The kinetic energy ( ) T. 1 2 n n ( ) n n0. m11 m12 m1n. m21 m22 m2n n n T

Σχετικά έγγραφα
Degrees of freedom and coordinates

Solve the difference equation

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Presentation of complex number in Cartesian and polar coordinate system


Inertial Navigation Mechanization and Error Equations

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Homework 8 Model Solution Section

α β

EN40: Dynamics and Vibrations

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Bessel function for complex variable

Spherical Coordinates

Ψηφιακή Επεξεργασία Εικόνας

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Spherical shell model

Second Order Partial Differential Equations

Homework for 1/27 Due 2/5

Reminders: linear functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

IIT JEE (2013) (Trigonomtery 1) Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Matrices and Determinants

Statistical Inference I Locally most powerful tests

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Outline. Detection Theory. Background. Background (Cont.)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

1. Matrix Algebra and Linear Economic Models

Fractional Colorings and Zykov Products of graphs

EE 570: Location and Navigation

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

The Heisenberg Uncertainty Principle

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Uniform Convergence of Fourier Series Michael Taylor

EE512: Error Control Coding

4. ELECTROCHEMISTRY - II

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Inverse trigonometric functions & General Solution of Trigonometric Equations

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Parametrized Surfaces

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Proof of Lemmas Lemma 1 Consider ξ nt = r

Congruence Classes of Invertible Matrices of Order 3 over F 2

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Trigonometric Formula Sheet

A study on generalized absolute summability factors for a triangular matrix

derivation of the Laplacian from rectangular to spherical coordinates

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions: Homework 3

B.A. (PROGRAMME) 1 YEAR

2 Composition. Invertible Mappings

The Simply Typed Lambda Calculus

Math221: HW# 1 solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Finite Field Problems: Solutions

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Example 1: THE ELECTRIC DIPOLE

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DERIVATION OF MILES EQUATION Revision D

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

1 String with massive end-points

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Degenerate Perturbation Theory

physicsandmathstutor.com

Every set of first-order formulas is equivalent to an independent set

HIGH-ACCURACY AB-INITIO ROVIBRATIONAL SPECTROSCOPY

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

B.A. (PROGRAMME) 1 YEAR

Section 7.6 Double and Half Angle Formulas

Solutions to Exercise Sheet 5

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

w o = R 1 p. (1) R = p =. = 1

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

The Neutrix Product of the Distributions r. x λ

Divergence for log concave functions

On Generating Relations of Some Triple. Hypergeometric Functions

Transcript:

The ietic eergy 1 T T= Ttqq (,, ) = ( M + Mq 1 + qmq ) M = M(, tq) = m ( ) T q= q q q 1 1 ( ) M = M(, tq) = m + m m + m m + m 1 1 1 1 1 m11 m1 m1 m1 m m T M M( tq, ) = =, M = M m1 m m 1

Mass matrix elemets where the matrix elemets, m, l, = 1,,...,, are defied by l χq χq m = m (, t q) = ρ dv( X ) t t B χq χq m = m( t, q) = dv( X ) m, 1,..., ρ = = t q B χq χq ml = ml ( t, q) = dv( X ) ml,, l 1,..., l ρ = = q q B

Mass matrix elemets 1 T T = T (, t q, q ) = q Mq T ( ) ( ) 1 + 1 1 q = q q q, q = t M 1 m m1 m M M1 m1 m11 m1 = Mtq (, ) = = 1 M T 1 M m m1 m 3

The ietic eergy 4

The ietic eergy Propositio 9.8 The trasport iertial force may be writte Q m 1 m ta i = i= 1 t q 5

The ietic eergy 6

Lagrage s equatios d T T ta ga i e ( ) + Q + Q Q Q =, = 1,..., dt q q 1 1 T T tqq mqq qmq l T = (,, ) = l = l, = 1 7

Lagrage s equatios Mq = Q + Q + Q cif T it et 8

The complemetary iertia force i a scleroomic coordiate system cif T M 1 M t T M M1 1 M1 M Q = q ( ( ) ) q+ q ( + sew( )) + ( ) = q q t q t q q M =, M = T 1 1 M 1 M t ( ( )) q q q q M cif = Q = 1 9

Summary 1

Regular coordiates Propositio 9.1 The system of geeralized coordiates is regular if ad oly if the mass matrix M is positive defiite. 11

1

Example 9.4 Uderlyig, i our discussio, is the assumptio that we may use differet sets of geeralized coordiates for the cofiguratio space of the multibody. The choice of coordiates must be decided by the egieer. For istace, for a sigle particle P we may use Cartesia coordiates ( x, y, z ) or spherical coordiates (, r θϕ, ) x = r siθcosϕ y = r siθsiϕ z = r cosθ Let ( ex ey ez) deote the RON-basis correspodig to the Cartesia coordiate system with origi O. The trasplacemet of the particle may be writte x= ( x,y,z; P) = x + e x + e y + e z, ( x, y, z) Ω= χq O x y z 3 The χ q x = e x χ q y = e y χ q z = e z ad thus the Cartesia coordiate system is regular. 13

I spherical coordiates the trasplacemet is: χ( r, θϕ, ; P) = x + e rsiθcosϕ+ e rsiθsiϕ+ e rcos θ, ( r, θϕ, ) Ω q O x y z χq = exsiθcosϕ+ ey siθsiϕ+ ezcosθ r χq = exrcosθcosϕ+ eyrcosθsi ϕ+ ez ( rsi θ) θ χq = ex( rsiθsi ϕ) + eyrsiθcosϕ ϕ χq χq χq = r si θ, ( r, θϕ, ) Ω r θ ϕ This spherical coordiate system is thus a regular coordiate system. 14

Example 9.5 The coordiate system adopted for the double pedulum i Example 9. is regular sice, for fixed ( θφ, ) Ω, χq w θ χ + w = φ 1 q 1 1 ( icosθ + jsi θ) Xw =, X l1, ( for ) 1 icosθ + jsi θ) l1w + i(cosφ+ jsi φ) Xw =, X l, ( for ) 1 w = w = 15

