Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function"

Transcript

1 HyergeometricPFQ Notatios Traditioal ame Geeralied hyergeometric fuctio Traditioal otatio F a 1,, a ; b 1,, b ; Mathematica StadardForm otatio HyergeometricPFQa 1,, a, b 1,, b, Primary defiitio F a 1,, a ; b 1,, b ; a j k k b j k k Re b j a j 0 ; 1 I the cases 1 the series above does ot coverge but it (together with symbol) ca be used as asymtotic series, where, whe eeded a Borel summatio is imlicitly uderstood F a 1,, a ; b 1,, b ; a j k k b j k k ; a j a j For a i, b j m ; m beig oositive itegers ad ak a k a k bk b k m b k the fuctio F a 1,, a ; b 1,, b ; caot be uiuely defied by a limitig rocedure based o the above defiitio because the two variables a i, b j ca aroach oositive itegers, m; m at differet seeds. For the above coditios we defie: F a 1,, a i,, a ; b 1,, b j,, b ; a j k k b j k k ; a i b j m m m

2 htt://fuctios.wolfram.com Geeral characteristics Some abbreviatios a 1,, a a 1 a Domai ad aalyticity F a 1,, a ; b 1,, b ; is a aalytical fuctio of a 1,, a, b 1,, b ad which is defied i 1. I the cases for fixed a 1,, a, b 1,, b, it is a etire fuctio of. If arameters a k iclude egative itegers, the fuctio F a 1,, a ; b 1,, b ; degeerates to a olyomial i a 1 a b 1 b F a 1,, a ; b 1,, b ; Symmetries ad eriodicities Mirror symmetry F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; ; 1, 1 Permutatio symmetry F a 1, a,, a k,, a j,, a ; b 1,, b ; F a 1, a,, a j,, a k,, a ; b 1,, b ; ; a k a j k j F a 1,, a ; b 1, b,, b k,, b j,, b ; F a 1,, a ; b 1, b,, b j,, b k,, b ; ; b k b j k j Periodicity No eriodicity Poles ad essetial sigularities With resect to For 1 ad fixed a l, b j i oolyomial cases (whe a 1 a ), the fuctio F a 1,, a ; b 1,, b ; does ot have oles ad essetial sigularities ig F a 1,, a ; b 1,, b ; ; 1 a 1,, a For ad fixed a l, b j i oolyomial cases (whe a 1 a ), the fuctio F a 1,, a ; b 1,, b ; has oly oe sigular oit at. It is a essetial sigular oit ig F a 1,, a ; b 1,, b ;, ; a 1,, a

3 htt://fuctios.wolfram.com 3 If arameters a k iclude r egative itegers Α k, the fuctio F a 1,, a ; b 1,, b ; is a olyomial ad has ole of order miα 1,, Α r at ig F a 1,, a ; b 1,, b ;, Α ; a 1,, a Α mia s1,, a sr a sk With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, has oly oe sigular oit at a l. It is a essetial sigular oit ig al F a 1,, a ; b 1,, b ;, ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, has a ifiite set of sigular oits: a) b j k ; k, are the simle oles with residues 1k k F a 1,, a ; b 1,, b j1, k, b j1,, b ; ; b) b j is the oit of accumulatio of oles, which is a essetial sigular oit ig b j F a 1,, a ; b 1,, b ; k, 1 ; k,, ; 1 j res b j F a 1,, a ; b 1,, b ; k 1k F a 1,, a ; b 1,, b j1, k, b j1,, b ; ; k 1 j k Brach oits With resect to The fuctio F a 1,, a ; b 1,, b ; does ot have brach oits for ad has two brach oits: 1, for 1 i oolyomial case (whe a 1 a ) F a 1,, a ; b 1,, b ; ; F a 1,, a 1 ; b 1,, b ; 1, ; a 1,, a F a 1,, a 1 ; b 1,, b ;, 1 log ; Ψ Ψ Ψ b j a j a 1,, a F a 1,, a 1 ; b 1,, b ;, 1 s ; 1 Ψ b j a j r s r s 1 gcdr, s 1 a 1,, a 1

4 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ;, log ; ai,a j a i a j 1 i 1 1 j 1 i j a 1 a F a 1,, a 1 ; b 1,, b ;, lcms 1,, s 1 ; a l r l r l, s l s l 1 gcdr l, s l 1 1 l 1 a 1,, a 1 s l With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, does ot have brach oits al F a 1,, a ; b 1,, b ; ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, does ot have brach oits b j F a 1,, a ; b 1,, b ; ; 1 j Brach cuts With resect to For all oegative iteger a k, the fuctio F a 1,, a ; b 1,, b ; i the cases 1 is a sigle-valued fuctio o the -lae cut alog the iterval 1,, where it is cotiuous from below. I the cases this fuctio does ot have brach cuts F a 1,, a 1 ; b 1,, b ; 1,, ; a 1,, a F a 1,, a ; b 1,, b ; ; lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε 1 F a 1,, a 1 ; b 1,, b ; x ; x lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε b k 1 ak 1,1 G 1,1 Π 1 x 1, b 1,, b a 1,, a 1 ; x 1

