0.0.0005.0 t logt Α k QΑ, logt t t Α F, ; Α; k k k Summatio Fiite summatio 06.0..000.0 o o m m k, 0 k m, 0 i j k i,j 06.0..000.0 k k k H. J. Brothers m i p a i j b j ; j m k i,j a i k i,j b i a i b j p o Maxk,,, k m, i m i j

http://fuctios.wolfram.com 9 Ifiite summatio Parameter-free sums 06.0..000.0 k k k 6 6 Π 06.0..0004.0 k k k 4 7 9 Π 06.0..0005.0 k k k 6 06.0..0006.0 k k 4 k 8 06.0..0007.0 k k 5 k 0 06.0..0008.0 k 0 Π k 06.0..0009.0 4 8 7 Π 88 000 480 45 79 Π 66 679 00 5 k 67 60 Π k 4 664 06.0..000.0 49 750 66 5 5 00 Π 06 79 9 600 k 9 760 Π k 6 0 400 000

http://fuctios.wolfram.com 0 06.0..00.0 k 680 498 75 7 59 0 Π k 8 8 78 450 790 400 000 06.0..00.0 k 9 k 06.0..00.0 Ζ 4 k 5 78 Ζ 077 k 5 7 04 06.0..004.0 k 7 89 467 4 000 Ζ k 7 50 884 800 000 06.0..005.0 k 9 559 000 Ζ 5 09 07 k 9 7 000 76 07 0 640 000 06.0..006.0 k 4 Π 4 k 4 90 06.0..007.0 k 4 k 4 45 575 50 Π Π 4 06.0..008.0 k k k Π log

http://fuctios.wolfram.com 06.0..009.0 k k k Π log log 06.0..000.0 k 5 k 56 k k k 4 k k Ζ 06.0..00.0 k 5 88 k 56 k k k 6 0 Π k 6 k 5 k k k 6 k 4 Parameter-cotaiig sums 06.0..00.0 k k ; 06.0..00.0 k k k log k k 4 k 06.0..004.0 j j ; j j 5Π log4 4 06.0..005.0 j j 0 40 j 9 j 0 j 9 0 ; j j 4 4 j 4 k k 4 Π j j 0 40 j 9 j 0 j 9 4 4 k ; 4 j 4 4 j 4 4 j 4 06.0..006.0 k k 4 Π log4 4 k 4 4 j 4 j 40 j 8 j 40 40 j 9 ; 4 j j 4 j 4 4

http://fuctios.wolfram.com 06.0..007.0 k k log 4 k j j 40 j 40 j 40 ; 4 j 4 j 4 4 j 4 4 06.0..008.0 k k log log j ; k k j 06.0..009.0 k k 4 6 log log 4 j ; k k j 06.0..000.0 k k 8 j 9 j 9 7 k k j j Π log log4 ; 06.0..00.0 k k 8 Π k k 8 j 9 j 9 4 ; j j 06.0..00.0 8 k k k 8 j 9 j 9 k j j Π log log4 6 6 ; 06.0..00.0 k k p k p p ; p p 06.0..004.0 k k k p k p p ; p p

http://fuctios.wolfram.com 06.0..005.0 k k k p k p log p p p p p j j ; 06.0..006.0 k k 6 4 log 6 j 5 j 5 4 j ; k 4 j j j 06.0..007.0 k k j 0 j 0 j 7 Π 6 4 ; k 4 j j 06.0..008.0 k Π j j 4 ; k 6 4 j j 4 j 06.0..009.0 k k log 4 ; j 06.0..0040.0 k p logp logp p k k p p k 06.0..004.0 k k cos j p j p ; j j ; j 06.0..004.0 k cosh p p p k j p ; j

http://fuctios.wolfram.com 4 06.0..004.0 k 4 a Π 4 k 4 ; a 90 a 45 575 50 Π Π 4 a 7 a 5 5 0 4 4 4 a ; 4 06.0..0044.0 k a ; a k k Π log a Π log log a a a ; 06.0..0045.0 k k j 56 j j j 56 5 j 4 j j Ζ ; 06.0..0046.0 k cos Π 8 a ; a 0 a 6 si 7 k k k Π 8 a 6 7 a 9 a 4 ; k 06.0..0047.0 k k 0 Π 6 4 6 j 8 j 7 j 7 5 6 j j 6 6 j 6 j 5 6 j 6 j 6 j j ;