Coordiate chages 16

Coordiate chage 1 ( ) T..., q = q q q 1 (... ) q = q q q T x= χq( tqt, ( ); X) = χq ( tq, ( t); X) X B Coordiate chage: q q q= qtq ˆ(, ) q = qˆ ( t, q), qˆ = qˆ 1 ˆq 17

Coordiate chages Virtual velocity fields w = w (, tqwx, ; ) = q χq q = 1 w w = wq (, tq, w; X) = q χq j w j j= 1 ( ) T w= w w w 1 ( ) T w = w w w 1 Compoet chage: w = ˆ q q j j= 1 w j w ˆq = q w Jacobia: qˆ q qˆ = j q 18

Coordiate chages Propositio 9.13 If the q - coordiate system is regular the the q - coordiate system is regular if ad oly if qˆ det( ) q 19

Coordiate chages qˆ qˆ j qt ( ) = qtq ˆ(, ( t)) q = + q, 1,..., j = t q j= 1 q qˆ = + t qˆ q q χ q χq χ e q qˆ Q j = Pda( X ) + ρdv( X ) = da( X ) + j j j q b q P q q B B B = 1 χq qˆ χq χq qˆ e qˆ bρdv( X ) = ( Pda( X ) + bρdv( X )) = Q q q q q q q B j j j = 1 = 1 = 1 B B

Covariat ad cotravariat vectors Covariat vector: * ˆq Q = Q q a i e a i e qˆ Q Q Q = ( Q Q Q ) q Cotravariat vector: w ˆq = q w q ˆq = q q qˆ ( = 1) t Lagrage s equatios are o covariat form: a i e Q Q Q = 1

Ivariace of Lagrage s equatios Theorem 9. Lagrage s equatios are ivariat uder a regular coordiate trasformatio, i.e. a i e a i e Q Q Q = Q Q Q = Lagrage s equatios are ivariat uder regular chages of the cofiguratio coordiates!

Summary 3

9.5.1 The rigid part Assume that the motio of the rigid part is give χq (, tqx ; ) = xa(, tq) + R (, tq)( X X A), X B x = x + ω ( x x ) A A x A = = x A, q ω = ω; q = A is a reductio poit. x A, x = q def A def R T ω; = ax( R ), =, 1,..., q 4

The rigid part x A = = x A, q ω = ω = ; q Corollary 9.3 x x A A, = x A ; : = q ω ω; =, = 1,,..., q 5

The rigid part: The mass matrix A = m l = ; A ; l x ω I ω Iertia tesor: I = (( x x ) 1 ( x x ) ( x x )) ρdv( x) A A A A B t 6

The rigid part: The mass matrix m = x x m + ω I ω l c; c; l ; c ; l 7

The double pedulum x A ; x = q A ω ω = q ; m = ( x x + x ω p + x ω p ) m + ω I ω, l, = 1,,..., l A; A; l A; ; l Ac A; l ; Ac ; A ; l 8

The double pedulum x = O ω 1 = θ ω = φ m = ( x x + x ω p + x ω p ) m + ω I ω = ω I ω 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l O; O; l O; ; l Oc O; l ; Oc ; O ; l ; O ; l m = x,,, ; x ; m + ω; Iω; l= θφ l c c l c l 9

3

31

Summarizig, 1 1 ml 11 1 l mθθ = mθθ + mθθ = + ml 1, mθφ = mθφ + mθφ = m1 l cos( φ θ), 3 m ml 3 = φφ ad M ml 11 mll 1 + ml 1 cos( φ θ) 3 = M ( θφ, ) = mll 1 ml cos( φ θ) 3 3

The rigid part: The iteral force Q i E = S q B q dv( X ) Propositio 9.16 For a rigid part the geeralized iteral force is zero, i.e. Q =, = 1,...,, i 33

The rigid part: The exteral force 34

Poit force e t(, tqx ; ) = f(, tq) δ ( X X) B ec Geeralized force from cotact χq(, tqx ; ) χq(, tqx ; ) ec Q = (, ) ec f tqδ ( X X) ( ) (, ) dax tq ec q = f B q B 35

Example 9.6 Assume that the plaar double pedulum is subjected to a follower poit force ad a couple. The correspodig geeralized force is Q = x ; f + ω; M, = θφ, e, e, e, B B 36

Example 9.6 37

Example 9.6, cot. 38

9.5. The elastic part, elastic eergy Elastic potetial: ue ue = ue( X, E), X B, S = E Elastic eergy: ueq, = ueq, (, tqx ; ) = ue( X, Eq(, tqx ; )) Ueq, = Ueq, (, tq) = ueq, (, tqxdvx ; ) ( ) B q Liear elastic sprig: 1 Ue( q) = q 39

The elastic part, iteral geeralized force S = E u E u Q E dv( X ) E = = dv( X ) = dv( X ) =, i q ue q eq, S q Eq q q B B B U ueq, dv( X ) = q q B eq, Q U = q, i eq, 4

The elastic part 41

The liear isotropic elastic part Corollary 9.5 For a liear elastic part, i 1 Q = q ( X ) qdv( X ) q E E B where = ( X ) is the elasticity tesor for body. Corollary 9.6 For a liear isotropic elastic part Q 1 = ( λ (tr ) + µ ) dv( X ) q E E, i B 4

The elastic bar Referece ceter-lie : { X X X s, s l } C = B = +e O 1 q Preset ceter-lie : Ct = x Bt x= χq(, tqx ; ) = xo + e1() t s, s l l 43

The elastic eergy 1 ( q+ l ) Ue = Ue( q) = ( q l) 4l Sprig costat : A E 1 A = ν ( λ + µ ) l = 1 + ν 1 ν l 44

The elastic geeralized force i U e 1 q Qq = = (( ) 1q ) q l i 1 ( q l)( q+ l) Qq = q l l i q; l Q q ( l) q The elastic geeralized force, small elogatios : i Q q ( l) q 45

9.6. Body forces: Gravitatio g = e ( g) z c p Oc B t z c O g χ p U Q dv X dv X dv X q q q q, g q q gq, = gρ ( ) = gρ ( ) = ( pqρ ( ) g) = B B B Ugq, = Ugq, (, tq) = poc(, tq) gm = zc(, tqgm ) 46