5 htt://fuctios.wolfram.com lim Ε0 1 F a 1,, a 1 ; b 1,, b ; x Ε b k 1 ak 1 a k b j a k 1 a j a k Π a kx a k 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 x ; j,k,j,k 1 j 11 k 1 a j a k x 1 With resect to a l The fuctio F a 1,, a ; b 1,, b ; as a fuctio of a l, 1 l, does ot have brach cuts al F a 1,, a ; b 1,, b ; ; 1 l With resect to b j The fuctio F a 1,, a ; b 1,, b ; as a fuctio of b j, 1 j, does ot have brach cuts b j F a 1,, a ; b 1,, b ; ; 1 j Series reresetatios Geeralied ower series Exasios at geeric oit 0 For the fuctio itself k 0 F a 1,, a ; b 1,, b ; b j k 1F 1 1, a 1,, a ; 1 k, b 1,, b ; 0 0 k ; , F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 1 a j a k b j a k 1 0 a k arg 0 Π 0 a k arg 0 1 Π a k j 0 j j j 0 1F a k b 1 1,, a k b 1, j a k ; 1a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; j ; 0 1 j,k,j,k 1 j 11 k 1 a j a k Exasios o brach cuts for 1

6 htt://fuctios.wolfram.com 6 For the fuctio itself F a 1,, a 1 ; b 1,, b ; b k 1 k G 1,1 1,1 1 ak x argx Π Π 1 a 1 k,, 1 a 1 k 0, 1 b 1 k,, 1 b k xk ; x F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 k G 1,1 1,1 argx Π 1 Π 1 x 1, k b 1,, k b k a 1,, k a 1 x k ; x 1 1F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 1 x u u a k a j a k Π a k u 0 u b j a k argx 1Floor Π x a k 1F u a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 x x u ; j,k,j,k 1 j 11 k 1 a j a k x 1 Exasios at F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; a j b j a j k k b j k k a j a j 1 b j b j 1 ; 1 1 ; F a 1,, a ; b 1,, b ; 1 O Exasios at 1 for 1 The oit 1 is the ed oit of the brach cut for the fuctio 1 F a 1,, a 1 ; b 1,, b ;, where it has a 1 rather comlicated behavior. The corresodig geeral formula (for oiteger Ψ b j aj ) icludes two major terms - regular ad sigular which are a aalytical fuctios. Moreover, the sigular term has reresetatio of the form cost 1 Ψ 1 O 1 ad regular term is bouded ear oit 1. A more detailed descritio of this behavior is reseted below. At the sigular oit 1 the fuctio 1 F a 1,, a 1 ; b 1,, b ; is cotiuous for ReΨ 0, bouded for ReΨ 0, Ψ 0 ad has, i geeral, a logarithmic sigularity for Ψ 0 while for ReΨ 0 it has a ower sigularity of order Ψ to which for iteger Ψ a logarithmic sigularity ca also occur. The geeral formulas

7 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b j F a 1,, a 1 ;, 1, b 1,, b ; F a 1,, a 1 ; b 1,, b ; b k 1 Ψ g k Ψ 1 k g k 0 1 k 1 ak ; 1 k k r a 1 k r a Ψ r k g k r k Ψ r k j j a1,, a 1, b 1,, b 1 k Ψ r k j 0 j a 1 Ψ j a Ψ k k r b j 1 k r a j 1 lim m Ψ r k 1F k r a 1, k r a,, r a 1, m; k r b 1, k r b,, r b, k m r Ψ 1; 1 g 0 Ψ Ψ k1 a1,, a 1, b 1,, b b 1 a 3 1 k1 b j k 1 j j 3 a j k 1 k 1 k 0 k 1 k 1 j b j j 3 a j a 3 b 1 k 1 1 k k b a 4 1 k b j k j 3 j 4 a j k k k 3 0 k k3 1 j 3 b j j 4 a j a 4 b k 1 k3 k3 b a 1 k b j k j a j k k k 1 0 k k1 b a 1 k1 b 1 a 1 k1 1 b j j a j a b k 1 k k1 k1 1 Ψ b j a j Ψ Rea 3 0 Rea 1 0 The logarithmic cases

8 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k Ψ 1 k j 1 j j 1 Ψ j j log1 1 j 1 ak j 0 j 0 ; 1 1 Ψ b j a j 1 1 k j 1 j j a 1 j a j k j Ψ 1 k a1,, a 1, b 1,, b ; Rea 3 j k a 1 Ψ k a Ψ 1 Ψ a 1 Ψ j a Ψ j k j 1 Rea 1 j j 1 j k a1,, a 1, b 1,, b j j j Ψ k j1 a 1 Ψ k a Ψ k j j k k a1,, a 1, b 1,, b Ψj k 1 Ψj Ψ 1 Ψj a 1 Ψ Ψj a Ψ ; a 1 Ψ k a Ψ k Rea 3 j Ψ Rea 1 j Ψ 1 Ψ1 a 1 Ψ j a Ψ j j j j Ψ j j k k a1,, a 1, b 1,, b Ψ a 1 Ψ k a Ψ k F a 1,, a 1 ; b 1,, b ; b k a 1 Ψ j a Ψ j 1 j j k j 1 1 Ψ k a1,, a 1, b 1,, b j j Ψ a 1 Ψ k a Ψ k 1 ak j 0 k j1 j j k log1 Ψj k 1 Ψj Ψ 1 Ψj a 1 Ψ Ψj a Ψ a 1 Ψ k a Ψ k k a1,, a 1, b 1,, b 1 j Ψ 1 j a 1 j a k j Ψ 1 k a1,, a 1, b 1,, b 1 j j k a 1 Ψ k a Ψ j 0 ; Ψ b j a j 1 Ψ