http://fuctios.wolfram.com 5 06.0..0048.0 k 4 j z j z j 4 z 4 k k z k j z z ; 06.0..0049.0 k k Π 4 4 6 4 log 6 j 5 j 5 4 j 4 j j j 4 j 4 j 4 06.0..0050.0 ; k k k k 4 j 4 4 j 4 Π 4 j 0 0 j j 7 Π 6 4 4 j j ; 06.0..005.0 k k z k z log z z z z z log z z z z j z j z j ; 06.0..005.0 4 k 4 k 4 j j 0 40 j 9 j 0 j 9 4 4 Π j 4 j 4 4 j 4 4 4 4 log 4 4 j 4 4 j ;

http://fuctios.wolfram.com 6 06.0..005.0 4 k 4 k 4 j j 0 40 j 9 j 0 j 9 0 j j 4 j 4 4 5Π 4 log4 4 log 4 4 4 j 4 4 j ; 06.0..0054.0 4 k 4 k 4 4 Π 4 4 log4 4 j 4 j 40 j 8 j 40 40 j 9 j j 4 j 4 4 4 log 4 4 4 4 j 4 j ; 06.0..0055.0 4 k 4 k 4 4 log j j 40 j 40 j 40 j 4 j 4 4 j 4 4 4 log 4 4 4 j 4 4 j ; 06.0..0056.0 4 k 4 k 9 k log 4 8 j 9 j 9 7 j j Π log log4 log 4 4 j j j ;

http://fuctios.wolfram.com 7 06.0..0057.0 4 k 4 k 9 k log 4 8 j 9 j 9 4 j j 8 Π log 4 4 j j j ; 06.0..0058.0 4 k 4 k 9 k log 4 8 8 j 9 j 9 j j Π log log4 6 6 log 4 4 j j j ; 06.0..0059.0 k cos Π 8 a ; a 0 a 6 si 7 k k k Π 8 a 6 7 a 9 a 4 ; Operatios Limit operatio 06.0.5.000.0 a ba lim b Represetatios through more geeral fuctios

http://fuctios.wolfram.com 8 Through other fuctios Ivolvig some hypergeometric-type fuctios 06.0.6.000.0, 0 ; Re Represetatios through equivalet fuctios With related fuctios 06.0.7.000.0 06.0.7.000.0 06.0.7.000.0 4 cos Π Π si Π 06.0.7.0004.0 Iequalities 06.0.9.000.0 k k k k k ; k k 06.0.9.000.0 ; 06.0.9.000.0 k k ; k Zeros 06.0.0.000.0 0 ; Theorems Taylor's formula f k a z a k f z. k Derivative of compositio (Faà di Bruo's formula)

http://fuctios.wolfram.com 9 f gx x m k k k m k k k f m gx j j k j k j j g j x k j m m m j m j gx mj gxj x f m gx. Compositio of two series b m a k z k m 0 k m c z ; c 0 b 0 c a b c a b a b c a b a a b a b 0 c 4 a 4 b a a b a b a a b a 4 b 4 c k,k,,k 0 k k k a j k j m b m j k j. m j k j Maxfield theorem ad Castell cojecture J. E. Maxfield proved that the base 0 digits of ay positive iteger occur i m as the first digits for some iteger m (J. E. Maxfield. Math. Mag. 4, 64, (970)). Castell's cojecture states that the digits to b of the base b expasio of are asymptotically equally distributed (S. P. Castell. Eureka, 6, 44 97). History J. Stirlig (70) foud his famous asymptotic formula L. Euler (75) C. Kramp (808, 86) itroduced the otatio

http://fuctios.wolfram.com 0 Copyright This documet was dowloaded from fuctios.wolfram.com, a comprehesive olie compedium of formulas ivolvig the special fuctios of mathematics. For a key to the otatios used here, see http://fuctios.wolfram.com/notatios/. Please cite this documet by referrig to the fuctios.wolfram.com page from which it was dowloaded, for example: http://fuctios.wolfram.com/costats/e/ To refer to a particular formula, cite fuctios.wolfram.com followed by the citatio umber. e.g.: http://fuctios.wolfram.com/0.0.0.000.0 This documet is curretly i a prelimiary form. If you have commets or suggestios, please email commets@fuctios.wolfram.com. 00-008, Wolfram Research, Ic.