Exteral forces: Body forces : Q U = Ugq, = Ugq, (, tq) = poc(, tq) gm = zc(, tqgm ) q, g gq, The potetial eergy for the multibody i the gravitatioal field: g = e ( g) z c p Oc B t z c N N U gq, = U gq, = z c(, t q) gm = zc(, t q) gm = 1 = 1 O g Q g U = q gq, 47

Double pedulum with torsio sprigs Torsio sprigs 1 1 U ( θ, φ) = U + U = κθ + κ ( φ θ) 1 eq, eq, eq, 1 48

Example 9.7 Let the plaar double pedulum i Example 9. be equipped with elastic torsioal sprigs at the joits at O ad A. The elastic potetial eergy of these iteral forces is the give by 1 1 U ( θ, φ) = U + U = κθ + κ ( φ θ) 1 eq, eq, eq, 1 where κ 1 ad κ are the sprig stiffess costats. The correspodig geeralized force is the give by U i eq, Q θ = = κ1θ + κ( φ θ) = ( κ1+ κ) θ + κφ θ U i eq, Q φ = = κ( φ θ) = κθ κφ φ ad ( ) i i i κ1+ κ κ Q = ( Qθ Qφ) = ( θ φ) κ κ 49

Example 9.9 The plaar double pedulum i Example 9. is subjected to the force of gravity with potetial eergy U ( θφ, ) = U + U = y ( θφ, ) gm + y ( θφ, ) gm 1 gq, gq, gq, c 1 c 1 where, see Figure 9.13, Thus y c 1 l1 l ( θφ, ) = cosθ, yc ( θφ, ) = l cos cos 1 θ φ l1 l Ugq, ( θφ, ) = ( m1cos θ+ m( l1cosθ + cos φ)) g j O i θ c 1 A φ c B 5

j O i θ c 1 A φ c Figure 9.13 The potetial eergy of the double pedulum i the gravitatioal field. The geeralized force correspodig to the gravitatioal potetial reads B U g gq, 1 Qθ = = ( m1+ m) lg 1 siθ, θ Q U l g gq, φ = = φ mgsiφ ad 1 l θ φ θ φ ( ) ( 1 ) 1 si si g g g Q = Q Q = m + m lg mg 51

9.6 Exteral forces: Cotact forces β = B = B UB β B B B ec ic = U Exterior cotact surface: ec B Iterior cotact surface: ic B ec B t Q Q ec q e = t ecb χ q da( X ) χq = t da( X ), t = P q ic i i ic B B t ic B t β B t Q = Q + Q c ec ic 5

Lagrage s equatios d T T ( ) Q Q = qm = Q + Q + Q dt q q i e T cif i e Q i U = q e, Q e = Q c + Q b, Q = q b U g d T T U c g ( ) e U + Q + = dt q q q q Potetial eergy: U = U + U e g d T T U c ( ) + Q = dt q q q 53

Lagrage s equatios The Lagragia: L= T U d L L U ( ) Q = qm = Q + Q dt q q q c T cif c Cotact forces: c ic ec Q = Q + Q U qm = Q + Q + Q q T cif ic ec 54

Exercise 4:14 The pedulum system, movig i a vertical plae, cosists of a small ball with mass m fixed, with a iextesible mass-less strig of legth l, to a carriage which may move, without frictio, alog a horizotal lie as show i the figure below. The carriage, with mass m c, is coected to a fixed poit O with a liear elastic sprig, with sprig costat, ad subjected to a exteral force F= Ft () alog its lie of motio. Use Lagrage s equatios to formulate the equatios of motio for the system, ( x=, correspods to ustressed sprig). 55

Exercise 4:14 Solutio e l x R O 1 A m c B N 1 N F e 1 ϕ l 3 C g m Cofiguratio coordiates: x,ϕ 56

Exercise 4:14 Solutio e l x R O 1 A m c B N 1 N F e 1 ϕ l 3 C g m X 1 xo + pop = xo + e1 ( l + x a), P, X l l Placemet: x= χq ( x, ϕ; P) = xo + pob + pbp = xo + e1 ( l + x) + pbp, P xo + pop = xo + e1 ( l + x + lsi ϕ) + e ( lcos ϕ), P 3 57

Exercise 4:14 Solutio Partial derivatives of the trasplacemet: χ t q ( x, ϕ; P) =, P χq X 1 ( x, ϕ; P) = e, P, X l x l 1 χ ( x, ϕ; P) = e1, P x q 3 1, P, X l χq ( x, ϕ; P) =, P ϕ e1lcosϕ+ elsi ϕ, P 3 58

Exercise 4:14 Solutio The material velocity: χq χq χq x = x( x, ϕ, x, ϕ; P) = + x + ϕ = t x ϕ X 1 + e 1 x +, P, X l l + e 1 x +, P = 3 + e 1x + e1l ϕcosϕ + e ϕlsi ϕ, P e e e X x, P, X l 1 1 l x, P ( x + l ϕcos ϕ) + e ϕlsi ϕ, P 1 3 1 59

Exercise 4:14 Solutio Kietic eergy: 1 1 1 1 T = T( x, ϕ, x, ϕ) = vcmc + vbm= x mc + (( x + l ϕcos ϕ) + ( ϕlsi ϕ) ) m= 1 1 x m + mc ml cosϕ x ( x ( m + mc ) + ml x ϕcos ϕ+ ml ϕ ) = ϕ ml cosϕ ml ϕ T Mass matrix: M m + mc ml cosϕ = ml cosϕ ml M =, M = 1 1 6

Exercise 4:14 Solutio Calculatio of massmatrix elemets: q q m = χ χ ρ dv( X ) = dv( X ) = dm = m + m x x e e ρ xx 1 1 c B dm B dm 3 m χ χ = dv( X ) = ( 1l cos + l si ) ( 1l cos + l si ) dm = ml e e e e ϕϕ ρ ϕ ϕ ϕ ϕ ϕ ϕ B q q dm 3 χq χq mx = dv( X ) = 1 ( 1l cos + l si ) dm = ml cos x e e e ϕ ρ ϕ ϕ ϕ ϕ B dm 3 61