9 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak Ψ 1 1 Ψ h j 1 j j u j v j log1 1 j j 0 j 0 ; j a 1 Ψ j a Ψ j j Ψ 1 j j k k a1,, a 1, b 1,, b Ψ b j a j 1 h j j a 1 Ψ k a Ψ k a 1 Ψ jψ a Ψ jψ u j 1 j j Ψ j j Ψ k jψ 1 k j Ψ 1 k a1,, a 1, b 1,, b a 1 Ψ k a Ψ k jψ Ψ j 1 Ψ k k a1,, a 1, b 1,, b Ψj 1 Ψj a 1 Ψj a Ψj k Ψ 1 ; a 1 Ψ k a Ψ k 1 Ψ1 a 1 Ψ jψ a Ψ jψ Rea 3 j Rea 1 j v j j j Ψ jψ Ψ j k k a1,, a 1, b 1,, b Ψ a 1 Ψ k a Ψ k F a 1,, a 1 ; b 1,, b ; b k 1 ak Ψ 1 j 1 k 1 Ψ k a1,, a 1, b 1,, b 1 j j Ψ 1 a 1 Ψ j a Ψ j j 0 j k a 1 Ψ k a Ψ k 1 j k a 1 Ψ 1 j k a k a1,, a 1, b 1,, b j Ψ j k k a 1 Ψ k a Ψ j Ψ log1 Ψj k 1 Ψj Ψ 1 Ψj k a 1 Ψj k a 1 j Ψ 1 j k a 1 Ψ1 1 j k a k a1,, a 1, b 1,, b 1 j j k k a 1 Ψ k a Ψ j k ; Ψ b j a j 1 Ψ

10 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 j a j j j k log1 Ψj 1 Ψj a 1 Ψj a Ψj k 1 k a1,, a 1, b 1,, b j 0 j a 1 k a k 1 j j k j1 k j 1 a 1 k a k 1 1 Ψ b j a j 1 Ψ 0 1 k a1,, a 1, b 1,, b 1 j ; The major terms i the geeral formula for exasios of fuctio 1F a 1,, a 1 ; b 1,, b ; at F a 1,, a 1 ; b 1,, b ; 1 F a 1,, a 1 ; b 1,, b ; 11 O 1 1 Ψ b j a j Ψ F a 1,, a 1 ; b 1,, b ; Ψ 1 k 3 ak b k Ψ k k a1,, a 1, b 1,, b 1 O 1 k a 1 Ψ k a Ψ Ψ Ψ 1 ak 1 k 3 ak 1 Ψ b j a j 1 ReΨ 0 Rea 3 0 Rea F a 1,, a 1 ; b 1,, b ; 1 F a 1,, a 1 ; b 1,, b ; 11 O 1 1 Ψ b j a j Ψ 0 1 Exasios at for 1 b j 1 a j b k 1 Ψ 1 O 1 ; b k 1 Ψ 1 O 1 ; log1 1 O 1 ; The geeral formulas F a 1,, a 1 ; b 1,, b ; b k F a 1,, a ; b 1,, b ;,, ; 0, 1

11 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k ower a 1,, a ; F b 1,, b ;,, ; 0, 1 Case of simle oles F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 k 1 a j a k b j a k a k 1 1 j,k,j,k 1 j 11 k 1 a j a k F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 j,k,j,k 1 j 11 k 1 a j a k F a 1,, a 1 ; b 1,, b ; a k a k b j 1 1 ak a j 1 a 1 k 1 a j a k b k 1 1 ak i 0 1 j,k,j,k 1 j 11 k 1 a j a k F a 1,, a 1 ; b 1,, b ; b k 1 ak b j a k a k a k 1 a k b j 1 a k b j a k 1 ak a j 1 a k a j i 0 Res 0; 1 a 1,, 1 a 1 ; ; 1 b 1,, 1 b ; a 1 k 1 a j a k b j a k a k a k i a k b j 1 i 1 i ak a j 1 i i 1 a k, 1, i; ; ; ; 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 ; 0, 1 j,k,j,k 1 j 11 k 1 a j a k Case of oles of order r i the oits a r k ; r, 3, 4 k F a 1,, a 1 ; b 1,, b ; b k ower a 1,, a ; F b 1,, b ;,, ; 0, 1 a k a k1 k r a k a 1 r 1 k 1 j,k,j,k r1 j 1r1 k 1 a j a k r, 3, 4 The major terms for exasios of fuctio 1 F a 1,, a 1 ; b 1,, b ; at

12 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak j,k,j,k 1 j 11 k 1 a j a k a 1 k 1 a j a k b j a k a k 1 O 1 ; F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 k r1 a 1 k a j a k b j a k a k 1 O 1 r1 Res 0; a 1,, a 1 ; a ; b 1,, b ; j1, j 1, 0; 1 O 1 j ; a k a k1 k r a k a 1 r 1 k 1 j,k,j,k r1 j 1r1 k 1 a j a k r, 3, F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a Ψa Ψa k a Ψb k a k 3 1 O 1 a 1 k 1 a j a k k 3 b j a k a k 1 O 1 ; a a 1 a k a 1 3 k 1 j,k,j,k 3 j 13 k 1 a j a k

13 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a Ψa Ψa k a Ψb k a k 3 1 O 1 1 a a 1 1 a 3 k 4 ak a 3 a 3 a a 3 a 1 b k a 3 a 3 1 log Ψa 3 a 1 1 Ψa 3 a 1 Ψa 3 Ψa k a 3 Ψb k a 3 k 4 5 Π 6 Ψ1 a 3 a 1 1 Ψ 1 a 3 a 1 Ψ 1 a 3 Ψ 1 a k a 3 Ψ 1 b k a 3 1 k 4 O 1 1 a 1 k 1 a j a k a k k 4 b j a k 1 O 1 ; a a 1 a 3 a a k a 1 4 k 1 j,k,j,k 4 j 14 k 1 a j a k

14 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 a 1 k ak a 1 b k a 1 a 1 1 O 1 1 a a 1 1 a k 3 ak a a a 1 b k a a log Ψa a Ψa Ψa k a Ψb k a k 3 1 O 1 1 a a 1 1 a 3 k 4 ak a 3 a 3 a a 3 a 1 b k a 3 a 3 1 log Ψa 3 a 1 1 Ψa 3 a 1 Ψa 3 Ψa k a 3 Ψb k a 3 k 4 5 Π 6 Ψ1 a 3 a 1 1 Ψ 1 a 3 a 1 Ψ 1 a 3 Ψ 1 a k a 3 Ψ 1 b k a 3 1 k 4 O a 1 a a 3 a 1 4 a 4 k 5 ak a 4 6 a 4 a 3 a 4 a a 4 a 1 b k a 4 a log Ψa 4 a 1 1 Ψa 4 a 1 Ψa 4 a 3 1 Ψa 4 Ψa k a 4 Ψb k a 4 k Ψ 1 a 4 Ψ 1 a 4 a 1 1 Ψ 1 a 4 a 1 Ψ 1 a 4 a 3 1 Ψ 1 a k a 4 Ψ 1 b k a 4 k 5 7 Π log Ψa 4 a 1 1 Ψa 4 a 1 1 Ψa 4 a 3 1 Ψa 4 Ψa k a 4 Ψb k a 4 k 5 1 Ψ a 4 a 1 1 Ψ a 4 a 1 Ψ a 4 a 3 1 Ψ a 4 Ψ a k a 4 Ψ b k a 4 Ζ3 k 5 1 O 1 a 1 k 1 a j a k k 5 b j a k a k 1 O 1 ; a a 1 a 3 a a 4 a 3 a k a 1 5 k 1 j,k,j,k 5 j 15 k 1 a j a k Exasios at for olyomial cases

15 htt://fuctios.wolfram.com F, a, a 3,, a ; b 1,, b ; k a k 1F 1, 1 b 1,, 1 b ; 1 a, 1 a 3,, 1 a ; 11 b k ; Asymtotic series exasios Exasios for F a 1,, a ; b 1,, b ; b j ower a 1,, a ; F b 1,, b ;,, ex a 1,, a ; F b 1,, b ;,, ; b j F a 1,, a ; b 1,, b ; a j Χ 1 O 1 b j a j a k a j a k b j a k a k 1 O 1 ; j,k,j,k 1 j 1 k a j a k Exasios for F 1 a 1,, a ; b 1,, b 1 ; b j ower a 1,, a ; F b 1,, b 1 ;,, trig a 1,, a ; F,, b 1,, b 1 ; ; F 1 a 1,, a ; b 1,, b 1 ; 1 b j Π a k Χ Π Χ 1 O 1 Π Χ 1 O 1 1 b j a k a k a j a k 1 b j a k a k 1 O 1 ; j,k,j,k 1 j 1 k a j a k F 1 a 1,, a ; b 1,, b 1 ; 1 b j Π a k Χ cosπ Χ 1 O 1 c 1 siπ Χ 1 O 1 1 b j a k a k a j a k 1 b j a k a k 1 O 1 ; Χ 1 A B 1 1 c A B 1 A B A a k 1 s1 1 s1 B 1 b k a s a j b s b j j,k,j,k 1 j 1 k a j a k s s

16 htt://fuctios.wolfram.com 16 Exasios for F a 1,, a ; b 1,, b ; b j ower a 1,, a ; F b 1,, b ;,, ex a 1,, a ; F b 1,, b ; j,k,j,k 1 j 1 k a j a k,, ; F a 1,, a ; b 1,, b ; 1Β Π Β a k b j Χ exβ 1Β 1 O 1 1Β b j a k a k a j a k b j a k a k 1 O 1 ; Β 1 Χ 1 Β Β 1 a k b k j,k,j,k 1 j 1 k a j a k Exasios for 0 F F ; b 1, b ; b 1 b 3 3 Π 3 1 1b 3 1 b 1 3 b 1 3 b 1 b 1 3 b 3 b 1 9 b b b b 3 b 1 b b 3 3 b 17 b 4 b 1 9 b 4 1 b 3 3 b 1 b 4 ; F ; b 1, b ; b 1 b 3 3 Π 3 1 1b 3 1 b 1 O 1 3 ; Exasios for 0 F F 3 ; b 1, b, b 3 ; b 1 b b Π b 1 b b 3 1 b 1 8 b b 3 1 b 1 1 b 1 b 3 8 b 3 8 b b b b 3 b 3 1 b b 8 b 3 3 b 44 b 3 4 b 3 1 b b 3 4 b 3 3 b 4 b 3 40 b 3 1 b 1 b b 3 1 b 3 11 b b b b b b 3 64 b 3 3 b b 44 b 3 4 b b 1 b b 3 1 b ; F 3 ; b 1, b, b 3 ; b 1 b b Π b 4 1 b b 3 1 O 1 4 ;

17 htt://fuctios.wolfram.com 17 Geeral formulas of asymtotic series exasios F a 1,, a ; b 1,, b ; b j F a 1,, a ; b 1,, b ;,, ; F a 1,, a ; b 1,, b ; b j Θ,1 ex a 1,, a ; F b 1,, b ;,, ower a 1,, a ; F b 1,, b ;,,,1 trig a 1,, a ; F b 1,, b 1 ;,, ; 1 Mai terms of asymtotic exasios F a 1,, a ; b 1,, b ; b j res s a j s a j s b j s s a k 1 O 1,1 d 1 Χ cosπ Χ 1 O 1 Θ,1 d Χ Β 1Β 1 O 1 1Β ; Β 1 Χ 1 Β Β 1 a k b k d d 1 1Β Π Β F a 1,, a ; b 1,, b ; c k a k 1 O 1,1 e 1 Χ cosπ Χ 1 O Β 1 Χ 1 Β Β 1 a k e e 1 1Β Π Β a k 1 Θ,1 e Χ Β 1Β 1 O 1 b k c k b k j,k,j,k 1 j 1 k a j a k 1F a 1,, a 1 ; b 1,, b ; c 1 O 1 d 1 Ψ 1 O 1 ; a k 1 Ψ b j a j c 1 F a 1,, a 1 ; b 1,, b ; 1 d 1 1Β ; b j a j a k a j b j a k Ψ b k 1 ak Ψ Residue reresetatios