Exercise 4:14 Solutio Partial derivatives of ietic eergy: T = x T = ml x ϕsiϕ ϕ T = x ( m + mc ) + ml ϕcosϕ x T = ml x cosϕ + ml ϕ ϕ Lagrage s equatios: d T T i e ( ) Q x Q x = dt x x d T T i e ( ) Q ϕ Q ϕ = dt ϕ ϕ 6

Exercise 4:14 Solutio Geeralized iteral forces: Elastic potetial eergy: U e 1 = x Q i x U x e = = x U ϕ i e Qϕ = = Geeralized exteral forces: Gravitatioal potetial eergy: U = mgl cosϕ g U eg, g Qx = = x Q = = mgl siϕ ϕ U eg, g ϕ 63

Exercise 4:14 Solutio The exteral force F = e : 1 F e l x χ ef, q p OC Qx = F = F = e1 e1f = F x x R O 1 A m c B N 1 N F e 1 χ ef, q p OC Qϕ = F = F = e1 F = ϕ ϕ ϕ l 3 C g m The exteral force R: χq X χq X = ( x, ϕ; P) = = Q = = x e x R χq ( x, ϕ; ), ϕ er, 1 x l χ er, q P = X l Qϕ = R= ϕ 64

Exercise 4:14 Solutio The exteral force N 1 : e l x χ x q N1 = e1 N1 = R O 1 A m c B N 1 N ϕ F l e 1 χq N = = ϕ 1 N1 3 C g m Sum of iteral ad exteral forces: x x x i e Q + Q = mgl si i e Q + Q = + F ϕ ϕ ϕ 65

Exercise 4:14 Solutio The equatios of motio: d dt ( x( m + m ) + ml ϕcos ϕ) + x F = c d ( ml x cos ϕ+ ml ϕ) ml x ϕsiϕ+ mgl siϕ = dt x( m + mc ) + ml ϕcosϕ ml ϕ siϕ+ x F = ml x cosϕ+ ml ϕ+ mgl siϕ = m + m ml cosϕ = + + ml cosϕ ml cif i e c ( x ϕ) ( ml ϕ siϕ ) ( x ) ( F mgl siϕ) q Q Q Q M 66

Exercise 4:14 Solutio Kietic eergy of the sprig: l l 3 1 X X 1 X 1 x ρ X Ts = Ts( x, ϕ, x, ϕ) = 1 1 dx ( ) dx e x e xρ = = = l l x ρ l l 3 l 1 x l 1 m = 3 3 ρ x Kietic eergy of the rod: 1 1 Tr = Tr( x, ϕ, x, ϕ) = vcmr + ωr Iω c r = 1 l l 1 1 (( x + ϕcos ϕ) + ( ϕsi ϕ) ) mr + ϕ ml r 1 67

Lagrage s equatios U qm = Q + Q + Q q T cif ic ec ic Q? β t Bt xc g β β S β, t β Bt S β, t β t 68

Exteral forces: Cotact forces β =, B = B UB β, B B B ec ic = U, Exterior cotact surface: ec B Iterior cotact surface: ic B ec B t Q Q ec q e = t ecb χ q da( X ) χq = t da( X ), t = P q ic i i ic B B t ic B t β B t Q = Q + Q c ec ic 69

9.7 The iteractio betwee parts Parts:, β Cotact surface: S = B B B β β ic t t t t Two parts are i geometric cotact at poit C o the iteral boudary surface if: x = x = χ ( tqt, ( ); X ) = x = χ ( tqt, ( ); X ), X S, X S β β C C q C C q C C t, C t, β β β Relative velocity: χ χ β β x x x β, q q C : = C C = ( ) q = q q Impeetrability costrait: β x, β C Kiematical cotact: β x =, β C B t xc g β St β β B t Separatig cotact: β x <, β C 7

Costrait: Impeetrability A q-coordiate system is said to be compatible with the impeetrability costrait if: (, tqx ; ) β χ (, ; ), q tqx χ β β β C q C β C = ( ) q, ( tq, ) Τ Ω, q = q q x 71

β Lemma 9.1 If ad are i geometrical cotact at C, durig the time iterval Τ, ad if the q - coordiate system is compatible with impeetrability coditio, the for (, tq) Τ Ω, β β β χ (, ; ) (, ; ) q tqx χ C q tqxc β (, tqx, C ) ( ) t t β χ (, ; ) (, ; ) q tqx χq tqx C C β ( tqx,, C ) ( ) =, = 1,..., q q β β where xc = χq (, tqx ; C ) = χq (, tqx ; C ), XC St,, XC S t,. Costrait: Impeetrability β β 7

Costrait: Kiematically coected Two parts are said to be iematically Coected at the cotact poit C if they Are i geometrical cotact ad if:, β C = x A q-coordiate system is said to be compatible with the iematically coected costrait if: χ (, tqx ; ) χ β q (, tqx ; C ) β ( ) q =, ( tq, ) Τ Ω, q q q = q C 73

Costrait: Kiematically coected χ (, ; ) (, ; ) q tqx χ β C q tqxc β ( ) q =, ( tq, ) Τ Ω, q q q = χ (, ; ) (, ; ) q tqx χ β q tqx C C β =, ( tq, ) Τ Ω, = 1,,..., q q β Lemma 9. If ad are iematically coected at C, at time t Τ, ad if the q - coordiate system is compatible with the iematically coected costrait, the for (, tq) Τ Ω, χ (, ; ) (, ; ) q tqx χ β C q tqxc β =, = 1,,..., q q 74

Geeralized cotact forces Assume that geeralized force, ad Q β, from β β are i geometrical cotact over the surface t β o, is give by χ β q β Q = t da( x), β, = 1,..., β q S t S, at time t. The ad the correspodig geeralized force, Q β, from o β by β χ β q β Q = t da( x), β, = 1,..., β q S t where the cotact force t β is the tractio vector from β vector from o. β o ad β t is the tractio 75