18 htt://fuctios.wolfram.com F a 1,, a ; b 1,, b ; b k a k res s j 0 s a k s b k s s j ; F a 1,, a 1 ; b 1,, b ; b k 1 ak 1 res s j 0 1 s ak s b k s s a k j ; 1 Cotiued fractio reresetatios F a 1,, a ; b 1,, b ; b k 1 a k 1 1 a j 1 b j 1 1 a j 1 b j 1 a j 3 b j a j 3 b j F a 1,, a ; b 1,, b ; 1 a k b k 1 k k a j k 1 k b j, k a j k 1 k b j 1 1 Differetial euatios Ordiary liear differetial euatios ad wroskias For the direct fuctio itself The differetial euatio for the fuctio F a 1,, a ; b 1,, b ; has the order max, 1. It has two ( 0, for ) or three ( 0, 1,, for 1) sigular oits. If, the the oit 0 is a regular sigular oit, while is a oregular (essetial) sigular oit; if 1, the all three sigular oits are regular. Reresetatio of fudametal system solutios ear oit 0 for 1 i the geeral case

19 htt://fuctios.wolfram.com w 1 1 b k w w 1 l 1 a l w 1 d d d d b k 1 w l 1 d d a 1 l w w 1 1 b k w w 1 1 a k w 1 w l 1 a l w a l 0 ; l 1 w c 1 F a 1,, a ; b 1,, b ; c, G,1 1 a 1,, 1 a 0, 1 b k, 1 b 1,, 1 b k1, 1 b k1,, 1 b c, G,1 1 1 a 1,, 1 a 0, 1 b 1,, 1 b k1, 1 b k1,, 1 b, 1 b k 1, c 1 G, a 1,, 1 a 0, 1 b 1,, 1 b w 1 1 b k w w 1 l 1 a l w 1 d d d d b k 1 w l 1 d d a 1 l w w 1 1 b k w w 1 1 a k w 1 w l 1 a l w a l 0 ; w c 1 F a 1,, a ; b 1,, b ; l 1 c k1 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; ; j,k,j,k 1 j 1 k b j b k b k W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, 1 b 1 b,, 1 b 1 b ;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; 1 Π k1 siπ b k siπ b j b k 1 1 b k,1 1 l 1 1 al b k, Θ 1

20 htt://fuctios.wolfram.com 0 d d d d b d k 1 l 1 d a l w 0 ; w c 1 F a 1,, a ; b 1,, b ; c k1 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; ; j,k,j,k 1 j 1 k b j b k b k W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, b 1 b 1,, b 1 b 1;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; cost 1 1 b k,1 1 l 1 1 al b k, Θ 1 ; t lim Ε0 Ε 1 b k W Ε F a 1,, a ; b 1,, b ; Ε, Ε 1b 1 F a 1 b 1 1,, a b 1 1; b 1, b 1 b 1,, b 1 b 1; Ε,, Ε 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1; Ε,, Ε 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; Ε W F a 1,, a ; b 1,, b ;, 1b 1 F a 1 b 1 1,, a b 1 1; b 1, 1 b 1 b,, 1 b 1 b ;,, 1b k F a 1 b k 1,, a b k 1; b k, b 1 b k 1,, b k1 b k 1, b k1 b k 1,, b b k 1;,, 1b F a 1 b 1,, a b 1; b, b 1 b 1,, b 1 b 1; 1 k1 b k 1 b j b k 1 1 b k,1 1 l 1 1 al b k, Θ 1 Reresetatio of fudametal system solutios ear oit 1 for 1 i the geeral case 1,0 Below reresetatio icludes fuctios of two kids. The fuctio G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b is the iecewise aalytical fuctio with a discotiuity o the uite circle 1. It has sigularity ear oit 1of the form cost 1 Ψ,3 1 O 1, whe 1. The fuctios G 3,3 aalytical fuctios ad are bouded ear oit 1. 1,0 The fuctio G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b iside of 1ca be rereeted through hyergeometric fuctios defied for all comlex. 0, b k, 1 a 1,, 1 a 1 0, b k, 0, 1 b 1,, 1 b are the

21 htt://fuctios.wolfram.com 1 d d d d b d k 1 l 1 d a l w 0 ; 1,0 w c 1 G 1,1 1 a 1,, 1 a 1,3 c 0, 1 b 1,, 1 b k1 G 3,3 0, b k, 1 a 1,, 1 a 1 0, b k, 0, 1 b 1,, 1 b ; 1 1 Ψ b j a j Ψ j,k,j,k 1 j 1 k b j b k b k Reresetatio of fudametal system solutios ear oit for 1 i the geeral case d d d d b d k 1 l 1 d a l w 0 ; w c k a k 1 F 1 a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a a k ; 11 j,k,j,k 1 j 1 k a j a k d d d d b d k 1 l 1 d a l w 0 ; w c k a k 1 F 1 a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a a k ; 11 ; j,k,j,k 1 j 1 k a j a k Trasformatios Products, sums, ad owers of the direct fuctio Products of the direct fuctio F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d c k k ; c k d k r Α j k s1 F r k, 1 Β 1 k,, 1 Β s k, a 1,, a ; 1 Α 1 k,, 1 Α r k, b 1,, b ; 1rs1 c s k Β j d k c k c k a j k r1 F s k, 1 b 1 k,, 1 b k, Α 1,, Α r ; 1 a 1 k,, 1 a r k, Β 1,, Β s ; 11 d k b j c k

22 htt://fuctios.wolfram.com F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d k m 0 r a j m Α j km c m d km k s b j m Β j km mk m :;r : a 1,, a ; Α 1,, Α r ; F a 1,, a ; b 1,, b ; c r F s Α 1,, Α r ; Β 1,, Β s ; d F 0:;s c, d : b 1,, b ; Β 1,, Β s ; Idetities Recurrece idetities Distat eighbors with resect to F a 1,, a 1 ; b 1,, b ; b j k a1,, a 1, b 1,, b F 1 1a 1, a ; a 1 a Ψ k; ; Ψ b j 1 j 3 a j a j Fuctioal idetities Relatios betwee cotiguous fuctios b F a, b 1, a 3,, a ; b 1,, b ; a F a 1, b, a 3,, a ; b 1,, b ; a b F a, b, a 3,, a ; b 1,, b ; c F a, a,, a ; c, b,, b ; a F a 1, a,, a ; c 1, b,, b ; a c F a, a,, a ; c 1, b,, b ; d F a 1,, a ; c 1, d, b 3,, b ; c F a 1,, a ; c, d 1, b 3,, b ; c d F a 1,, a ; c 1, d 1, b 3,, b ; ca b F a, b, a 3,, a ; c, b,, b ; ac b F a 1, b, a 3,, a ; c 1, b,, b ; bc a F a, b 1, a 3,, a ; c 1, b,, b ; cd a F a, a,, a ; c, d 1, b 3,, b ; dc a F a, a,, a ; c 1, d, b 3,, b ; ac d F a 1, a,, a ; c 1, d 1, b 3,, b ; 0 b k F a, a,, a ; b 1,, b ; F a 1, a,, a ; b 1,, b ; a j F a 1, a 1,, a 1; b 1 1,, b 1; 0 j

23 htt://fuctios.wolfram.com cc 1 b k F a 1,, a ; c, b,, b ; F a 1,, a ; c 1, b,, b ; k a j F a 1 1,, a 1; c, b 1,, b 1; b k F a, b 1, a 3,, a ; b 1,, b ; F a 1, b, a 3,, a ; b 1,, b ; b a a j F a 1, b 1, a 3 1,, a 1; b 1 1,, b 1; 0 j cc 1 b k F a, a,, a ; c, b,, b ; F a 1, a,, a ; c 1, b,, b ; k c a a j F a 1, a 1,, a 1; c, b 1,, b 1; 0 j b k c F a, b, a 3,, a ; c, b,, b ; k a F a 1, b 1, a 3,, a ; c 1, b,, b ; c a F a, b 1, a 3,, a ; c 1, b,, b ; a a j F a 1, b 1, a 3 1,, a 1; c 1, b 1,, b 1; 0 j F a 1, b 1, a 3,, a ; c 1, d 1, e 1, b 4,, b ; c da eb e a b c ed e F a, b, a 3,, a ; c, d, e 1, b 4,, b ; c ea db d a b c de d F a, b, a 3,, a ; c, d 1, e, b 4,, b ; d ea cb c a b d ce c F a, b, a 3,, a ; c 1, d, e, b 4,, b ; a bd ce c F a, b, c, a 4,, a ; d, e, b 3,, b ; d e a cb c F a 1, b 1, c, a 4,, a ; d 1, e 1, b 3,, b ; a cd be b d e a bc b F a 1, b, c 1, a 4,, a ; d 1, e 1, b 3,, b ; b cd ae a d e b ac a F a, b 1, c 1, a 4,, a ; d 1, e 1, b 3,, b ; 0

24 htt://fuctios.wolfram.com a a j1 b j 1 F a, a,, a 1 ; b 1,, b ; b j a b j b j b k k j b j a k1 1 F a, a,, a 1 ; b 1,, b j1, b j 1, b j1,, b ; a1 1 F a 1, a,, a 1 ; b 1,, b ; Relatios of secial kid F a 1,, a ; c, 1 c, b 3,, b ; F a 1,, a ; c, 1 c, b 3,, b ; F a 1,, a ; 1 c, 1 c, b 3,, b ; F a, a,, a ; a, 1 a, b 3,, b ; F a, a,, a ; 1 a, 1 a, b 3,, b ; 1 F 1 a,, a ; 1 a, b 3,, b ; F a, a,, a ; 1 a, b,, b ; F a, a,, a ; 1 a, b,, b ; 1 F 1 a, a, a,, a ; 1 a, 1 a, b,, b ; F a, 1 a, a 3,, a ; b 1,, b ; F a, 1 a, a 3,, a ; b 1,, b ; 1 F 1 a, a, a 3,, a ; b 1,, b ; Divisio o eve ad odd arts ad geeraliatio F a 1,, a ; b 1,, b ; A A ; A 1 F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; A 1 F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; A A ; a A 1 a F 1,,, a 1 1 a 1,, A a j a 1 1 F 1 b j a 1,, ; 1, b 1,, b, a 1,,, b 1 1 a b 1,, ; 4 1 ; 3, b 1 1,, b 1, b 1,, b ; F a 1,, a ; b 1,, b ; 1 k k a j k 1 F 1, a 1 k b j k,, a 1 k 1,, a k,, a k 1 ; k 1,, k, b 1 k,, b 1 k 1,, b k,, b k 1 ; 1 Case 1 F