The mechaical iteractio t β β t = t β Bt xc g β β S β, t β Bt S β, t β t The geeralized force fromiteral cotacts betwee parts of the multibody is: 1 1 Q Q ( Q Q ) I, N N N ic β β β β = = + = β, = 1 β, = 1 β, = 1 Q =, = 1,..., N We itroduce the mechaical iteractio: I = Q + Q β β β 76

The equatios of motio for the multibody 1 qm Q Q I Q Q N T cif i β ec b = + + + + β, = 1 1 N I β = N β, = 1 β, = 1 < β I β 77

The mechaical iteractio β χq χ β β β β q β I = Q + Q = t da( x) + da( x) = β q t β q S β t S t β χq χq β ( ) t da( x), q q S t t β = t β β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t 78

The cotact force t = T β β t = N + τ β β β β β β τ = Normal compoet: β β N = N ( x,) t C ormal force compoet Tagetial composat: τ β = τ β ( x,) t C frictio force Uilateral cotact: β β N ( x, t), x S, t Τ C C t I mechaical cotact: N β < β x, β C Out of mechaical cotact: β β β N = τ ( x,) t = t = C 79

The mechaical iteractio If the q-coordiate system is compatible with the impeetrability costrait the : β χq χq β ( ) = q q ad cosequetly: β β χq χq χq χ β β q β β I = ( ) t da( x) = ( ) ( N + ) da( x) = β q q τ β q q S t S t S β t β χq χq β ( ) τ da( x) q q 8

The mechaical iteractio Corollary 9.7 If the q - coordiate system is compatible with the impeetrability costrait at β all cotact poits o S t, the β χq χ β q β I = ( ) τ da( x), = 1,..., β q q S t β β No frictio: τ ( x,) t = I = C 81

Equlibrated iteractio I geeral: I β The mechaical iteractio is said to be equilibrated, with respect to the system of cofiguratio 1 coordiates q = ( q, q,..., q ) Ω if β I =, = 1,...,, β, = 1,..., N N 1 β β, I = β, = 1 I this case the equatios of motio for the multibody read qm = Q + Q+ Q + Q T cif i ec b q = qtq ˆ(, ) β β ˆq β β I = I I = I =, = 1,..., q The iteractio is a covariat tesor! 8

Equlibrated iteractio Kiematically coected:, β C = x β β Corollary 9.8 If ad are iematically coected at all cotact poits o S t, at time t Τ, ad if the q - coordiate system is compatible with these costraits the the β mechaical iteractio betwee ad is equilibrated. β β χ, q χq χq χ β β q β x C = = I = ( ) da( x) =, = 1,..., q q τ β q q S t 83

We itroduce the iteractio I β def β β χq χq χq χ β β q β I = ( ) t da( x) = ( ) da( x) + β t t τ β t t S t S β t β χq χq β β ( ) N da( x) t t S t Scleroomic coordiate system: I β = Coordiate system compatible with impeetrability coditio: β χq χq β β ( ), N t t I β β χq χq β ( ) τ da( x) β t t S t 84

The equatios of motio for the multibody 1 qm Q Q I Q Q N T cif i β ec b = + + + + β, = 1 β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t If the q-coordiate system is compatible with impeetrability coditio: β χq χ β q β I = ( ) τ da( x), = 1,..., β q q S t 85

The Power 86

The Power Propositio 9.1 β β β et = et = = β = P P I q I q I = I I β β β 1 ( + 1) where ( ) Corollary 9.9 If the mechaical iteractio betwee β β P = I. et ad β is equilibrated the 87

Thermodyamics Material discotiuity surface Temperature: θ, θ β Eergy balace:,, x β t β + h β β =, x β t S Etropy iequality: β h h β ( ), x S β t θ θ β θ = > S θ β, x β t, β β, β β β x t = h, x t S x S, β β β t, x t 88

Thermodyamics β β β, Pet = P + P = x β t β β da( x) = I q β = S t Thermodyamic coditio : x t x S, β β β, t β P ( tqq,, ), ( tq, ) Τ Ω, q et Ideal iteractio: β P ( tqq,, ) =, ( tq, ) Τ Ω, q et Dissipative iteractio: β P ( tqq,, ) <, ( tq, ) Τ Ω, q et 89

Ideal iteractio Propositio 9. If the mechaical iteractio betwee the ad β β I = I ( tq, ), ( tq, ) Τ Ω, = 1,,..., β I ( tq, ) =, ( tq, ) Τ Ω, = 1,,..., β is ideal ad if Thus the mechaical iteractio betwee ad β is equilibrated. 9

Relative velocity & β, β x C, x x β, β β, β, C = xc, + C, Bt xc g β β, β, xc, =, β C, x S β, t & β, xc, P x& β, C 91

Coulomb dry frictio β β β β t = + τ β, β β, β, xc = Nx C, + xc, x t = ( x + x )( N + τ ) = x N + x τ, β β,, β β β, β, β C C, C, C, C, & β, β x C, Bt xc g β S β, t & β, xc, P x& β, C 9

Coulomb dry frictio If the parts are i mechaical cotact ad the cotact is characterized by Coulomb β dry frictio the the tagetial composat of the cotact tractio τ satisfies x τ, β β β C, = µ s N x β,, β β β C, C, = µ N β, x C, x τ at stic at slip By taig, β C, = x x t x τ, β,,, C β = x β C, N β + β C, β = x β C, N β, x β t β N x, β C, x x x = β β, β, β, C C, C, S, β β, β β xc, = Pet = xc, N da( x) = S β t 93

Coulomb dry frictio x τ, β C, = β µ s N β x β,, β β β C, C, = µ N β, x C, x τ x β, C, x t = x N + x τ = N ( x + µ x ), x S, β β, β β, β β β, β, β β C C, C, C, C, t N x + x β β, β, C, µ C, x x µ β β, β, C C, x =, µ > P = N µ x da( x) <, β β β, β C, et C, S β t 94

Coulomb dry frictio 95

9.7.1 The iteractio betwee rigid parts x = x = χ ( tqx, ; ) = x = χ ( tqx, ; ), X S, X S β β C C q C C q C C t, C t, β β β The velocity of the two material poits is the give by: x = x + ω ( x x ), sys C O C O x = x + ω ( x x ) β β, sys β C O C O β β The relative velocity of the two material poits is the give by: x = x + ω ( x x ) β,, sys β,, sys β, C O C O ω : = ω ω β, β Impeetrability coditio : β St cotact surface at time t x x + ω ( x x ) β, β, sys β, β, sys β, β C O C O 96

Defiitio: e = e( t), e e = 1 x = ex, x,, β, sys β β O O O Prismatic joit β, ω = β e x = x + ω ( x x ) = ex, C S β,, sys β,, sys β, β β C O C O O t Impeetrability coditio : x + ω ( x x ) β, β, sys β, β O C O x = ex, x β, β, sys β β β O C C β e = β The cotact surface ormal has to be perpedicular to the directio β of relative traslatio e, St is a prismatic surface. I cylidrical coordiates (, r θ, z) with e = e z the cotact surface is defied by r = r( θ ). 97

Revolute joit Defiitio: ( O, e), e = e( t), e e = 1 β,, sys β O = x,, ω β = e ω β, ω β x = ω e ( x x ), x S, β, sys β β C C O C t e Impeetrability coditio : ω e ( x x ), ω, x S β β β β C O C t β e ( x x ) =, x S β C O C t It may be show that i this case S ( O, e) i.e. r= rz ( ). See exercise 5:1! β t is a surface of revolutio with axis 98

Simple joits β e β e β e β a) Cylidrical b) Prismatic c) Screw β β e = β e d) Revolute joit e) Spherical f) Plaar 99

Simple joits c = ( c c c ), c = e 3 1 3 Rotatio axis: ( O, e) x : = x x β,, sys, sys β, sys O O O Defiitio of compoets: β c O c1 c = e 3 1

Simple joits β e β e β e β a) Cylidrical b) Prismatic c) Screw β β e = β e 11 d) Revolute joit e) Spherical f) Plaar

No-simple joits β Poit cotact Lie cotact β Aother type of cotacts or joits, ot based o a cotact surface, are poit or lie cotacts. This secod category of joits is called o-simple. Examples of poit cotacts ca be foud i ball bearigs ad helical gears o oparallel shafts. Lie cotact is characteristic of cams, roller bearigs ad most gears. The rigid wheel o a rigid surface is also a example of a lie cotact. 1

Uiversal (Hoo) joit e γ O e 1 β Permits a trasmissio of rotatioal motio betwee itersectig but o-parallel axes. This is accomplished by usig two revolute joits i successio betwee orthogoal axes. The uiversal joit ivolves a itermediary cruciform rigid part γ. 13

The equatios of motio 1 qm Q Q I Q Q N T cif i β ec b = + + + + β, = 1 The iteractio: β χq χ β β q β I = I = ( ) t da( x), = 1,..., β q q S t 14

Rigid parts i cotact Joit O β β M O f β β O O β f β M O f β = f β M β O = M β O 15

Rigid part iteractio β, sys β β Q = x O ; f + ω; MO, = 1,...,, sys x x O ; = q, sys O ω ω = q ;, sys, sys O = xo ; q = x ω = ω = ; q β,, sys, sys β, sys, sys β, sys β,, sys O = O O = ( O ; O ; ) q = O ; q = = x x x x x x x β,, sys O ; β, β β, = = ( ; ; ) q = ; = = ω ω ω ω ω ω ω β, ; q 16

Rigid part iteractio The mechaical iteractio: I = Q + Q β β β 17

Costrait o a relative velocity compoet Uit vector: c = c () t Costrait: β,, sys β,, sys O O ; = c x = c x q = β O c β = g (, tqq ) =, β g (, tq) = c() t x (, tq), β, sys O ; 18

Costrait o a relative agular velocity compoet Uit vector: c = c () t Costrait: β,, β ; = c ω = c ω q = O β = h (, tqq ) =, h tq t tq β, β (, ) = c() ω; (, ) 19

Costrait o the relative velocity x = x = x β,, sys, sys β, sys O O O c() t = ( c () t c () t c ()) t 1 3 β i = g ( tqq, ) =, i= 13,,, g (, tq) = c () t x (, tq) β, β i i O; O 11

Costrait o the relative velocity x = Τ Ω C = Τ Ω β,, sys O ( tqq,, ), t, q, q ( tq, ), t, q Kiematical costrait Geometrical costrait (, tq) β C = χ (, tqx ; ) χ (, tqx ; ) a, t Τ, q Ω q O q O O 111

Rollig ad pivotig ω = ω + ω, β β β β p r ω β β r = β Pivotig compoet: ω, Rollig composat: ω = c ω, + c ω, p β β β r 1 r1 r Π β ω B t c C c = 3 β β B t x = x + ω ( x x ) β, β, sys β, β, sys β β C O r C O 11

Rollig ad pivotig without slippig,,sys β C = x,, sys i C i = c x β = g β q β, β, =, i= 13,, g (, tq ) = c x i i C; sys β 3 3 = g β i q =, i= 1, = g q = C (, tq) = Holoomic costrait No-holoomic costrait Ci (, tq) = 113

Holoomic costraits Holoomic costrait: C (, tq) =, C (, tq) q 1 C ( tq, ) =, q Ω, C (, tq) l q, for some 1 l l 1 l 1 l+ 1 q = f( tq,, q,..., q, q,..., q) 114

Holoomic ad iematical costraits Holoomic costrait: C (, tq) = Kiematical costrait: d C (, tq) C ( tqt, ( )) = gq =, g = g( tq, ) =, = 1,,..., dt q = Kiematical costrait: β = g (, tqq ) = / Holoomic costrait: 115

Holoomic ad o-holoomic costraits Kiematical costrait: β = g (, tqq ) = If there exists γ = γ(, tq), G=G(, tq) such that G(, tq) g ( tq, ) = γ ( tq, ), = 1,,..., q The, sice γ, G gq = q = G= G = C = G c= def γ γ = = q The fuctio γ = γ(, tq) is called a itegratig factor to the iematical costrait. If it is ot possible to fid fuctios γ ad G, the the iematical coditio is said to be oholoomic. 116