25 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 ak a 1 k 1 a j a k b j a k a k 1F a k, a k b 1 1,, a k b 1; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1 ; m 0, 1 j,k,j,k 1 j 11 k 1 a j a k m b j b k 1 a j b k 1 j 1 b k 1 a j b k j m1 1 b j b k 1F 1 a 1 b k,, 1 a 1 b k ; 1 b 1 b k,, 1 b k1 b k, 1 b k1 b k,, 1 b 1 b k ; 1 m1 ak a j m 1 a k b j 1 j m1 a k 1 1 a k b j j 1 a j a k 1 1F 1 a k b 1,, 1 a k b 1 ; 1 a 1 a k,, 1 a k1 a k, 1 a k1 a k,, 1 a 1 a k ; 1m1 m m 1 1 m m 1, 0 ; a 1 1F a 1,, a 1 ; b 1,, b ; w 1 a k 1 1 F k, a,, a 1 ; b 1,, b ; w k 1 k Differetiatio Low-order differetiatio With resect to a F 1,0,,0,0,,0,0 a 1,, a ; b 1,, b ; F 1,0,,0,0,,0,0 a 1,, a ; b 1,, b ; Ψk a 1 a j k k j a j k b j k F b j Ψa 1 F a 1,, a ; b 1,, b ; ; 1 a 1 1,, a 1; 1; 1, a 1 ;, b 1 1,, b 1;; a 1 1;, With resect to b 1

26 htt://fuctios.wolfram.com F 0,,0,1,0,,0,0 a 1,, a ; b 1,, b ; Ψb 1 F a 1,, a ; b 1,, b ; F 0,,0,1,0,,0,0 a 1,, a ; b 1,, b ; a j F b 1 b j Ψk b 1 a j k k k b j k 1 a 1 1,, a 1; 1; 1, b 1 ;, b 1 1,, b 1;; b 1 1;, With resect to elemet of arameters With resect to elemet of arameters F a, a,, a ; a 1, b,, b ; a j a j a 1 1 F 1 a 1, a 1, a 1,, a 1; a, a, b 1,, b 1; j b j F a 1, a,, a ; a, b,, b ; a With resect to F a 1,, a ; b 1,, b ; F a 1,, a ; b 1,, b ; a j j a j a 1 F 1 a 1,, a 1; b 1,, b 1; j b j F a 1 1,, a 1; b 1 1,, b 1; b j a j a j 1 F a 1,, a ; b 1,, b ; b j b j 1 ; Symbolic differetiatio With resect to a F,0,,0,0,,0,0 a 1,, a ; b 1,, b ; j a j k a 1 k k b j a k 1 k ; 1 1 With resect to b F 0,,0,,0,,0,0 a 1,, a ; b 1,, b ; a j k k j b j k 1 b 1 k With resect to elemet of arameters With resect to elemet of arameters b 1 k ; 1 1 1

27 htt://fuctios.wolfram.com F a, a,, a ; a 1, b,, b ; a 1 1 j a j a 1 1 j b j F a 1, a,, a ; a, b,, b ; a F a 1,, a 1, a 1,, a 1; a,, a, b 1,, b 1; ; 1 a 1 F 1 a,, a ; b,, b ; a 1 j a j F 1 a,, a ; b,, b ; ; a With resect to F a 1,, a ; b 1,, b ; a j 1F 1 a 1,, a 1; b 1,, b 1; j b j F a 1,, a ; b 1,, b ; ; b j F a 1,, a ; b 1,, b ; b j 1 F 11, a 1,, a ; 1, b 1,, b ; ; Α F a 1,, a ; b 1,, b ; 1 Α Α 1F 1 Α 1, a 1,, a ; Α 1, b 1,, b ; ; a1 F a, a,, a ; b 1,, b ; a a1 F a, a,, a ; b 1,, b ; ; c1 F a 1,, a ; c, b,, b ; c c1 F a 1,, a ; c, b,, b ; ; F, a,, a ; 1, b,, b ; 1 F 1, 1, a,, a ; 1, 1, b,, b ; ; Α F, a,, a ; b 1,, b ; 1 Α Α 1 F 1, Α 1, a,, a ; Α 1, b 1,, b ; ;

28 htt://fuctios.wolfram.com Α F r, 1 r,, r1, a r r1,, a ; b 1,, b ; m 1 Α Α m F m 1 r 1,,,, Α 1 r r r m, Α Α m,, m m, a r1, Α 1 Α Α m, a ;,,,, b 1,, b ; m ; r m m m m F, a,, a ; b 1,, b ; 1 k k 1 F, k, a k,, a k; b 1 k,, b k; ; k b j k Fractioal itegro-differetiatio With resect to Α F a 1,, a ; b 1,, b ; Α b Α j 1 F 11, a 1,, a ; 1 Α, b 1,, b ; Itegratio Idefiite itegratio Ivolvig oly oe direct fuctio F a 1,, a ; b 1,, b ; b j 1 F a 1 1,, a 1; b 1 1,, b 1; a j 1 Ivolvig oe direct fuctio ad elemetary fuctios Ivolvig ower fuctio Α1 F a 1,, a ; b 1,, b ; Α Α 1F 1 Α, a 1,, a ; Α 1, b 1,, b ; Defiite itegratio For the direct fuctio itself