ω = & ϕ O g j x C i 117

118

Kiematical costraits c = c( t), c c = 1 c x β = g β, (, tqq ) = c ω β = h β (, tqq ) =,, sys O = = Propositio 9.7 The q - coordiate system is compatible with the iematical costraits β β above if ad oly if g (, tq) =, h (, tq) =, (, tq) Τ Ω, = 1,,...,. 119

The iteractio betwee rigid parts β, β sys β, β β I = x O ; f + ω; MO, = 1,..., β M O f β β O O f β β M O 1

Kiematical costraits f β = cf β + f β, MO = cm O + MO, β β β f =, M = I =, = 1,,...,, The iteractio is the equilibrated! β β β O, 11

Iteractio ad et power c = ( c c c ), c = c ( ) 1 3 i i t g (, tq) = c () t x (, tq), h(, tq) = c () t ω (, tq), i= 13,,, = 1,..., β,, sys β, i i O; i i ; O Propositio 9.9 The iteractio may be writte 3 I β = ( g β f β + h β M β ), = 1,,..., i i i i i= 1 where f β i = c β i f ad M β i = c β i M O, i= 13,, are compoets of the costrait forces ad momets relative to the basis c. 1

Net power β Pet = I q = β 3 3 β β β β β β β β β Pet = ( ( gi fi + hi Mi )) q = (( gi q ) fi + ( hi q ) Mi ) = i= 1 i= 1 = = I β 3 P β = (( g β q ) f β + ( h β q ) M β ) et i i i i i= 1 = = 13

Ideal revolute joit Revolute axis: ( O, c 3 ) β Costraits: x =, c ω =, c ω = β,, sys β, β, O 1 g q =, i= 13,,, h q =, i= 1, i = = i c 3 Ideal joit: β P = ( h q ) M = et 3 3 = 3, 3 = h3 q M3 = I = gi fi + h1 M1 + h M = i= 1 c ω β β A priori uow reactio compoets: f1, f, f3, M1, M 14

Ideal revolute joit: The plaar pedulum, a homogeeous sleder rod Cosider a pedulum cosistig of, apart from groud with legth L. Assume that these parts are coected at a fixed poit O by a ideal revolute with axis ( O, ). 1 j O O i θ 1 c:( xy, ) 15

Ideal revolute joit: plaar pedulum Groud: x, O = ω = Pedulum: x = x + ω p 1 1 1 O c co, ω = ω 1 1 Geeralized coordiates: xyθ,,, p = ( isi θ + j( cos θ)) Oc L 1 x c = ix+ jy, ω 1 = θ 1 L L x O = ix+ jy + θ pco = i( x θcos θ) + j( y θsi θ) = L ix+ jy ( icosθ + jsi θθ ) 16

Ideal revolute joit: plaar pedulum 1, 1 L L xo = xo xo = i( x θcos θ) + j( y θsi θ) Kiematical costraits: L x θ cosθ = 1, x O = L y θ siθ = 17

Ideal revolute joit: plaar pedulum 1, 1 L L xo = xo xo = i( x θcos θ) + j( y θsi θ) 1, 1, 1, L xox ; = i, xoy ; = j, xo ; θ = ( icosθ + jsi θ) 1, ω = θ = θ ω =, ω =, ω = 1, 1, 1, ; x ; y ; θ Iteractio: I = x f + ω M = i f = 1 1, 1 1, 1 1 x Ox ; ; x O x f I = x f + ω M = j f = 1 1, 1 1, 1 1 y Oy ; ; y O y f 1 1, 1 1, 1 L 1 1 I = x θ O; θ f + ω; θ MO = ( icosθ + jsi θ) f + MO = L L f cosθ f siθ + M x y Oz, 18

Ideal revolute joit: plaar pedulum O f y O f x j i θ 1 c:( xy, ) 1 Ix = fx 1 ideal M Oz, = I y = f y 1 L Iθ = ( fxcosθ + fysi θ) 19

Ideal revolute joit: plaar pedulum Geeralized coordiates: θ = O x 1,, θθ, x 1, O ; θ = 1, ω = θ θ ω 1, ; θ = I = x f + ω M = M = M = 1 1, 1 1, 1 1 θ O; θ ; θ O O z 13

Ideal screw joit Screw axis: ( O, c 3 ) Costraits: β, β,, sys ω β, β, β, x O = c3 L, ω = c3ω, ω, π g q =, i= 1,, h q =, i= 1, i = = i screw lead: L β, ω g3q = L, h3 q = ω π = = β, β = L ( g3 h3) q = π c 3 131

Ideal screw joit Ideal joit: ω P = g q f + h q M = Lf + M = β, β, β et ( 3 ) 3 ( 3 ) 3 3 ω 3 = = π ω β, L f3 M3 π + = ( L β I = g f + g f + g h ) f h M h M π + + 1 1 3 3 3 1 1 A priori uow reactio compoets: f1, f, f3, M1, M 13

Revolute joit with frictio β No relative motio: β,, sys β, β, x O =, c1 ω =, c ω =, 3 β c ω = M3 M3c, = M3c, ( f1, f, f3, M1, M) c 3 P β et = 3 β I = ( g f+ hm), = 1,..., i i i i i= 1 A priori uow reactio compoets: f1, f, f3, M1, M, M3 133

Revolute joit with frictio Relative motio: β,, sys β, β, x O =, c1 ω =, c ω = M3 > M3c, M = M, ( ω ; f, f, f, M, M ), ω = c ω β, β, β, 3 3r 3 1 3 1 3 3 β, β et ( 3 ) 3 ω3 3 = P = h q M = M < if ω > = > < β, β, 3 3r, ( ω3 ; 1,, 3, 1, ) β, if ω3 M f f f M M 3 β = i + 1 1 + + 3 3, r i= 1 I g f h M h M h M A priori uow reactio compoets: f1, f, f3, M1, M 134

Exteral forces Q = x ; f + ω; M, = 1,..., e, sys e e O O, sys x x O ; = q, sys O, sys, sys O = xo ; q = x ω ω ω = q ; = ω = ; q M e O f e 135