29 htt://fuctios.wolfram.com t Α1 F a 1,, a ; b 1,, b ; tt b k Α a k Α 0 ReΑ mirea 1,, Rea 1 0 ReΑ mi Rea 1,, Rea, Re a k b k Α ; a j b k 1 Summatio Fiite summatio a j k 1 F 1, a 1 k b j k,, a 1 k 1,, a k,, a k 1 ; k 1 k,,, b 1 k,, b 1 k 1, b k,, b k 1 ; 1 k k F a 1,, a ; b 1,, b ; Ifiite summatio a 1 k 1 k 1 F k, a,, a 1 ; b 1,, b ; w k 1 a 1 w 1F a 1,, a 1; b 1,, b ; 1 Oeratios Limit oeratio lim 1 Ψ 1 F a 1,, a 1 ; b 1,, b ; 1 lim log1 1 F a 1,, a 1 ; b 1,, b ; F a 1,, a ; b 1,, b ; lim b 1 b 1 Ψ b j 1 a j b j 1 a j ; Ψ b j a j ReΨ 0 1 ; Ψ b j a j Ψ 0 1 a j 1 F a 1 1,, a 1;, b 1,, b 1; ; lim a F a, a,, a ; b 1,, b ; a 1F a,, a ; b 1,, b ;

30 htt://fuctios.wolfram.com lim a F a 1,, a ; b, b,, b ; b F 1 a 1,, a ; b,, b ; lim a a 1 a 1 F a, a, a 3,, a 1 ; a 1, a 3 1,, a 1 1; S a a 3 a 1 a lim 1 1 F 1 m, a 1, a 3 1,, a 1 1; a, a 3,, a 1 ; 1 m1 m m 1 ; a a 3 a 1 1 m ; Reresetatios through more geeral fuctios Through hyergeometric fuctios Ivolvig F F a 1,, a ; b 1,, b ; b k F a 1,, a ; b 1,, b ; Through hyergeometric fuctios of two variables F a 1,, a ; b 1,, b ; F ; a 1,, a ;; 0 0 ; b 1,, b ;;, F a 1,, a ; b 1,, b ; b k F 0 0 ; a 1,, a ;; 0 0 ; b 1,, b ;;, 0 Through Meijer G Classical cases for the direct fuctio itself F a 1,, a ; b 1,, b ; b k a k 1, G,1 1 a 1,, 1 a 0, 1 b 1,, 1 b

31 htt://fuctios.wolfram.com F a 1,, a 1 ; b 1,, b ; b k 1 Π siψ Π ak 1 siπ b j a k siπ b j b k k j,1 G 1,1 1 a 1,, 1 a 1 0, 1 b j, 1 b 1,, 1 b j1, 1 b j1,, 1 b Π b k 1 siψ Π ak 1 Ψ 1 Ψ 0,1 G 1,1 1 a 1,, 1 a 1 1,0 0, 1 b 1,, 1 b G 1,1 1 a 1,, 1 a 1 0, 1 b 1,, 1 b ; Ψ b j a j 1, 0 Ψ F a 1,, a ; b 1,, b ; b k a k G 3,1 4,3 1 1, b 1,, b a 1,, a ; 0, Theorems Coectios betwee series ad cotiued fractio reresetatios Euler established that the coverget series a k ca be exressed i a cotiued fractio form a k a 1 1 CotiueFractio a k1 a k, 1 a 1 k1, k, 1,. a k I articular the followig reresetatio takes lace: F a 1, a,, a ; b 1, b,, b ; 1 a k b k 1 CotiueFractio k a j k 1 k b j, 1 k a j k 1 k b j, k, 1, 1. History J. F. Pfaff (1797) T. Clause (188); J. Thomae (1870, 1879) studied differetial euatio S. Picherle (1886, 1888) L. Pochhammer (1888) E. W. Bares ( ) T. W.Chaudy (1943) N. E. Nörlud (1955) A. P. Prudikov, Y.A. Brychkov ad O.I. Marichev (1986)

32 htt://fuctios.wolfram.com 3 Coyright This documet was dowloaded from fuctios.wolfram.com, a comrehesive olie comedium of formulas ivolvig the secial fuctios of mathematics. For a key to the otatios used here, see htt://fuctios.wolfram.com/notatios/. Please cite this documet by referrig to the fuctios.wolfram.com age from which it was dowloaded, for examle: htt://fuctios.wolfram.com/costats/e/ To refer to a articular formula, cite fuctios.wolfram.com followed by the citatio umber. e.g.: htt://fuctios.wolfram.com/ This documet is curretly i a relimiary form. If you have commets or suggestios, lease commets@fuctios.wolfram.com , Wolfram Research, Ic.

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation Fiboacci Notatios Traditioal ame Fiboacci umber Traditioal otatio F Ν Mathematica StadardForm otatio FiboacciΝ Primary defiitio 04..0.000.0 F Ν ΦΝ cosν Π Φ Ν Specific values Specialized values 04..03.000.0

Διαβάστε περισσότερα

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Zeta Notatios Traditioal ame Riema zeta fuctio Traditioal otatio Ζs Mathematica StadardForm otatio Zetas Primary defiitio... Ζs ; Res s k k Specific values Specialized values..3.. Ζ B ;..3.. Ζ ;..3.3.

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation GegenbauerC3General Notations Traditional name Gegenbauer function Traditional notation C Ν Λ z Mathematica StandardForm notation GegenbauerCΝ, Λ, z Primary definition 07.4.0.000.0 C Λ Ν z Λ Π Ν Λ F Ν,

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values PolyGamma Notations Traditional name Digamma function Traditional notation Ψz Mathematica StandardForm notation PolyGammaz Primary definition 06.4.02.000.0 Ψz k k k z Specific values Specialized values

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην

Διαβάστε περισσότερα