Exteral forces M e, OO f e, Electric motor O ψ ω = e ψ&,sys O = x ω = eψ x, sys O = ω = Revolute joit ω = ; ψ e β I,, = x O; f + ω; MO = ω; MO = e MO = sys ψ ψ ψ ψ = M 136

The Lagragia ad the Power theorem qm = Q + Q+ Q + Q + Q T cif i ic ec b Q ic N = 1 β=, 1 I β, i ec b co o Q + Q + Q = Q + Q Coservative geeralized force: Q co V = q Potetial: V= Vtq (, ) ( V = V + V ) e b No-coservative geeralized force: o Q The Lagragia: L= Ltqq (,, ): = Ttqq (,, ) Vtq (, ) The Mechaical eergy: E= pq T L, p = q = 1 137

The Lagragia ad the Power theorem Sum of et powers: P ic et N = β, 1 < = β P β et, P (, tqq, ), ic et P = I q β et = β Power expeded by iteral cotact forces: Q ic N = β, 1 < β = I β def ic ic ic = = = 1 P Q q Q q Propositio 9.31 P = P + I where ic ic ic et I N ic = I β β, = 1 < β Corollary 9.11 For a multibody with equilibrated iteractios we have cosequetly ic P =. P = I ad ic ic et 138

The Power theorem Propositio 9.3 E P P I L t o ic ic = + et 139

The Power theorem Corollary 9.1 For a multibody with equilibrated iteractios E L t o = P Corollary 9.13 o ic L E P I t with the equality sig preset i equatio if the iteral iteractios are ideal. 14

Coordiate chage Regular coordiate chage: q q q= qtq ˆ(, ) qˆ E = E + p, t P = P + Q ˆ, t o o o q ic ic ic qˆ P = P + Q t qˆ qˆ L(, tq, q ) Ltqtq (, ˆ = (, ), + q ) t q L E P P E P P t o ic o ic = + = + L t The Power theorem is ivariat uder a regular coordiate chage! 141

Rigid part iteractio β, β, sys β, β β I = x O ; f + ω; MO, = 1,...,, x x x ω = ω ω β,, sys, sys, sys O ; = O ; β O ;, β β ; ; ; x x = q, sys, sys O O ;, ω ω = q ;, sys, sys O = xo ; q, = x ω = ω = ; q, e, sys, e, e Q = x O ; f + ω; MO, = 1,..., 14

Equatios of motio ad the ideal revolute joit qm = Q + Q+ Q + Q + Q N ic 1 Q = I β β, = 1 T cif i ic ec b β c 3 Revolute joit costraits: giq =, i= 13,, h,, i q = i= 1 = = Revolute joit iteractio: 3 β = i i + 1 1 + i= 1 I g f h M h M A priori uow reactios : f1, f, f3, M1, M 143

Equatios of motio ad the ideal spherical joit qm = Q + Q+ Q + Q + Q N ic 1 Q = I β β, = 1 T cif i ic ec b Revolute joit costraits: = g q =, i= 13,, i Revolute joit iteractio: I 3 β = gi fi i= 1 A priori uow reactios : f1, f, f3 144

Exercise 5:5 Solutio Cofiguratio coordiates: β, 1 RON-basis fixed to bet bar : f = ( f1 f f3) RON-basis fixed to the wheel : e = ( e e e ) 1 3 145

Exercise 5:5 Solutio e = f ( si θ) + f cosθ 3 1 3 1 1 Agular velocity of bet bar : ω = e, 3 ω 1 = e 1 ; 3, = ; β ω 1 Agular velocity of the wheel : ω = ω + e ( β) = e + f ( β) = 3 3 1 f ( β si θ) + f cos θ, 1 3 ω; = f ( si θ) + f cos θ = e, ω = f ; β 1 3 3 1 146

Exercise 5:5 Solutio 1 Kietic eergy of bet bar : Kietic eergy of the wheel : T 1 1 1 1 = ω I ω = e I e = e I e = I 1 1 1 1 1 1 C 3 C 3 3 C 3 T = 1 v v m+ 1 ω I ω O O C = I 147

Exercise 5:5 Solutio A e = f ( si θ) + f cosθ 3 1 3 Cotact poit betwee ad : A, v = v + ω p A O OA 1 1 1 vo = v B + ω pco = ω pbo = ω ( pba + pao ) = e3 ( f1rcosθ + f3rsi θ + f3r) = = ( f ( si θ) + f cos θ ) ( f Rcos θ+ f ( Rsi θ+ r)) = f ( R+ rsi θ ) 1 3 1 3 148

Exercise 5:5 Solutio A v = v + ω p = f ( R+ rsi θ ) + ( f ( β si θ) + f cos θ) f ( r) = f ( R r β) A O OA 1 3 3 R Rollig without slippig: va = f( R r β) = R r β = β = r R β = + cost. r 149

Exercise 5:5 Solutio A Kietic eergy of the wheel : T = 1 v v m+ 1 ω I ω = O O C 1 1 ( R+ rsi θ) m+ ( f1( β si θ) + f3cos θ) IC( f1( β si θ) + f 3cos θ) = 1 1 ( R+ rsi θ) m+ (( β + si θ) f1 IC f1+ cos θ f3 IC f3) = 1 3 1 m( ( R+ rsi θ) + r cos θ ) 4 1 1 = mr = mr 4 15

Exercise 5:5 Solutio A 1 Kietic eergy of the multibody : T = T( ) = T + T = 1 1 3 1 1 3 1 I m( ( R rsi ) r cos ) + + θ + θ = I + m( ( R+ rsi ) + r cos ) 4 θ θ 4 T 3 1 = I + m( ( R+ rsi θ) + r cos θ), 4 T = 151

Exercise 5:5 Solutio A V b g Potetial eergy i the gravitatioal field: Vg = Vg( ) = cost. Q = = 3 The iteractio betwee ad : I = x f + ω M = ω M = ω M = e M = 3 3,, sys 3 3, 3 3 3 1 3 3 B; ; B ; B ; B 3 B M Lagrage s equatios: d T T 3 1 = I m( ( R rsi ) r cos ) M dt + + θ + θ = 4 ω 15